/aosp12/packages/modules/NeuralNetworks/common/operations/ |
H A D | Reshape.cpp | 35 const Shape& outputShape) { in copyData() argument 44 T* outputData, const Shape& outputShape) { in depthToSpaceGeneric() argument 52 const Shape& outputShape); 65 T* outputData, const Shape& outputShape) { in spaceToDepthGeneric() argument 86 T* outputData, const Shape& outputShape) { in padGeneric() argument 186 const Shape& outputShape); 189 const Shape& outputShape); 192 const Shape& outputShape); 195 const Shape& outputShape); 225 const Shape& outputShape) { in spaceToBatchGeneric() argument [all …]
|
H A D | Activation.cpp | 71 const Shape& outputShape) { in relu1Float() argument 81 const Shape& outputShape) { in relu6Float() argument 90 const Shape& outputShape) { in tanhFloat16() argument 100 const Shape& outputShape) { in tanhFloat32() argument 142 const Shape& outputShape) { in reluQuant8() argument 148 const Shape& outputShape) { in relu1Quant8() argument 160 const Shape& outputShape) { in tanhQuant8() argument 162 if (outputShape.offset != 128 || outputShape.scale != 1.f / 128) { in tanhQuant8() 192 if (outputShape.offset != 0 || outputShape.scale != 1.f / 256) { in logisticQuant8() 257 if (outputShape.offset != 0 || outputShape.scale != 1.f / 128) { in tanhQuant8Signed() [all …]
|
H A D | Pooling.cpp | 144 auto op_params = param.toTfliteParam(outputShape); in averagePoolNhwc() 159 outputShape); in averagePoolNhwc() 167 auto op_params = param.toTfliteParam(outputShape); in averagePoolNhwc() 177 auto op_params = param.toTfliteParam(outputShape); in averagePoolNhwc() 190 auto op_params = param.toTfliteParam(outputShape); in l2PoolNhwc() 212 auto op_params = param.toTfliteParam(outputShape); in maxPoolNhwc() 222 auto op_params = param.toTfliteParam(outputShape); in maxPoolNhwc() 232 auto op_params = param.toTfliteParam(outputShape); in maxPoolNhwc() 249 outputShape); in maxPoolNhwc() 269 const Shape& outputShape) { in l2Pool() argument [all …]
|
H A D | MaximumMinimum.cpp | 36 bool isMinimum, T* outputData, const Shape& outputShape) { in evalGeneric() argument 39 IndexedShapeWrapper outputShapeIndexed(outputShape); in evalGeneric() 41 std::vector<uint32_t> curIndex(outputShape.dimensions.size(), 0); in evalGeneric() 62 bool isMinimum, T* outputData, const Shape& outputShape) { in evalQuant8() argument 65 IndexedShapeWrapper outputShapeIndexed(outputShape); in evalQuant8() 67 std::vector<uint32_t> curIndex(outputShape.dimensions.size(), 0); in evalQuant8() 77 T aValue = requantize<T>(aData[aFlatIndex], aShape, outputShape); in evalQuant8() 78 T bValue = requantize<T>(bData[bFlatIndex], bShape, outputShape); in evalQuant8() 96 bool isMinimum, void* output, const Shape& outputShape) { in eval() argument 107 reinterpret_cast<float*>(output), outputShape); in eval() [all …]
|
H A D | SimpleMath.cpp | 35 const Shape& outputShape) { in meanFloat16() argument 40 std::vector<float> outputDataFloat32(getNumberOfElements(outputShape)); in meanFloat16() 42 outputDataFloat32.data(), outputShape); in meanFloat16() 49 bool keepDims, T* outputData, const Shape& outputShape) { in meanGeneric() argument 59 U* tempSumBuffer = new (std::nothrow) U[getNumberOfElements(outputShape)]; in meanGeneric() 68 reinterpret_cast<const int*>(outputShape.dimensions.data()), in meanGeneric() 69 getNumberOfDimensions(outputShape), axis, axisSize, keepDims, scratchBuffer, in meanGeneric() 79 float* outputData, const Shape& outputShape); 83 const Shape& outputShape); 87 const Shape& outputShape);
|
H A D | FullyConnected.cpp | 59 float* outputData, const Shape& outputShape) { in fullyConnectedFloat32() argument 66 uint32_t batch_size = getSizeOfDimension(outputShape, 0); in fullyConnectedFloat32() 89 _Float16* outputData, const Shape& outputShape) { in fullyConnectedFloat16() argument 98 std::vector<float> outputDataFloat32(getNumberOfElements(outputShape)); in fullyConnectedFloat16() 101 outputDataFloat32.data(), outputShape); in fullyConnectedFloat16() 110 uint8_t* outputData, const Shape& outputShape) { in fullyConnectedQuant8() argument 114 int32_t outputOffset = outputShape.offset; in fullyConnectedQuant8() 151 int8_t* outputData, const Shape& outputShape) { in fullyConnectedQuant8() argument 163 CalculateActivationRangeInt8(activation, outputShape, &outputActivationMin, in fullyConnectedQuant8() 169 params.output_offset = outputShape.offset; in fullyConnectedQuant8() [all …]
|
H A D | Conv2D.cpp | 199 float* outputData, const Shape& outputShape) { in convNhwc() argument 235 int32_t outputOffset = outputShape.offset; in convNhwc() 282 int8_t* outputData, Shape outputShape) { in convNhwc() argument 294 outputShape.offset += 128; in convNhwc() 338 const Shape& outputShape) { in conv() argument 342 NN_RET_CHECK(output.initialize(outputData, outputShape)); in conv() 359 const Shape& outputShape) { in convQuant8PerChannelNhwc() argument 374 int32_t outputOffset = outputShape.offset; in convQuant8PerChannelNhwc() 452 const Shape& outputShape) { in convQuant8PerChannelNhwc() argument 467 int32_t outputOffset = outputShape.offset; in convQuant8PerChannelNhwc() [all …]
|
H A D | Quantize.cpp | 40 bool quantizeToQuant8(const T* inputData, uint8_t* outputData, const Shape& outputShape) { in quantizeToQuant8() argument 42 uint32_t size = getNumberOfElements(outputShape); in quantizeToQuant8() 45 0.0f, std::min<float>(255.0f, outputShape.offset + std::round(inputData[i] / in quantizeToQuant8() 46 outputShape.scale)))); in quantizeToQuant8() 52 bool quantizeToQuant8Signed(const T* inputData, int8_t* outputData, const Shape& outputShape) { in quantizeToQuant8Signed() argument 54 uint32_t size = getNumberOfElements(outputShape); in quantizeToQuant8Signed() 58 std::min<float>(127.0f, outputShape.offset + in quantizeToQuant8Signed() 59 std::round(inputData[i] / outputShape.scale)))); in quantizeToQuant8Signed()
|
H A D | GroupedConv2D.cpp | 41 uint32_t outputHeight = getSizeOfDimension(outputShape, 1); \ 42 uint32_t outputWidth = getSizeOfDimension(outputShape, 2); \ 43 uint32_t outputDepth = getSizeOfDimension(outputShape, 3); \ 51 const Shape& outputShape) { in groupedConvFloat32() argument 109 const Shape& outputShape) { in groupedConvQuant8() argument 115 int32_t outputOffset = outputShape.offset; in groupedConvQuant8() 188 const Shape& outputShape); 197 const Shape& outputShape); 211 int32_t outputOffset = outputShape.offset; in groupedConvQuant8PerChannel() 305 outputData_float32.data(), outputShape); in groupedConvFloat16() [all …]
|
H A D | Cast.cpp | 45 const Shape& outputShape) { in copyToTensor() argument 53 switch (outputShape.type) { in copyToTensor() 73 const Shape& outputShape) { in eval() argument 81 outputShape); \ in eval() 91 if (inputShape.type == outputShape.type) { in eval() 92 return copyData(inputData, inputShape, outputData, outputShape); in eval()
|
H A D | Pow.cpp | 35 const Shape& exponentShape, T* outputData, const Shape& outputShape) { in evalGeneric() argument 38 IndexedShapeWrapper outputShapeIndexed(outputShape); in evalGeneric() 40 std::vector<uint32_t> curIndex(outputShape.dimensions.size(), 0); in evalGeneric() 70 const Shape& exponentShape, void* outputData, const Shape& outputShape) { in eval() argument 75 reinterpret_cast<_Float16*>(outputData), outputShape); in eval() 80 reinterpret_cast<float*>(outputData), outputShape); in eval()
|
H A D | L2Normalization.cpp | 49 float* outputData, const Shape& outputShape) { in l2normFloat32Impl() argument 77 uint8_t* outputData, const Shape& outputShape) { in l2normQuant8Impl() argument 109 int8_t* outputData, const Shape& outputShape) { in l2normQuant8SignedImpl() argument 140 const Shape& outputShape) { in l2normFloat32() argument 151 return l2normFloat32Impl(inputData, inputShape, axis, outputData, outputShape); in l2normFloat32() 156 _Float16* outputData, const Shape& outputShape) { in l2normFloat16() argument 160 std::vector<float> outputDataFloat32(getNumberOfElements(outputShape)); in l2normFloat16() 169 uint8_t* outputData, const Shape& outputShape) { in l2normQuant8() argument 180 return l2normQuant8Impl(inputData, inputShape, axis, outputData, outputShape); in l2normQuant8() 185 int8_t* outputData, const Shape& outputShape) { in l2normQuant8Signed() argument [all …]
|
H A D | Concatenation.cpp | 52 const Shape& outputShape) { in concatenation() argument 63 getNumberOfDimensions(outputShape) - axis - 1, inputDataPtrs.data(), in concatenation() 64 inputDimsPtr.data(), num_inputs, outputData, convertShapeToDims(outputShape)); in concatenation() 72 uint8_t* outputData, const Shape& outputShape) { 88 getNumberOfDimensions(outputShape) - axis - 1, inputDataPtrs.data(), 90 convertShapeToDims(outputShape), outputShape.offset, outputShape.scale); 131 Shape outputShape(context->getOutputShape(kOutputTensor)); variable 132 outputShape.offset += 128; 134 output_uint8.data(), outputShape));
|
H A D | Softmax.cpp | 54 int32_t axis, float* outputData, const Shape& outputShape) { in softmaxSlowFloat32() argument 86 float* outputData, const Shape& outputShape) { in softmaxFloat32() argument 94 convertShapeToTflshape(outputShape), outputData); in softmaxFloat32() 102 int32_t axis, _Float16* outputData, const Shape& outputShape) { in softmaxFloat16() argument 106 std::vector<float> outputData_float32(getNumberOfElements(outputShape)); in softmaxFloat16() 109 outputShape); in softmaxFloat16() 118 T* outputData, const Shape& outputShape) { in softmaxQuant8Impl() argument 204 T* outputData, const Shape& outputShape) { in softmaxQuant8() argument 210 outputShape.offset != -128) || in softmaxQuant8() 211 outputShape.scale != 1.f / 256) { in softmaxQuant8() [all …]
|
H A D | DepthwiseConv2D.cpp | 139 const Shape& outputShape) { in depthwiseConvNhwc() argument 187 outputShape); in depthwiseConvNhwc() 199 const Shape& outputShape) { in depthwiseConvNhwc() argument 228 .output_offset = outputShape.offset, in depthwiseConvNhwc() 250 Shape outputShape) { in depthwiseConvNhwc() argument 262 outputShape.offset += 128; in depthwiseConvNhwc() 297 uint32_t outputWidth = getSizeOfDimension(outputShape, 2); in depthwiseConvQuant8PerChannelNhwc() 301 int32_t outputOffset = outputShape.offset; in depthwiseConvQuant8PerChannelNhwc() 379 const Shape& outputShape) { in depthwiseConv() argument 383 NN_RET_CHECK(output.initialize(outputData, outputShape)); in depthwiseConv() [all …]
|
H A D | PRelu.cpp | 48 const Shape& outputShape) { in eval() argument 51 IndexedShapeWrapper outputShapeIndexed(outputShape); in eval() 52 std::vector<uint32_t> curIndex(outputShape.dimensions.size(), 0); in eval() 71 T* outputData, const Shape& outputShape) { in evalQuant8() argument 74 const int32_t output_offset = outputShape.offset; in evalQuant8() 76 const double real_multiplier_pos = aShape.scale / outputShape.scale; in evalQuant8() 77 const double real_multiplier_neg = input_product_scale / outputShape.scale; in evalQuant8() 98 aData, aShape, bData, bShape, outputData, outputShape); in evalQuant8()
|
H A D | ResizeImageOps.cpp | 74 const int outHeight = getSizeOfDimension(outputShape, 1); in resizeNearestNeighbor() 75 const int outWidth = getSizeOfDimension(outputShape, 2); in resizeNearestNeighbor() 113 const Shape& outputShape) { in resizeImageOpNhwc() argument 115 int32_t height = static_cast<int32_t>(getSizeOfDimension(outputShape, 1)); in resizeImageOpNhwc() 116 int32_t width = static_cast<int32_t>(getSizeOfDimension(outputShape, 2)); in resizeImageOpNhwc() 127 outDimData, convertShapeToTflshape(outputShape), outputData); in resizeImageOpNhwc() 132 outputShape); in resizeImageOpNhwc() 140 _Float16* outputData, const Shape& outputShape) { 144 std::vector<float> outputData_float32(getNumberOfElements(outputShape)); 154 const Shape& outputShape) { in resizeImageOp() argument [all …]
|
H A D | TransposeConv2D.cpp | 129 const Shape& outputShape) { in transposeConvNhwc() argument 136 memset(outputData, 0, getNumberOfElements(outputShape) * sizeof(float)); in transposeConvNhwc() 205 int32_t outputOffset = outputShape.offset; in transposeConvNhwc() 217 CalculateActivationRange<T>(activation, outputShape, &outputActivationMin, in transposeConvNhwc() 281 const Shape& outputShape) { in transposeConvNhwc() argument 286 std::vector<float> outputData_float32(getNumberOfElements(outputShape)); in transposeConvNhwc() 294 outputShape); in transposeConvNhwc() 304 const Shape& outputShape) { in transposeConv() argument 308 NN_RET_CHECK(output.initialize(outputData, outputShape)); in transposeConv() 340 int32_t outputOffset = outputShape.offset; in transposeConvQuant8PerChannelNhwc() [all …]
|
H A D | Reduce.cpp | 55 const Shape outputShape = context->getOutputShape(kOutputTensor); in compute() local 64 reinterpret_cast<const int32_t*>(outputShape.dimensions.data()), in compute() 65 outputShape.dimensions.size(), context->getInputBuffer<int32_t>(kInputAxes), numAxes, in compute() 147 Shape outputShape = inputShape; in prepare() local 148 outputShape.dimensions.clear(); in prepare() 153 outputShape.dimensions.push_back(1); in prepare() 156 outputShape.dimensions.push_back(getSizeOfDimension(inputShape, axis)); in prepare() 161 if (outputShape.dimensions.empty()) { in prepare() 162 outputShape.dimensions.push_back(1); in prepare() 165 return context->setOutputShape(kOutputTensor, outputShape); in prepare()
|
H A D | LocalResponseNormalization.cpp | 54 const Shape& outputShape) { in localResponseNormFloat32Impl() argument 83 T beta, int32_t axis, T* outputData, const Shape& outputShape); 88 const Shape& outputShape) { 99 convertShapeToTflshape(outputShape), outputData); 103 outputData, outputShape); 110 _Float16* outputData, const Shape& outputShape) { 114 std::vector<float> outputDataFloat32(getNumberOfElements(outputShape)); 117 outputDataFloat32.data(), outputShape);
|
H A D | Slice.cpp | 55 T* outputData, const Shape& outputShape) { in evalGeneric() argument 56 const int outputSize = getNumberOfElements(outputShape); in evalGeneric() 57 const IndexedShapeWrapper indexedOutput = IndexedShapeWrapper(outputShape); in evalGeneric() 59 std::vector<uint32_t> outputIndex(getNumberOfDimensions(outputShape), 0); in evalGeneric() 126 Shape outputShape = context->getOutputShape(kOutputTensor); in prepare() local 127 outputShape.dimensions.resize(n_dims); in prepare() 137 outputShape.dimensions[i] = sliceSize; in prepare() 139 return context->setOutputShape(kOutputTensor, outputShape); in prepare()
|
H A D | Multinomial.cpp | 66 Shape* outputShape) { in Prepare() argument 78 outputShape->type = OperandType::TENSOR_INT32; in Prepare() 79 outputShape->dimensions = {batch_size, sample_count}; in Prepare() 80 outputShape->offset = inputShape.offset; in Prepare() 81 outputShape->scale = inputShape.scale; in Prepare()
|
H A D | LSHProjection.cpp | 45 Shape* outputShape) { in Prepare() argument 69 outputShape->dimensions = {SizeOfDimension(hash, 0)}; in Prepare() 76 outputShape->dimensions = {SizeOfDimension(hash, 0) * SizeOfDimension(hash, 1)}; in Prepare() 83 outputShape->type = OperandType::TENSOR_INT32; in Prepare() 84 outputShape->offset = 0; in Prepare() 85 outputShape->scale = 0.f; in Prepare()
|
/aosp12/packages/modules/NeuralNetworks/common/include/ |
H A D | Operations.h | 65 const Shape& outputShape); 81 const Shape& outputShape); 88 const Shape& outputShape); 91 const Shape& outputShape); 95 T* outputData, const Shape& outputShape); 98 T* outputData, const Shape& outputShape); 102 T* outputData, const Shape& outputShape); 111 const Shape& outputShape); 115 const Shape& outputShape); 160 const Shape& outputShape); [all …]
|
/aosp12/packages/modules/NeuralNetworks/common/ |
H A D | OperationsUtils.cpp | 50 const auto scale = outputShape.scale; in CalculateActivationRangeImpl() 51 const auto zero_point = outputShape.offset; in CalculateActivationRangeImpl() 267 *multiplier = input_product_scale / outputShape.scale; in GetQuantizedConvolutionMultipler() 467 outputShape->type = valueShape.type; in embeddingLookupPrepare() 468 outputShape->dimensions = {lookups, columns}; in embeddingLookupPrepare() 472 outputShape->offset = valueShape.offset; in embeddingLookupPrepare() 473 outputShape->scale = valueShape.scale; in embeddingLookupPrepare() 485 outputShape->type = valueShape.type; in hashtableLookupPrepare() 486 outputShape->dimensions = {lookups}; in hashtableLookupPrepare() 490 outputShape->offset = valueShape.offset; in hashtableLookupPrepare() [all …]
|