1 /*
2 * Copyright (C) 2020 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "Operations"
18
19 #include <algorithm>
20 #include <vector>
21
22 #include "OperationResolver.h"
23 #include "Tracing.h"
24
25 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
26 #include <tensorflow/lite/kernels/internal/optimized/optimized_ops.h>
27
28 #include "CpuOperationUtils.h"
29 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
30
31 namespace android {
32 namespace nn {
33 namespace local_response_norm {
34
35 constexpr char kOperationName[] = "LOCAL_RESPONSE_NORMALIZATION";
36
37 constexpr uint32_t kNumInputs = 6;
38 constexpr uint32_t kInputTensor = 0;
39 constexpr uint32_t kRadiusScalar = 1;
40 constexpr uint32_t kBiasScalar = 2;
41 constexpr uint32_t kAlphaScalar = 3;
42 constexpr uint32_t kBetaScalar = 4;
43 constexpr uint32_t kAxisScalar = 5;
44
45 constexpr uint32_t kNumOutputs = 1;
46 constexpr uint32_t kOutputTensor = 0;
47
48 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
49 namespace {
50
localResponseNormFloat32Impl(const float * inputData,const Shape & inputShape,int32_t radius,float bias,float alpha,float beta,int32_t axis,float * outputData,const Shape & outputShape)51 inline bool localResponseNormFloat32Impl(const float* inputData, const Shape& inputShape,
52 int32_t radius, float bias, float alpha, float beta,
53 int32_t axis, float* outputData,
54 const Shape& outputShape) {
55 NNTRACE_TRANS("localResponseNormFloat32");
56 const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
57 const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
58 const uint32_t innerSize =
59 getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
60 for (uint32_t outer = 0; outer < outerSize; ++outer) {
61 const float* inputBase = inputData + outer * axisSize * innerSize;
62 float* outputBase = outputData + outer * axisSize * innerSize;
63 for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBase, ++outputBase) {
64 for (int32_t i = 0; i < axisSize; i++) {
65 const int32_t dBegin = std::max(0, i - radius);
66 // Add 1 on dEnd to comply with optimized_ops in TFLite
67 const int32_t dEnd = std::min(static_cast<int32_t>(axisSize), i + radius + 1);
68 float sum = 0.0f;
69 for (int32_t d = dBegin; d < dEnd; d++) {
70 float val = inputBase[d * innerSize];
71 sum += val * val;
72 }
73 float multiplier = std::pow(bias + alpha * sum, -beta);
74 outputBase[i * innerSize] = inputBase[i * innerSize] * multiplier;
75 }
76 }
77 }
78 return true;
79 }
80
81 template <typename T>
82 bool localResponseNorm(const T* inputData, const Shape& inputShape, int32_t radius, T bias, T alpha,
83 T beta, int32_t axis, T* outputData, const Shape& outputShape);
84
85 template <>
86 bool localResponseNorm<float>(const float* inputData, const Shape& inputShape, int32_t radius,
87 float bias, float alpha, float beta, int32_t axis, float* outputData,
88 const Shape& outputShape) {
89 int32_t ndim = getNumberOfDimensions(inputShape);
90 NN_CHECK(handleNegativeAxis(inputShape, &axis));
91 radius = std::min(radius, static_cast<int32_t>(inputShape.dimensions[axis]));
92 // TFLite optimized implementation only supports computation along the last axis
93 if (axis == ndim - 1) {
94 NNTRACE_COMP("optimized_ops::LocalResponseNormalization::float");
95 tflite::LocalResponseNormalizationParams param = {
96 .range = radius, .bias = bias, .alpha = alpha, .beta = beta};
97 tflite::optimized_ops::LocalResponseNormalization(
98 param, convertShapeToTflshape(inputShape), inputData,
99 convertShapeToTflshape(outputShape), outputData);
100 return true;
101 } else {
102 return localResponseNormFloat32Impl(inputData, inputShape, radius, bias, alpha, beta, axis,
103 outputData, outputShape);
104 }
105 }
106
107 template <>
108 bool localResponseNorm<_Float16>(const _Float16* inputData, const Shape& inputShape, int32_t radius,
109 _Float16 bias, _Float16 alpha, _Float16 beta, int32_t axis,
110 _Float16* outputData, const Shape& outputShape) {
111 NNTRACE_TRANS("localResponseNormFloat16");
112 std::vector<float> inputDataFloat32(getNumberOfElements(inputShape));
113 convertFloat16ToFloat32(inputData, &inputDataFloat32);
114 std::vector<float> outputDataFloat32(getNumberOfElements(outputShape));
115
116 localResponseNorm<float>(inputDataFloat32.data(), inputShape, radius, bias, alpha, beta, axis,
117 outputDataFloat32.data(), outputShape);
118 convertFloat32ToFloat16(outputDataFloat32, outputData);
119
120 return true;
121 }
122
123 template <typename T>
executeTyped(IOperationExecutionContext * context)124 bool executeTyped(IOperationExecutionContext* context) {
125 int32_t axis = context->getNumInputs() == kNumInputs
126 ? context->getInputValue<int32_t>(kAxisScalar)
127 : -1;
128 NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis));
129 return localResponseNorm<T>(
130 context->getInputBuffer<T>(kInputTensor), context->getInputShape(kInputTensor),
131 context->getInputValue<int32_t>(kRadiusScalar), context->getInputValue<T>(kBiasScalar),
132 context->getInputValue<T>(kAlphaScalar), context->getInputValue<T>(kBetaScalar), axis,
133 context->getOutputBuffer<T>(kOutputTensor), context->getOutputShape(kOutputTensor));
134 }
135
136 } // namespace
137 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
138
validate(const IOperationValidationContext * context)139 Result<Version> validate(const IOperationValidationContext* context) {
140 NN_RET_CHECK(context->getNumInputs() == kNumInputs ||
141 context->getNumInputs() == kNumInputs - 1);
142 NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
143
144 const OperandType inputType = context->getInputType(kInputTensor);
145 std::vector<OperandType> inExpectedTypes;
146 std::vector<OperandType> outExpectedTypes;
147 auto minSupportedVersion = Version::ANDROID_OC_MR1;
148 if (inputType == OperandType::TENSOR_FLOAT32) {
149 minSupportedVersion = Version::ANDROID_OC_MR1;
150 inExpectedTypes = {
151 OperandType::TENSOR_FLOAT32, OperandType::INT32, OperandType::FLOAT32,
152 OperandType::FLOAT32, OperandType::FLOAT32,
153 };
154 outExpectedTypes = {OperandType::TENSOR_FLOAT32};
155 } else if (inputType == OperandType::TENSOR_FLOAT16) {
156 minSupportedVersion = Version::ANDROID_Q;
157 inExpectedTypes = {
158 OperandType::TENSOR_FLOAT16, OperandType::INT32, OperandType::FLOAT16,
159 OperandType::FLOAT16, OperandType::FLOAT16,
160 };
161 outExpectedTypes = {OperandType::TENSOR_FLOAT16};
162 } else {
163 NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
164 }
165
166 if (context->getNumInputs() == kNumInputs) {
167 inExpectedTypes.push_back(OperandType::INT32);
168 minSupportedVersion = Version::ANDROID_Q;
169 } else if (context->getInputShape(kInputTensor).dimensions.size() != 4) {
170 minSupportedVersion = Version::ANDROID_Q;
171 }
172
173 const Shape& input = context->getInputShape(kInputTensor);
174 if (hasKnownRank(input)) {
175 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4);
176 }
177 NN_RET_CHECK(validateInputTypes(context, inExpectedTypes));
178 NN_RET_CHECK(validateOutputTypes(context, {inputType}));
179 return minSupportedVersion;
180 }
181
182 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
prepare(IOperationExecutionContext * context)183 bool prepare(IOperationExecutionContext* context) {
184 const Shape& input = context->getInputShape(kInputTensor);
185 int32_t numDimensions = getNumberOfDimensions(input);
186 int32_t axis = context->getNumInputs() == kNumInputs
187 ? context->getInputValue<int32_t>(kAxisScalar)
188 : -1;
189 NN_RET_CHECK_LE(numDimensions, 4);
190 NN_RET_CHECK_GE(axis, -numDimensions);
191 NN_RET_CHECK_LT(axis, numDimensions);
192 const int32_t radius = context->getInputValue<int32_t>(kRadiusScalar);
193 NN_RET_CHECK_GE(radius, 0);
194 return context->setOutputShape(kOutputTensor, input);
195 }
196
execute(IOperationExecutionContext * context)197 bool execute(IOperationExecutionContext* context) {
198 switch (context->getInputType(kInputTensor)) {
199 case OperandType::TENSOR_FLOAT32:
200 return executeTyped<float>(context);
201 case OperandType::TENSOR_FLOAT16:
202 return executeTyped<_Float16>(context);
203 default:
204 NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
205 }
206 }
207 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
208
209 } // namespace local_response_norm
210
211 NN_REGISTER_OPERATION(LOCAL_RESPONSE_NORMALIZATION, local_response_norm::kOperationName,
212 local_response_norm::validate, local_response_norm::prepare,
213 local_response_norm::execute);
214
215 } // namespace nn
216 } // namespace android
217