1 /*
2  * Copyright (C) 2021 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "snapuserd.h"
18 
19 #include <csignal>
20 #include <optional>
21 #include <set>
22 
23 #include <libsnapshot/snapuserd_client.h>
24 
25 namespace android {
26 namespace snapshot {
27 
28 using namespace android;
29 using namespace android::dm;
30 using android::base::unique_fd;
31 
32 #define SNAP_LOG(level) LOG(level) << misc_name_ << ": "
33 #define SNAP_PLOG(level) PLOG(level) << misc_name_ << ": "
34 
35 /*
36  * Merging a copy operation involves the following flow:
37  *
38  * 1: dm-snapshot layer requests merge for a 4k block. dm-user sends the request
39  *    to the daemon
40  * 2: daemon reads the source block
41  * 3: daemon copies the source data
42  * 4: IO completion sent back to dm-user (a switch from user space to kernel)
43  * 5: dm-snapshot merges the data to base device
44  * 6: dm-snapshot sends the merge-completion IO to dm-user
45  * 7: dm-user re-directs the merge completion IO to daemon (one more switch)
46  * 8: daemon updates the COW file about the completed merge request (a write syscall) and followed
47  * by a fysnc. 9: Send the IO completion back to dm-user
48  *
49  * The above sequence is a significant overhead especially when merging one 4k
50  * block at a time.
51  *
52  * Read-ahead layer will optimize the above path by reading the data from base
53  * device in the background so that merging thread can retrieve the data from
54  * the read-ahead cache. Additionally, syncing of merged data is deferred to
55  * read-ahead thread threadby the IO path is not bottlenecked.
56  *
57  * We create a scratch space of 2MB to store the read-ahead data in the COW
58  * device.
59  *
60  *      +-----------------------+
61  *      |     Header (fixed)    |
62  *      +-----------------------+
63  *      |    Scratch space      |  <-- 2MB
64  *      +-----------------------+
65  *
66  *      Scratch space is as follows:
67  *
68  *      +-----------------------+
69  *      |       Metadata        | <- 4k page
70  *      +-----------------------+
71  *      |       Metadata        | <- 4k page
72  *      +-----------------------+
73  *      |                       |
74  *      |    Read-ahead data    |
75  *      |                       |
76  *      +-----------------------+
77  *
78  * State transitions and communication between read-ahead thread and worker
79  * thread during merge:
80  * =====================================================================
81  *
82  *   Worker Threads                                 Read-Ahead thread
83  *   ------------------------------------------------------------------
84  *
85  *      |
86  *      |
87  *  --> -----------------READ_AHEAD_BEGIN------------->|
88  *  |   |                                              | READ_AHEAD_IN_PROGRESS
89  *  |  WAIT                                            |
90  *  |   |                                              |
91  *  |   |<-----------------IO_IN_PROGRESS---------------
92  *  |   |                                              |
93  *  |   | IO_IN_PRGRESS                               WAIT
94  *  |   |                                              |
95  *  |<--|                                              |
96  *      |                                              |
97  *      ------------------IO_TERMINATED--------------->|
98  *                                                     END
99  *
100  *
101  * ===================================================================
102  *
103  * Example:
104  *
105  * We have 6 copy operations to be executed in OTA and there is a overlap. Update-engine
106  * will write to COW file as follows:
107  *
108  * Op-1: 20 -> 23
109  * Op-2: 19 -> 22
110  * Op-3: 18 -> 21
111  * Op-4: 17 -> 20
112  * Op-5: 16 -> 19
113  * Op-6: 15 -> 18
114  *
115  * Read-ahead thread will read all the 6 source blocks and store the data in the
116  * scratch space. Metadata will contain the destination block numbers. Thus,
117  * scratch space will look something like this:
118  *
119  * +--------------+
120  * | Block   23   |
121  * | offset - 1   |
122  * +--------------+
123  * | Block   22   |
124  * | offset - 2   |
125  * +--------------+
126  * | Block   21   |
127  * | offset - 3   |
128  * +--------------+
129  *    ...
130  *    ...
131  * +--------------+
132  * | Data-Block 20| <-- offset - 1
133  * +--------------+
134  * | Data-Block 19| <-- offset - 2
135  * +--------------+
136  * | Data-Block 18| <-- offset - 3
137  * +--------------+
138  *     ...
139  *     ...
140  *
141  * ====================================================================
142  * IO Path:
143  *
144  * Read-ahead will serve the data to worker threads during merge only
145  * after metadata and data are persisted to the scratch space. Worker
146  * threads during merge will always retrieve the data from cache; if the
147  * cache is not populated, it will wait for the read-ahead thread to finish.
148  * Furthermore, the number of operations merged will by synced to the header
149  * only when all the blocks in the read-ahead cache are merged. In the above
150  * case, when all 6 operations are merged, COW Header is updated with
151  * num_merge_ops = 6.
152  *
153  * Merge resume after crash:
154  *
155  * Let's say we have a crash after 5 operations are merged. i.e. after
156  * Op-5: 16->19 is completed but before the Op-6 is merged. Thus, COW Header
157  * num_merge_ops will be 0 as the all the ops were not merged yet. During next
158  * reboot, read-ahead thread will re-construct the data in-memory from the
159  * scratch space; when merge resumes, Op-1 will be re-exectued. However,
160  * data will be served from read-ahead cache safely even though, block 20
161  * was over-written by Op-4.
162  *
163  */
164 
ReadAheadThread(const std::string & cow_device,const std::string & backing_device,const std::string & misc_name,std::shared_ptr<Snapuserd> snapuserd)165 ReadAheadThread::ReadAheadThread(const std::string& cow_device, const std::string& backing_device,
166                                  const std::string& misc_name,
167                                  std::shared_ptr<Snapuserd> snapuserd) {
168     cow_device_ = cow_device;
169     backing_store_device_ = backing_device;
170     misc_name_ = misc_name;
171     snapuserd_ = snapuserd;
172 }
173 
CheckOverlap(const CowOperation * cow_op)174 void ReadAheadThread::CheckOverlap(const CowOperation* cow_op) {
175     if (dest_blocks_.count(cow_op->new_block) || source_blocks_.count(cow_op->source)) {
176         overlap_ = true;
177     }
178 
179     dest_blocks_.insert(cow_op->source);
180     source_blocks_.insert(cow_op->new_block);
181 }
182 
PrepareReadAhead(uint64_t * source_block,int * pending_ops,std::vector<uint64_t> & blocks)183 void ReadAheadThread::PrepareReadAhead(uint64_t* source_block, int* pending_ops,
184                                        std::vector<uint64_t>& blocks) {
185     int num_ops = *pending_ops;
186     int nr_consecutive = 0;
187 
188     if (!IterDone() && num_ops) {
189         // Get the first block
190         const CowOperation* cow_op = GetIterOp();
191         *source_block = cow_op->source;
192         IterNext();
193         num_ops -= 1;
194         nr_consecutive = 1;
195         blocks.push_back(cow_op->new_block);
196 
197         if (!overlap_) {
198             CheckOverlap(cow_op);
199         }
200 
201         /*
202          * Find number of consecutive blocks working backwards.
203          */
204         while (!IterDone() && num_ops) {
205             const CowOperation* op = GetIterOp();
206             if (op->source != (*source_block - nr_consecutive)) {
207                 break;
208             }
209             nr_consecutive += 1;
210             num_ops -= 1;
211             blocks.push_back(op->new_block);
212             IterNext();
213 
214             if (!overlap_) {
215                 CheckOverlap(op);
216             }
217         }
218     }
219 }
220 
ReconstructDataFromCow()221 bool ReadAheadThread::ReconstructDataFromCow() {
222     std::unordered_map<uint64_t, void*>& read_ahead_buffer_map = snapuserd_->GetReadAheadMap();
223     read_ahead_buffer_map.clear();
224     loff_t metadata_offset = 0;
225     loff_t start_data_offset = snapuserd_->GetBufferDataOffset();
226     int num_ops = 0;
227     int total_blocks_merged = 0;
228 
229     // This memcpy is important as metadata_buffer_ will be an unaligned address and will fault
230     // on 32-bit systems
231     std::unique_ptr<uint8_t[]> metadata_buffer =
232             std::make_unique<uint8_t[]>(snapuserd_->GetBufferMetadataSize());
233     memcpy(metadata_buffer.get(), metadata_buffer_, snapuserd_->GetBufferMetadataSize());
234 
235     while (true) {
236         struct ScratchMetadata* bm = reinterpret_cast<struct ScratchMetadata*>(
237                 (char*)metadata_buffer.get() + metadata_offset);
238 
239         // Done reading metadata
240         if (bm->new_block == 0 && bm->file_offset == 0) {
241             break;
242         }
243 
244         loff_t buffer_offset = bm->file_offset - start_data_offset;
245         void* bufptr = static_cast<void*>((char*)read_ahead_buffer_ + buffer_offset);
246         read_ahead_buffer_map[bm->new_block] = bufptr;
247         num_ops += 1;
248         total_blocks_merged += 1;
249 
250         metadata_offset += sizeof(struct ScratchMetadata);
251     }
252 
253     // We are done re-constructing the mapping; however, we need to make sure
254     // all the COW operations to-be merged are present in the re-constructed
255     // mapping.
256     while (!IterDone()) {
257         const CowOperation* op = GetIterOp();
258         if (read_ahead_buffer_map.find(op->new_block) != read_ahead_buffer_map.end()) {
259             num_ops -= 1;
260             snapuserd_->SetFinalBlockMerged(op->new_block);
261             IterNext();
262         } else {
263             // Verify that we have covered all the ops which were re-constructed
264             // from COW device - These are the ops which are being
265             // re-constructed after crash.
266             if (!(num_ops == 0)) {
267                 SNAP_LOG(ERROR) << "ReconstructDataFromCow failed. Not all ops recoverd "
268                                 << " Pending ops: " << num_ops;
269                 snapuserd_->ReadAheadIOFailed();
270                 return false;
271             }
272             break;
273         }
274     }
275 
276     snapuserd_->SetTotalRaBlocksMerged(total_blocks_merged);
277 
278     snapuserd_->ReconstructDataFromCowFinish();
279 
280     if (!snapuserd_->ReadAheadIOCompleted(true)) {
281         SNAP_LOG(ERROR) << "ReadAheadIOCompleted failed...";
282         snapuserd_->ReadAheadIOFailed();
283         return false;
284     }
285 
286     SNAP_LOG(INFO) << "ReconstructDataFromCow success";
287     return true;
288 }
289 
ReadAheadIOStart()290 bool ReadAheadThread::ReadAheadIOStart() {
291     // Check if the data has to be constructed from the COW file.
292     // This will be true only once during boot up after a crash
293     // during merge.
294     if (snapuserd_->ReconstructDataFromCow()) {
295         return ReconstructDataFromCow();
296     }
297 
298     std::unordered_map<uint64_t, void*>& read_ahead_buffer_map = snapuserd_->GetReadAheadMap();
299     read_ahead_buffer_map.clear();
300 
301     int num_ops = (snapuserd_->GetBufferDataSize()) / BLOCK_SZ;
302     loff_t metadata_offset = 0;
303 
304     struct ScratchMetadata* bm =
305             reinterpret_cast<struct ScratchMetadata*>((char*)metadata_buffer_ + metadata_offset);
306 
307     bm->new_block = 0;
308     bm->file_offset = 0;
309 
310     std::vector<uint64_t> blocks;
311 
312     loff_t buffer_offset = 0;
313     loff_t offset = 0;
314     loff_t file_offset = snapuserd_->GetBufferDataOffset();
315     int total_blocks_merged = 0;
316     overlap_ = false;
317     dest_blocks_.clear();
318     source_blocks_.clear();
319 
320     while (true) {
321         uint64_t source_block;
322         int linear_blocks;
323 
324         PrepareReadAhead(&source_block, &num_ops, blocks);
325         linear_blocks = blocks.size();
326         if (linear_blocks == 0) {
327             // No more blocks to read
328             SNAP_LOG(DEBUG) << " Read-ahead completed....";
329             break;
330         }
331 
332         // Get the first block in the consecutive set of blocks
333         source_block = source_block + 1 - linear_blocks;
334         size_t io_size = (linear_blocks * BLOCK_SZ);
335         num_ops -= linear_blocks;
336         total_blocks_merged += linear_blocks;
337 
338         // Mark the block number as the one which will
339         // be the final block to be merged in this entire region.
340         // Read-ahead thread will get
341         // notified when this block is merged to make
342         // forward progress
343         snapuserd_->SetFinalBlockMerged(blocks.back());
344 
345         while (linear_blocks) {
346             uint64_t new_block = blocks.back();
347             blocks.pop_back();
348             // Assign the mapping
349             void* bufptr = static_cast<void*>((char*)read_ahead_buffer_ + offset);
350             read_ahead_buffer_map[new_block] = bufptr;
351             offset += BLOCK_SZ;
352 
353             bm = reinterpret_cast<struct ScratchMetadata*>((char*)metadata_buffer_ +
354                                                            metadata_offset);
355             bm->new_block = new_block;
356             bm->file_offset = file_offset;
357 
358             metadata_offset += sizeof(struct ScratchMetadata);
359             file_offset += BLOCK_SZ;
360 
361             linear_blocks -= 1;
362         }
363 
364         // Read from the base device consecutive set of blocks in one shot
365         if (!android::base::ReadFullyAtOffset(backing_store_fd_,
366                                               (char*)read_ahead_buffer_ + buffer_offset, io_size,
367                                               source_block * BLOCK_SZ)) {
368             SNAP_PLOG(ERROR) << "Copy-op failed. Read from backing store: " << backing_store_device_
369                              << "at block :" << source_block << " buffer_offset : " << buffer_offset
370                              << " io_size : " << io_size << " buf-addr : " << read_ahead_buffer_;
371 
372             snapuserd_->ReadAheadIOFailed();
373             return false;
374         }
375 
376         // This is important - explicitly set the contents to zero. This is used
377         // when re-constructing the data after crash. This indicates end of
378         // reading metadata contents when re-constructing the data
379         bm = reinterpret_cast<struct ScratchMetadata*>((char*)metadata_buffer_ + metadata_offset);
380         bm->new_block = 0;
381         bm->file_offset = 0;
382 
383         buffer_offset += io_size;
384     }
385 
386     snapuserd_->SetTotalRaBlocksMerged(total_blocks_merged);
387 
388     // Flush the data only if we have a overlapping blocks in the region
389     if (!snapuserd_->ReadAheadIOCompleted(overlap_)) {
390         SNAP_LOG(ERROR) << "ReadAheadIOCompleted failed...";
391         snapuserd_->ReadAheadIOFailed();
392         return false;
393     }
394 
395     return true;
396 }
397 
RunThread()398 bool ReadAheadThread::RunThread() {
399     if (!InitializeFds()) {
400         return false;
401     }
402 
403     InitializeIter();
404     InitializeBuffer();
405 
406     while (!IterDone()) {
407         if (!ReadAheadIOStart()) {
408             return false;
409         }
410 
411         bool status = snapuserd_->WaitForMergeToComplete();
412 
413         if (status && !snapuserd_->CommitMerge(snapuserd_->GetTotalRaBlocksMerged())) {
414             return false;
415         }
416 
417         if (!status) break;
418     }
419 
420     CloseFds();
421     SNAP_LOG(INFO) << " ReadAhead thread terminating....";
422     return true;
423 }
424 
425 // Initialization
InitializeFds()426 bool ReadAheadThread::InitializeFds() {
427     backing_store_fd_.reset(open(backing_store_device_.c_str(), O_RDONLY));
428     if (backing_store_fd_ < 0) {
429         SNAP_PLOG(ERROR) << "Open Failed: " << backing_store_device_;
430         return false;
431     }
432 
433     cow_fd_.reset(open(cow_device_.c_str(), O_RDWR));
434     if (cow_fd_ < 0) {
435         SNAP_PLOG(ERROR) << "Open Failed: " << cow_device_;
436         return false;
437     }
438 
439     return true;
440 }
441 
InitializeIter()442 void ReadAheadThread::InitializeIter() {
443     std::vector<const CowOperation*>& read_ahead_ops = snapuserd_->GetReadAheadOpsVec();
444     read_ahead_iter_ = read_ahead_ops.rbegin();
445 }
446 
IterDone()447 bool ReadAheadThread::IterDone() {
448     std::vector<const CowOperation*>& read_ahead_ops = snapuserd_->GetReadAheadOpsVec();
449     return read_ahead_iter_ == read_ahead_ops.rend();
450 }
451 
IterNext()452 void ReadAheadThread::IterNext() {
453     read_ahead_iter_++;
454 }
455 
GetIterOp()456 const CowOperation* ReadAheadThread::GetIterOp() {
457     return *read_ahead_iter_;
458 }
459 
InitializeBuffer()460 void ReadAheadThread::InitializeBuffer() {
461     void* mapped_addr = snapuserd_->GetMappedAddr();
462     // Map the scratch space region into memory
463     metadata_buffer_ =
464             static_cast<void*>((char*)mapped_addr + snapuserd_->GetBufferMetadataOffset());
465     read_ahead_buffer_ = static_cast<void*>((char*)mapped_addr + snapuserd_->GetBufferDataOffset());
466 }
467 
468 }  // namespace snapshot
469 }  // namespace android
470