1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "Operations"
18
19 #include <algorithm>
20 #include <iterator>
21 #include <vector>
22
23 #include "OperationResolver.h"
24 #include "OperationsUtils.h"
25 #include "Tracing.h"
26 #include "nnapi/Validation.h"
27
28 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
29 #include <tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h>
30 #include <tensorflow/lite/kernels/internal/reference/legacy_reference_ops.h>
31 #include <tensorflow/lite/kernels/internal/reference/reference_ops.h>
32 #include <tensorflow/lite/kernels/internal/types.h>
33
34 #include "CpuOperationUtils.h"
35 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
36
37 namespace android {
38 namespace nn {
39 namespace concatenation {
40
41 constexpr char kOperationName[] = "CONCATENATION";
42
43 constexpr uint32_t kNumOutputs = 1;
44 constexpr uint32_t kOutputTensor = 0;
45
46 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
47 namespace {
48
49 template <typename T>
concatenation(const std::vector<const T * > & inputDataPtrs,const std::vector<Shape> & inputShapes,int32_t axis,T * outputData,const Shape & outputShape)50 bool concatenation(const std::vector<const T*>& inputDataPtrs,
51 const std::vector<Shape>& inputShapes, int32_t axis, T* outputData,
52 const Shape& outputShape) {
53 NNTRACE_TRANS("concatenation");
54 int num_inputs = inputShapes.size();
55 std::vector<tflite::Dims<4>*> inputDimsPtr(num_inputs);
56 std::vector<tflite::Dims<4>> inputDims(num_inputs);
57 for (int i = 0; i < num_inputs; i++) {
58 inputDims[i] = convertShapeToDims(inputShapes[i]);
59 inputDimsPtr[i] = &inputDims[i];
60 }
61 NNTRACE_COMP_SWITCH("optimized_ops::Concatenation");
62 tflite::optimized_ops::Concatenation<tflite::FusedActivationFunctionType::kNone, T>(
63 getNumberOfDimensions(outputShape) - axis - 1, inputDataPtrs.data(),
64 inputDimsPtr.data(), num_inputs, outputData, convertShapeToDims(outputShape));
65
66 return true;
67 }
68
69 template <>
70 bool concatenation<uint8_t>(const std::vector<const uint8_t*>& inputDataPtrs,
71 const std::vector<Shape>& inputShapes, int32_t axis,
72 uint8_t* outputData, const Shape& outputShape) {
73 NNTRACE_TRANS("concatenationQuant8");
74 int num_inputs = inputShapes.size();
75 std::vector<float> inputScales(num_inputs);
76 std::vector<int32> inputOffsets(num_inputs);
77 std::vector<tflite::Dims<4>*> inputDimsPtr(num_inputs);
78 std::vector<tflite::Dims<4>> inputDims(num_inputs);
79 for (int i = 0; i < num_inputs; i++) {
80 inputScales[i] = inputShapes[i].scale;
81 inputOffsets[i] = inputShapes[i].offset;
82 inputDims[i] = convertShapeToDims(inputShapes[i]);
83 inputDimsPtr[i] = &inputDims[i];
84 }
85
86 NNTRACE_COMP_SWITCH("reference_ops::Concatenation");
87 tflite::reference_ops::Concatenation(
88 getNumberOfDimensions(outputShape) - axis - 1, inputDataPtrs.data(),
89 inputDimsPtr.data(), inputOffsets.data(), inputScales.data(), num_inputs, outputData,
90 convertShapeToDims(outputShape), outputShape.offset, outputShape.scale);
91
92 return true;
93 }
94
95 template <typename T>
concatenation(IOperationExecutionContext * context)96 inline bool concatenation(IOperationExecutionContext* context) {
97 uint32_t inputCount = context->getNumInputs() - 1;
98 std::vector<const T*> inputDatas;
99 std::vector<Shape> inputShapes;
100 for (uint32_t i = 0; i < inputCount; ++i) {
101 const T* buffer = context->getInputBuffer<T>(i);
102 if (buffer == nullptr) continue;
103 inputDatas.push_back(buffer);
104 inputShapes.push_back(context->getInputShape(i));
105 }
106 return concatenation(inputDatas, inputShapes, context->getInputValue<int32_t>(inputCount),
107 context->getOutputBuffer<T>(kOutputTensor),
108 context->getOutputShape(kOutputTensor));
109 }
110
111 template <>
112 inline bool concatenation<int8_t>(IOperationExecutionContext* context) {
113 uint32_t inputCount = context->getNumInputs() - 1;
114 std::vector<std::vector<uint8_t>> inputs_uint8(inputCount);
115 for (int i = 0; i < inputCount; ++i) {
116 const auto currentSize = getNumberOfElements(context->getInputShape(i));
117 inputs_uint8[i].resize(currentSize);
118 if (currentSize != 0) {
119 convertInt8ToUInt8(context->getInputBuffer<int8_t>(i), &inputs_uint8[i]);
120 }
121 }
122 std::vector<const uint8_t*> inputDatas;
123 std::vector<Shape> inputShapes;
124 for (uint32_t i = 0; i < inputCount; ++i) {
125 inputDatas.push_back(inputs_uint8[i].data());
126 inputShapes.push_back(context->getInputShape(i));
127 inputShapes[i].offset += 128;
128 }
129
130 std::vector<uint8_t> output_uint8(getNumberOfElements(context->getOutputShape(kOutputTensor)));
131 Shape outputShape(context->getOutputShape(kOutputTensor));
132 outputShape.offset += 128;
133 NN_RET_CHECK(concatenation(inputDatas, inputShapes, context->getInputValue<int32_t>(inputCount),
134 output_uint8.data(), outputShape));
135
136 convertUInt8ToInt8(output_uint8, context->getOutputBuffer<int8_t>(kOutputTensor));
137
138 return true;
139 }
140
141 } // namespace
142 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
143
validate(const IOperationValidationContext * context)144 Result<Version> validate(const IOperationValidationContext* context) {
145 uint32_t inputCount = context->getNumInputs();
146 NN_RET_CHECK_GE(inputCount, 2);
147 NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
148 const OperandType inputType = context->getInputType(0);
149 auto minSupportedVersion = Version::ANDROID_OC_MR1;
150 if (inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM) {
151 minSupportedVersion = Version::ANDROID_OC_MR1;
152 } else if (inputType == OperandType::TENSOR_FLOAT16) {
153 minSupportedVersion = Version::ANDROID_Q;
154 } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
155 minSupportedVersion = Version::ANDROID_R;
156 } else {
157 NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
158 }
159 std::vector<OperandType> inExpectedTypes(inputCount - 1, inputType);
160 inExpectedTypes.push_back(OperandType::INT32);
161 if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
162 const Shape& output = context->getOutputShape(kOutputTensor);
163 for (uint32_t i = 0; i < inputCount - 1; ++i) {
164 const Shape& input = context->getInputShape(i);
165 if (input.scale != output.scale || input.offset != output.offset) {
166 minSupportedVersion = combineVersions(minSupportedVersion, Version::ANDROID_Q);
167 }
168 }
169 }
170 for (uint32_t i = 0; i < inputCount - 1; ++i) {
171 const uint32_t inputRank = getNumberOfDimensions(context->getInputShape(i));
172 if (inputRank != 0) {
173 NN_RET_CHECK_LE(inputRank, 4);
174 }
175 }
176 NN_RET_CHECK(validateInputTypes(context, inExpectedTypes));
177 NN_RET_CHECK(validateOutputTypes(context, {inputType}));
178 return minSupportedVersion;
179 }
180
181 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
prepare(IOperationExecutionContext * context)182 bool prepare(IOperationExecutionContext* context) {
183 uint32_t numInputs = context->getNumInputs();
184 NN_RET_CHECK_GE(numInputs, 2);
185 const Shape& input0 = context->getInputShape(0);
186 uint32_t numDimensions = getNumberOfDimensions(input0);
187 int32_t axis = context->getInputValue<int32_t>(numInputs - 1);
188 NN_RET_CHECK_GE(axis, 0);
189 NN_RET_CHECK_LT(axis, numDimensions);
190 NN_RET_CHECK_LE(numDimensions, 4);
191
192 uint32_t sumAxis = getSizeOfDimension(input0, axis);
193 for (uint32_t i = 1; i < numInputs - 1; ++i) {
194 const Shape& input = context->getInputShape(i);
195 NN_RET_CHECK_EQ(getNumberOfDimensions(input), numDimensions);
196 NN_RET_CHECK(input.type == input0.type);
197 for (uint32_t d = 0; d < numDimensions; ++d) {
198 if (d == axis) {
199 sumAxis += getSizeOfDimension(input, axis);
200 } else {
201 NN_RET_CHECK_EQ(getSizeOfDimension(input0, d), getSizeOfDimension(input, d));
202 }
203 }
204 }
205
206 Shape output = context->getOutputShape(kOutputTensor);
207 output.type = input0.type;
208 output.dimensions = input0.dimensions;
209 output.dimensions[axis] = sumAxis;
210 return context->setOutputShape(kOutputTensor, output);
211 }
212
execute(IOperationExecutionContext * context)213 bool execute(IOperationExecutionContext* context) {
214 // Bypass execution in the case of zero-sized input.
215 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
216 switch (context->getInputType(0)) {
217 case OperandType::TENSOR_FLOAT16:
218 return concatenation<_Float16>(context);
219 case OperandType::TENSOR_FLOAT32:
220 return concatenation<float>(context);
221 case OperandType::TENSOR_QUANT8_ASYMM:
222 return concatenation<uint8_t>(context);
223 case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
224 return concatenation<int8_t>(context);
225 default:
226 NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
227 }
228 }
229 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
230
231 } // namespace concatenation
232
233 NN_REGISTER_OPERATION(CONCATENATION, concatenation::kOperationName, concatenation::validate,
234 concatenation::prepare, concatenation::execute, .allowZeroSizedInput = true);
235
236 } // namespace nn
237 } // namespace android
238