1 /*
2  * Copyright (C) 2020 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Operations"
18 
19 #include <algorithm>
20 #include <vector>
21 
22 #include "OperationResolver.h"
23 #include "Tracing.h"
24 
25 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
26 #include <tensorflow/lite/kernels/internal/optimized/optimized_ops.h>
27 
28 #include "CpuOperationUtils.h"
29 #endif  // NN_INCLUDE_CPU_IMPLEMENTATION
30 
31 namespace android {
32 namespace nn {
33 namespace local_response_norm {
34 
35 constexpr char kOperationName[] = "LOCAL_RESPONSE_NORMALIZATION";
36 
37 constexpr uint32_t kNumInputs = 6;
38 constexpr uint32_t kInputTensor = 0;
39 constexpr uint32_t kRadiusScalar = 1;
40 constexpr uint32_t kBiasScalar = 2;
41 constexpr uint32_t kAlphaScalar = 3;
42 constexpr uint32_t kBetaScalar = 4;
43 constexpr uint32_t kAxisScalar = 5;
44 
45 constexpr uint32_t kNumOutputs = 1;
46 constexpr uint32_t kOutputTensor = 0;
47 
48 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
49 namespace {
50 
localResponseNormFloat32Impl(const float * inputData,const Shape & inputShape,int32_t radius,float bias,float alpha,float beta,int32_t axis,float * outputData,const Shape & outputShape)51 inline bool localResponseNormFloat32Impl(const float* inputData, const Shape& inputShape,
52                                          int32_t radius, float bias, float alpha, float beta,
53                                          int32_t axis, float* outputData,
54                                          const Shape& outputShape) {
55     NNTRACE_TRANS("localResponseNormFloat32");
56     const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
57     const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
58     const uint32_t innerSize =
59             getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
60     for (uint32_t outer = 0; outer < outerSize; ++outer) {
61         const float* inputBase = inputData + outer * axisSize * innerSize;
62         float* outputBase = outputData + outer * axisSize * innerSize;
63         for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBase, ++outputBase) {
64             for (int32_t i = 0; i < axisSize; i++) {
65                 const int32_t dBegin = std::max(0, i - radius);
66                 // Add 1 on dEnd to comply with optimized_ops in TFLite
67                 const int32_t dEnd = std::min(static_cast<int32_t>(axisSize), i + radius + 1);
68                 float sum = 0.0f;
69                 for (int32_t d = dBegin; d < dEnd; d++) {
70                     float val = inputBase[d * innerSize];
71                     sum += val * val;
72                 }
73                 float multiplier = std::pow(bias + alpha * sum, -beta);
74                 outputBase[i * innerSize] = inputBase[i * innerSize] * multiplier;
75             }
76         }
77     }
78     return true;
79 }
80 
81 template <typename T>
82 bool localResponseNorm(const T* inputData, const Shape& inputShape, int32_t radius, T bias, T alpha,
83                        T beta, int32_t axis, T* outputData, const Shape& outputShape);
84 
85 template <>
86 bool localResponseNorm<float>(const float* inputData, const Shape& inputShape, int32_t radius,
87                               float bias, float alpha, float beta, int32_t axis, float* outputData,
88                               const Shape& outputShape) {
89     int32_t ndim = getNumberOfDimensions(inputShape);
90     NN_CHECK(handleNegativeAxis(inputShape, &axis));
91     radius = std::min(radius, static_cast<int32_t>(inputShape.dimensions[axis]));
92     // TFLite optimized implementation only supports computation along the last axis
93     if (axis == ndim - 1) {
94         NNTRACE_COMP("optimized_ops::LocalResponseNormalization::float");
95         tflite::LocalResponseNormalizationParams param = {
96                 .range = radius, .bias = bias, .alpha = alpha, .beta = beta};
97         tflite::optimized_ops::LocalResponseNormalization(
98                 param, convertShapeToTflshape(inputShape), inputData,
99                 convertShapeToTflshape(outputShape), outputData);
100         return true;
101     } else {
102         return localResponseNormFloat32Impl(inputData, inputShape, radius, bias, alpha, beta, axis,
103                                             outputData, outputShape);
104     }
105 }
106 
107 template <>
108 bool localResponseNorm<_Float16>(const _Float16* inputData, const Shape& inputShape, int32_t radius,
109                                  _Float16 bias, _Float16 alpha, _Float16 beta, int32_t axis,
110                                  _Float16* outputData, const Shape& outputShape) {
111     NNTRACE_TRANS("localResponseNormFloat16");
112     std::vector<float> inputDataFloat32(getNumberOfElements(inputShape));
113     convertFloat16ToFloat32(inputData, &inputDataFloat32);
114     std::vector<float> outputDataFloat32(getNumberOfElements(outputShape));
115 
116     localResponseNorm<float>(inputDataFloat32.data(), inputShape, radius, bias, alpha, beta, axis,
117                              outputDataFloat32.data(), outputShape);
118     convertFloat32ToFloat16(outputDataFloat32, outputData);
119 
120     return true;
121 }
122 
123 template <typename T>
executeTyped(IOperationExecutionContext * context)124 bool executeTyped(IOperationExecutionContext* context) {
125     int32_t axis = context->getNumInputs() == kNumInputs
126                            ? context->getInputValue<int32_t>(kAxisScalar)
127                            : -1;
128     NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis));
129     return localResponseNorm<T>(
130             context->getInputBuffer<T>(kInputTensor), context->getInputShape(kInputTensor),
131             context->getInputValue<int32_t>(kRadiusScalar), context->getInputValue<T>(kBiasScalar),
132             context->getInputValue<T>(kAlphaScalar), context->getInputValue<T>(kBetaScalar), axis,
133             context->getOutputBuffer<T>(kOutputTensor), context->getOutputShape(kOutputTensor));
134 }
135 
136 }  // namespace
137 #endif  // NN_INCLUDE_CPU_IMPLEMENTATION
138 
validate(const IOperationValidationContext * context)139 Result<Version> validate(const IOperationValidationContext* context) {
140     NN_RET_CHECK(context->getNumInputs() == kNumInputs ||
141                  context->getNumInputs() == kNumInputs - 1);
142     NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
143 
144     const OperandType inputType = context->getInputType(kInputTensor);
145     std::vector<OperandType> inExpectedTypes;
146     std::vector<OperandType> outExpectedTypes;
147     auto minSupportedVersion = Version::ANDROID_OC_MR1;
148     if (inputType == OperandType::TENSOR_FLOAT32) {
149         minSupportedVersion = Version::ANDROID_OC_MR1;
150         inExpectedTypes = {
151                 OperandType::TENSOR_FLOAT32, OperandType::INT32,   OperandType::FLOAT32,
152                 OperandType::FLOAT32,        OperandType::FLOAT32,
153         };
154         outExpectedTypes = {OperandType::TENSOR_FLOAT32};
155     } else if (inputType == OperandType::TENSOR_FLOAT16) {
156         minSupportedVersion = Version::ANDROID_Q;
157         inExpectedTypes = {
158                 OperandType::TENSOR_FLOAT16, OperandType::INT32,   OperandType::FLOAT16,
159                 OperandType::FLOAT16,        OperandType::FLOAT16,
160         };
161         outExpectedTypes = {OperandType::TENSOR_FLOAT16};
162     } else {
163         NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
164     }
165 
166     if (context->getNumInputs() == kNumInputs) {
167         inExpectedTypes.push_back(OperandType::INT32);
168         minSupportedVersion = Version::ANDROID_Q;
169     } else if (context->getInputShape(kInputTensor).dimensions.size() != 4) {
170         minSupportedVersion = Version::ANDROID_Q;
171     }
172 
173     const Shape& input = context->getInputShape(kInputTensor);
174     if (hasKnownRank(input)) {
175         NN_RET_CHECK_LE(getNumberOfDimensions(input), 4);
176     }
177     NN_RET_CHECK(validateInputTypes(context, inExpectedTypes));
178     NN_RET_CHECK(validateOutputTypes(context, {inputType}));
179     return minSupportedVersion;
180 }
181 
182 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
prepare(IOperationExecutionContext * context)183 bool prepare(IOperationExecutionContext* context) {
184     const Shape& input = context->getInputShape(kInputTensor);
185     int32_t numDimensions = getNumberOfDimensions(input);
186     int32_t axis = context->getNumInputs() == kNumInputs
187                            ? context->getInputValue<int32_t>(kAxisScalar)
188                            : -1;
189     NN_RET_CHECK_LE(numDimensions, 4);
190     NN_RET_CHECK_GE(axis, -numDimensions);
191     NN_RET_CHECK_LT(axis, numDimensions);
192     const int32_t radius = context->getInputValue<int32_t>(kRadiusScalar);
193     NN_RET_CHECK_GE(radius, 0);
194     return context->setOutputShape(kOutputTensor, input);
195 }
196 
execute(IOperationExecutionContext * context)197 bool execute(IOperationExecutionContext* context) {
198     switch (context->getInputType(kInputTensor)) {
199         case OperandType::TENSOR_FLOAT32:
200             return executeTyped<float>(context);
201         case OperandType::TENSOR_FLOAT16:
202             return executeTyped<_Float16>(context);
203         default:
204             NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
205     }
206 }
207 #endif  // NN_INCLUDE_CPU_IMPLEMENTATION
208 
209 }  // namespace local_response_norm
210 
211 NN_REGISTER_OPERATION(LOCAL_RESPONSE_NORMALIZATION, local_response_norm::kOperationName,
212                       local_response_norm::validate, local_response_norm::prepare,
213                       local_response_norm::execute);
214 
215 }  // namespace nn
216 }  // namespace android
217