1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "fs_mgr.h"
18 
19 #include <ctype.h>
20 #include <dirent.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <libgen.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <sys/ioctl.h>
29 #include <sys/mount.h>
30 #include <sys/stat.h>
31 #include <sys/swap.h>
32 #include <sys/types.h>
33 #include <sys/wait.h>
34 #include <time.h>
35 #include <unistd.h>
36 
37 #include <chrono>
38 #include <functional>
39 #include <map>
40 #include <memory>
41 #include <string>
42 #include <thread>
43 #include <utility>
44 #include <vector>
45 
46 #include <android-base/chrono_utils.h>
47 #include <android-base/file.h>
48 #include <android-base/properties.h>
49 #include <android-base/stringprintf.h>
50 #include <android-base/strings.h>
51 #include <android-base/unique_fd.h>
52 #include <cutils/android_filesystem_config.h>
53 #include <cutils/android_reboot.h>
54 #include <cutils/partition_utils.h>
55 #include <cutils/properties.h>
56 #include <ext4_utils/ext4.h>
57 #include <ext4_utils/ext4_sb.h>
58 #include <ext4_utils/ext4_utils.h>
59 #include <ext4_utils/wipe.h>
60 #include <fs_avb/fs_avb.h>
61 #include <fs_mgr/file_wait.h>
62 #include <fs_mgr_overlayfs.h>
63 #include <fscrypt/fscrypt.h>
64 #include <libdm/dm.h>
65 #include <libdm/loop_control.h>
66 #include <liblp/metadata_format.h>
67 #include <linux/fs.h>
68 #include <linux/loop.h>
69 #include <linux/magic.h>
70 #include <log/log_properties.h>
71 #include <logwrap/logwrap.h>
72 
73 #include "blockdev.h"
74 #include "fs_mgr_priv.h"
75 
76 #define KEY_LOC_PROP   "ro.crypto.keyfile.userdata"
77 #define KEY_IN_FOOTER  "footer"
78 
79 #define E2FSCK_BIN      "/system/bin/e2fsck"
80 #define F2FS_FSCK_BIN   "/system/bin/fsck.f2fs"
81 #define MKSWAP_BIN      "/system/bin/mkswap"
82 #define TUNE2FS_BIN     "/system/bin/tune2fs"
83 #define RESIZE2FS_BIN "/system/bin/resize2fs"
84 
85 #define FSCK_LOG_FILE   "/dev/fscklogs/log"
86 
87 #define ZRAM_CONF_DEV   "/sys/block/zram0/disksize"
88 #define ZRAM_CONF_MCS   "/sys/block/zram0/max_comp_streams"
89 #define ZRAM_BACK_DEV   "/sys/block/zram0/backing_dev"
90 
91 #define SYSFS_EXT4_VERITY "/sys/fs/ext4/features/verity"
92 #define SYSFS_EXT4_CASEFOLD "/sys/fs/ext4/features/casefold"
93 
94 // FIXME: this should be in system/extras
95 #define EXT4_FEATURE_COMPAT_STABLE_INODES 0x0800
96 
97 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a)))
98 
99 using android::base::Basename;
100 using android::base::GetBoolProperty;
101 using android::base::GetUintProperty;
102 using android::base::Realpath;
103 using android::base::SetProperty;
104 using android::base::StartsWith;
105 using android::base::Timer;
106 using android::base::unique_fd;
107 using android::dm::DeviceMapper;
108 using android::dm::DmDeviceState;
109 using android::dm::DmTargetLinear;
110 using android::dm::LoopControl;
111 
112 // Realistically, this file should be part of the android::fs_mgr namespace;
113 using namespace android::fs_mgr;
114 
115 using namespace std::literals;
116 
117 // record fs stat
118 enum FsStatFlags {
119     FS_STAT_IS_EXT4 = 0x0001,
120     FS_STAT_NEW_IMAGE_VERSION = 0x0002,
121     FS_STAT_E2FSCK_F_ALWAYS = 0x0004,
122     FS_STAT_UNCLEAN_SHUTDOWN = 0x0008,
123     FS_STAT_QUOTA_ENABLED = 0x0010,
124     FS_STAT_RO_MOUNT_FAILED = 0x0040,
125     FS_STAT_RO_UNMOUNT_FAILED = 0x0080,
126     FS_STAT_FULL_MOUNT_FAILED = 0x0100,
127     FS_STAT_E2FSCK_FAILED = 0x0200,
128     FS_STAT_E2FSCK_FS_FIXED = 0x0400,
129     FS_STAT_INVALID_MAGIC = 0x0800,
130     FS_STAT_TOGGLE_QUOTAS_FAILED = 0x10000,
131     FS_STAT_SET_RESERVED_BLOCKS_FAILED = 0x20000,
132     FS_STAT_ENABLE_ENCRYPTION_FAILED = 0x40000,
133     FS_STAT_ENABLE_VERITY_FAILED = 0x80000,
134     FS_STAT_ENABLE_CASEFOLD_FAILED = 0x100000,
135     FS_STAT_ENABLE_METADATA_CSUM_FAILED = 0x200000,
136 };
137 
log_fs_stat(const std::string & blk_device,int fs_stat)138 static void log_fs_stat(const std::string& blk_device, int fs_stat) {
139     if ((fs_stat & FS_STAT_IS_EXT4) == 0) return; // only log ext4
140     std::string msg =
141             android::base::StringPrintf("\nfs_stat,%s,0x%x\n", blk_device.c_str(), fs_stat);
142     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(FSCK_LOG_FILE, O_WRONLY | O_CLOEXEC |
143                                                         O_APPEND | O_CREAT, 0664)));
144     if (fd == -1 || !android::base::WriteStringToFd(msg, fd)) {
145         LWARNING << __FUNCTION__ << "() cannot log " << msg;
146     }
147 }
148 
is_extfs(const std::string & fs_type)149 static bool is_extfs(const std::string& fs_type) {
150     return fs_type == "ext4" || fs_type == "ext3" || fs_type == "ext2";
151 }
152 
is_f2fs(const std::string & fs_type)153 static bool is_f2fs(const std::string& fs_type) {
154     return fs_type == "f2fs";
155 }
156 
realpath(const std::string & blk_device)157 static std::string realpath(const std::string& blk_device) {
158     std::string real_path;
159     if (!Realpath(blk_device, &real_path)) {
160         real_path = blk_device;
161     }
162     return real_path;
163 }
164 
should_force_check(int fs_stat)165 static bool should_force_check(int fs_stat) {
166     return fs_stat &
167            (FS_STAT_E2FSCK_F_ALWAYS | FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED |
168             FS_STAT_RO_MOUNT_FAILED | FS_STAT_RO_UNMOUNT_FAILED | FS_STAT_FULL_MOUNT_FAILED |
169             FS_STAT_E2FSCK_FAILED | FS_STAT_TOGGLE_QUOTAS_FAILED |
170             FS_STAT_SET_RESERVED_BLOCKS_FAILED | FS_STAT_ENABLE_ENCRYPTION_FAILED);
171 }
172 
check_fs(const std::string & blk_device,const std::string & fs_type,const std::string & target,int * fs_stat)173 static void check_fs(const std::string& blk_device, const std::string& fs_type,
174                      const std::string& target, int* fs_stat) {
175     int status;
176     int ret;
177     long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID;
178     auto tmpmnt_opts = "errors=remount-ro"s;
179     const char* e2fsck_argv[] = {E2FSCK_BIN, "-y", blk_device.c_str()};
180     const char* e2fsck_forced_argv[] = {E2FSCK_BIN, "-f", "-y", blk_device.c_str()};
181 
182     if (*fs_stat & FS_STAT_INVALID_MAGIC) {  // will fail, so do not try
183         return;
184     }
185 
186     Timer t;
187     /* Check for the types of filesystems we know how to check */
188     if (is_extfs(fs_type)) {
189         /*
190          * First try to mount and unmount the filesystem.  We do this because
191          * the kernel is more efficient than e2fsck in running the journal and
192          * processing orphaned inodes, and on at least one device with a
193          * performance issue in the emmc firmware, it can take e2fsck 2.5 minutes
194          * to do what the kernel does in about a second.
195          *
196          * After mounting and unmounting the filesystem, run e2fsck, and if an
197          * error is recorded in the filesystem superblock, e2fsck will do a full
198          * check.  Otherwise, it does nothing.  If the kernel cannot mount the
199          * filesytsem due to an error, e2fsck is still run to do a full check
200          * fix the filesystem.
201          */
202         if (!(*fs_stat & FS_STAT_FULL_MOUNT_FAILED)) {  // already tried if full mount failed
203             errno = 0;
204             if (fs_type == "ext4") {
205                 // This option is only valid with ext4
206                 tmpmnt_opts += ",nomblk_io_submit";
207             }
208             ret = mount(blk_device.c_str(), target.c_str(), fs_type.c_str(), tmpmnt_flags,
209                         tmpmnt_opts.c_str());
210             PINFO << __FUNCTION__ << "(): mount(" << blk_device << "," << target << "," << fs_type
211                   << ")=" << ret;
212             if (!ret) {
213                 bool umounted = false;
214                 int retry_count = 5;
215                 while (retry_count-- > 0) {
216                     umounted = umount(target.c_str()) == 0;
217                     if (umounted) {
218                         LINFO << __FUNCTION__ << "(): unmount(" << target << ") succeeded";
219                         break;
220                     }
221                     PERROR << __FUNCTION__ << "(): umount(" << target << ") failed";
222                     if (retry_count) sleep(1);
223                 }
224                 if (!umounted) {
225                     // boot may fail but continue and leave it to later stage for now.
226                     PERROR << __FUNCTION__ << "(): umount(" << target << ") timed out";
227                     *fs_stat |= FS_STAT_RO_UNMOUNT_FAILED;
228                 }
229             } else {
230                 *fs_stat |= FS_STAT_RO_MOUNT_FAILED;
231             }
232         }
233 
234         /*
235          * Some system images do not have e2fsck for licensing reasons
236          * (e.g. recent SDK system images). Detect these and skip the check.
237          */
238         if (access(E2FSCK_BIN, X_OK)) {
239             LINFO << "Not running " << E2FSCK_BIN << " on " << realpath(blk_device)
240                   << " (executable not in system image)";
241         } else {
242             LINFO << "Running " << E2FSCK_BIN << " on " << realpath(blk_device);
243             if (should_force_check(*fs_stat)) {
244                 ret = logwrap_fork_execvp(ARRAY_SIZE(e2fsck_forced_argv), e2fsck_forced_argv,
245                                           &status, false, LOG_KLOG | LOG_FILE, false,
246                                           FSCK_LOG_FILE);
247             } else {
248                 ret = logwrap_fork_execvp(ARRAY_SIZE(e2fsck_argv), e2fsck_argv, &status, false,
249                                           LOG_KLOG | LOG_FILE, false, FSCK_LOG_FILE);
250             }
251 
252             if (ret < 0) {
253                 /* No need to check for error in fork, we can't really handle it now */
254                 LERROR << "Failed trying to run " << E2FSCK_BIN;
255                 *fs_stat |= FS_STAT_E2FSCK_FAILED;
256             } else if (status != 0) {
257                 LINFO << "e2fsck returned status 0x" << std::hex << status;
258                 *fs_stat |= FS_STAT_E2FSCK_FS_FIXED;
259             }
260         }
261     } else if (is_f2fs(fs_type)) {
262         const char* f2fs_fsck_argv[] = {F2FS_FSCK_BIN,     "-a", "-c", "10000", "--debug-cache",
263                                         blk_device.c_str()};
264         const char* f2fs_fsck_forced_argv[] = {
265                 F2FS_FSCK_BIN, "-f", "-c", "10000", "--debug-cache", blk_device.c_str()};
266 
267         if (should_force_check(*fs_stat)) {
268             LINFO << "Running " << F2FS_FSCK_BIN << " -f -c 10000 --debug-cache "
269                   << realpath(blk_device);
270             ret = logwrap_fork_execvp(ARRAY_SIZE(f2fs_fsck_forced_argv), f2fs_fsck_forced_argv,
271                                       &status, false, LOG_KLOG | LOG_FILE, false, FSCK_LOG_FILE);
272         } else {
273             LINFO << "Running " << F2FS_FSCK_BIN << " -a -c 10000 --debug-cache "
274                   << realpath(blk_device);
275             ret = logwrap_fork_execvp(ARRAY_SIZE(f2fs_fsck_argv), f2fs_fsck_argv, &status, false,
276                                       LOG_KLOG | LOG_FILE, false, FSCK_LOG_FILE);
277         }
278         if (ret < 0) {
279             /* No need to check for error in fork, we can't really handle it now */
280             LERROR << "Failed trying to run " << F2FS_FSCK_BIN;
281         }
282     }
283     android::base::SetProperty("ro.boottime.init.fsck." + Basename(target),
284                                std::to_string(t.duration().count()));
285     return;
286 }
287 
ext4_blocks_count(const struct ext4_super_block * es)288 static ext4_fsblk_t ext4_blocks_count(const struct ext4_super_block* es) {
289     return ((ext4_fsblk_t)le32_to_cpu(es->s_blocks_count_hi) << 32) |
290            le32_to_cpu(es->s_blocks_count_lo);
291 }
292 
ext4_r_blocks_count(const struct ext4_super_block * es)293 static ext4_fsblk_t ext4_r_blocks_count(const struct ext4_super_block* es) {
294     return ((ext4_fsblk_t)le32_to_cpu(es->s_r_blocks_count_hi) << 32) |
295            le32_to_cpu(es->s_r_blocks_count_lo);
296 }
297 
is_ext4_superblock_valid(const struct ext4_super_block * es)298 static bool is_ext4_superblock_valid(const struct ext4_super_block* es) {
299     if (es->s_magic != EXT4_SUPER_MAGIC) return false;
300     if (es->s_rev_level != EXT4_DYNAMIC_REV && es->s_rev_level != EXT4_GOOD_OLD_REV) return false;
301     if (EXT4_INODES_PER_GROUP(es) == 0) return false;
302     return true;
303 }
304 
305 // Read the primary superblock from an ext4 filesystem.  On failure return
306 // false.  If it's not an ext4 filesystem, also set FS_STAT_INVALID_MAGIC.
read_ext4_superblock(const std::string & blk_device,struct ext4_super_block * sb,int * fs_stat)307 static bool read_ext4_superblock(const std::string& blk_device, struct ext4_super_block* sb,
308                                  int* fs_stat) {
309     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
310 
311     if (fd < 0) {
312         PERROR << "Failed to open '" << blk_device << "'";
313         return false;
314     }
315 
316     if (TEMP_FAILURE_RETRY(pread(fd, sb, sizeof(*sb), 1024)) != sizeof(*sb)) {
317         PERROR << "Can't read '" << blk_device << "' superblock";
318         return false;
319     }
320 
321     if (!is_ext4_superblock_valid(sb)) {
322         LINFO << "Invalid ext4 superblock on '" << blk_device << "'";
323         // not a valid fs, tune2fs, fsck, and mount  will all fail.
324         *fs_stat |= FS_STAT_INVALID_MAGIC;
325         return false;
326     }
327     *fs_stat |= FS_STAT_IS_EXT4;
328     LINFO << "superblock s_max_mnt_count:" << sb->s_max_mnt_count << "," << blk_device;
329     if (sb->s_max_mnt_count == 0xffff) {  // -1 (int16) in ext2, but uint16 in ext4
330         *fs_stat |= FS_STAT_NEW_IMAGE_VERSION;
331     }
332     return true;
333 }
334 
335 // exported silent version of the above that just answer the question is_ext4
fs_mgr_is_ext4(const std::string & blk_device)336 bool fs_mgr_is_ext4(const std::string& blk_device) {
337     android::base::ErrnoRestorer restore;
338     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
339     if (fd < 0) return false;
340     ext4_super_block sb;
341     if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), 1024)) != sizeof(sb)) return false;
342     if (!is_ext4_superblock_valid(&sb)) return false;
343     return true;
344 }
345 
346 // Some system images do not have tune2fs for licensing reasons.
347 // Detect these and skip running it.
tune2fs_available(void)348 static bool tune2fs_available(void) {
349     return access(TUNE2FS_BIN, X_OK) == 0;
350 }
351 
run_command(const char * argv[],int argc)352 static bool run_command(const char* argv[], int argc) {
353     int ret;
354 
355     ret = logwrap_fork_execvp(argc, argv, nullptr, false, LOG_KLOG, false, nullptr);
356     return ret == 0;
357 }
358 
359 // Enable/disable quota support on the filesystem if needed.
tune_quota(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)360 static void tune_quota(const std::string& blk_device, const FstabEntry& entry,
361                        const struct ext4_super_block* sb, int* fs_stat) {
362     bool has_quota = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_QUOTA)) != 0;
363     bool want_quota = entry.fs_mgr_flags.quota;
364     bool want_projid = android::base::GetBoolProperty("external_storage.projid.enabled", false);
365 
366     if (has_quota == want_quota) {
367         return;
368     }
369 
370     if (!tune2fs_available()) {
371         LERROR << "Unable to " << (want_quota ? "enable" : "disable") << " quotas on " << blk_device
372                << " because " TUNE2FS_BIN " is missing";
373         return;
374     }
375 
376     const char* argv[] = {TUNE2FS_BIN, nullptr, nullptr, blk_device.c_str()};
377 
378     if (want_quota) {
379         LINFO << "Enabling quotas on " << blk_device;
380         argv[1] = "-Oquota";
381         // Once usr/grp unneeded, make just prjquota to save overhead
382         if (want_projid)
383             argv[2] = "-Qusrquota,grpquota,prjquota";
384         else
385             argv[2] = "-Qusrquota,grpquota";
386         *fs_stat |= FS_STAT_QUOTA_ENABLED;
387     } else {
388         LINFO << "Disabling quotas on " << blk_device;
389         argv[1] = "-O^quota";
390         argv[2] = "-Q^usrquota,^grpquota,^prjquota";
391     }
392 
393     if (!run_command(argv, ARRAY_SIZE(argv))) {
394         LERROR << "Failed to run " TUNE2FS_BIN " to " << (want_quota ? "enable" : "disable")
395                << " quotas on " << blk_device;
396         *fs_stat |= FS_STAT_TOGGLE_QUOTAS_FAILED;
397     }
398 }
399 
400 // Set the number of reserved filesystem blocks if needed.
tune_reserved_size(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)401 static void tune_reserved_size(const std::string& blk_device, const FstabEntry& entry,
402                                const struct ext4_super_block* sb, int* fs_stat) {
403     if (entry.reserved_size == 0) {
404         return;
405     }
406 
407     // The size to reserve is given in the fstab, but we won't reserve more
408     // than 2% of the filesystem.
409     const uint64_t max_reserved_blocks = ext4_blocks_count(sb) * 0.02;
410     uint64_t reserved_blocks = entry.reserved_size / EXT4_BLOCK_SIZE(sb);
411 
412     if (reserved_blocks > max_reserved_blocks) {
413         LWARNING << "Reserved blocks " << reserved_blocks << " is too large; "
414                  << "capping to " << max_reserved_blocks;
415         reserved_blocks = max_reserved_blocks;
416     }
417 
418     if ((ext4_r_blocks_count(sb) == reserved_blocks) && (sb->s_def_resgid == AID_RESERVED_DISK)) {
419         return;
420     }
421 
422     if (!tune2fs_available()) {
423         LERROR << "Unable to set the number of reserved blocks on " << blk_device
424                << " because " TUNE2FS_BIN " is missing";
425         return;
426     }
427 
428     LINFO << "Setting reserved block count on " << blk_device << " to " << reserved_blocks;
429 
430     auto reserved_blocks_str = std::to_string(reserved_blocks);
431     auto reserved_gid_str = std::to_string(AID_RESERVED_DISK);
432     const char* argv[] = {
433             TUNE2FS_BIN,       "-r", reserved_blocks_str.c_str(), "-g", reserved_gid_str.c_str(),
434             blk_device.c_str()};
435     if (!run_command(argv, ARRAY_SIZE(argv))) {
436         LERROR << "Failed to run " TUNE2FS_BIN " to set the number of reserved blocks on "
437                << blk_device;
438         *fs_stat |= FS_STAT_SET_RESERVED_BLOCKS_FAILED;
439     }
440 }
441 
442 // Enable file-based encryption if needed.
tune_encrypt(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)443 static void tune_encrypt(const std::string& blk_device, const FstabEntry& entry,
444                          const struct ext4_super_block* sb, int* fs_stat) {
445     if (!entry.fs_mgr_flags.file_encryption) {
446         return;  // Nothing needs done.
447     }
448     std::vector<std::string> features_needed;
449     if ((sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_ENCRYPT)) == 0) {
450         features_needed.emplace_back("encrypt");
451     }
452     android::fscrypt::EncryptionOptions options;
453     if (!android::fscrypt::ParseOptions(entry.encryption_options, &options)) {
454         LERROR << "Unable to parse encryption options on " << blk_device << ": "
455                << entry.encryption_options;
456         return;
457     }
458     if ((options.flags &
459          (FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64 | FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)) != 0) {
460         // We can only use this policy on ext4 if the "stable_inodes" feature
461         // is set on the filesystem, otherwise shrinking will break encrypted files.
462         if ((sb->s_feature_compat & cpu_to_le32(EXT4_FEATURE_COMPAT_STABLE_INODES)) == 0) {
463             features_needed.emplace_back("stable_inodes");
464         }
465     }
466     if (features_needed.size() == 0) {
467         return;
468     }
469     if (!tune2fs_available()) {
470         LERROR << "Unable to enable ext4 encryption on " << blk_device
471                << " because " TUNE2FS_BIN " is missing";
472         return;
473     }
474 
475     auto flags = android::base::Join(features_needed, ',');
476     auto flag_arg = "-O"s + flags;
477     const char* argv[] = {TUNE2FS_BIN, flag_arg.c_str(), blk_device.c_str()};
478 
479     LINFO << "Enabling ext4 flags " << flags << " on " << blk_device;
480     if (!run_command(argv, ARRAY_SIZE(argv))) {
481         LERROR << "Failed to run " TUNE2FS_BIN " to enable "
482                << "ext4 flags " << flags << " on " << blk_device;
483         *fs_stat |= FS_STAT_ENABLE_ENCRYPTION_FAILED;
484     }
485 }
486 
487 // Enable fs-verity if needed.
tune_verity(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)488 static void tune_verity(const std::string& blk_device, const FstabEntry& entry,
489                         const struct ext4_super_block* sb, int* fs_stat) {
490     bool has_verity = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_VERITY)) != 0;
491     bool want_verity = entry.fs_mgr_flags.fs_verity;
492 
493     if (has_verity || !want_verity) {
494         return;
495     }
496 
497     std::string verity_support;
498     if (!android::base::ReadFileToString(SYSFS_EXT4_VERITY, &verity_support)) {
499         LERROR << "Failed to open " << SYSFS_EXT4_VERITY;
500         return;
501     }
502 
503     if (!(android::base::Trim(verity_support) == "supported")) {
504         LERROR << "Current ext4 verity not supported by kernel";
505         return;
506     }
507 
508     if (!tune2fs_available()) {
509         LERROR << "Unable to enable ext4 verity on " << blk_device
510                << " because " TUNE2FS_BIN " is missing";
511         return;
512     }
513 
514     LINFO << "Enabling ext4 verity on " << blk_device;
515 
516     const char* argv[] = {TUNE2FS_BIN, "-O", "verity", blk_device.c_str()};
517     if (!run_command(argv, ARRAY_SIZE(argv))) {
518         LERROR << "Failed to run " TUNE2FS_BIN " to enable "
519                << "ext4 verity on " << blk_device;
520         *fs_stat |= FS_STAT_ENABLE_VERITY_FAILED;
521     }
522 }
523 
524 // Enable casefold if needed.
tune_casefold(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)525 static void tune_casefold(const std::string& blk_device, const FstabEntry& entry,
526                           const struct ext4_super_block* sb, int* fs_stat) {
527     bool has_casefold = (sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_CASEFOLD)) != 0;
528     bool wants_casefold =
529             android::base::GetBoolProperty("external_storage.casefold.enabled", false);
530 
531     if (entry.mount_point != "/data" || !wants_casefold || has_casefold) return;
532 
533     std::string casefold_support;
534     if (!android::base::ReadFileToString(SYSFS_EXT4_CASEFOLD, &casefold_support)) {
535         LERROR << "Failed to open " << SYSFS_EXT4_CASEFOLD;
536         return;
537     }
538 
539     if (!(android::base::Trim(casefold_support) == "supported")) {
540         LERROR << "Current ext4 casefolding not supported by kernel";
541         return;
542     }
543 
544     if (!tune2fs_available()) {
545         LERROR << "Unable to enable ext4 casefold on " << blk_device
546                << " because " TUNE2FS_BIN " is missing";
547         return;
548     }
549 
550     LINFO << "Enabling ext4 casefold on " << blk_device;
551 
552     const char* argv[] = {TUNE2FS_BIN, "-O", "casefold", "-E", "encoding=utf8", blk_device.c_str()};
553     if (!run_command(argv, ARRAY_SIZE(argv))) {
554         LERROR << "Failed to run " TUNE2FS_BIN " to enable "
555                << "ext4 casefold on " << blk_device;
556         *fs_stat |= FS_STAT_ENABLE_CASEFOLD_FAILED;
557     }
558 }
559 
resize2fs_available(void)560 static bool resize2fs_available(void) {
561     return access(RESIZE2FS_BIN, X_OK) == 0;
562 }
563 
564 // Enable metadata_csum
tune_metadata_csum(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)565 static void tune_metadata_csum(const std::string& blk_device, const FstabEntry& entry,
566                                const struct ext4_super_block* sb, int* fs_stat) {
567     bool has_meta_csum =
568             (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) != 0;
569     bool want_meta_csum = entry.fs_mgr_flags.ext_meta_csum;
570 
571     if (has_meta_csum || !want_meta_csum) return;
572 
573     if (!tune2fs_available()) {
574         LERROR << "Unable to enable metadata_csum on " << blk_device
575                << " because " TUNE2FS_BIN " is missing";
576         return;
577     }
578     if (!resize2fs_available()) {
579         LERROR << "Unable to enable metadata_csum on " << blk_device
580                << " because " RESIZE2FS_BIN " is missing";
581         return;
582     }
583 
584     LINFO << "Enabling ext4 metadata_csum on " << blk_device;
585 
586     // Must give `-T now` to prevent last_fsck_time from growing too large,
587     // otherwise, tune2fs won't enable metadata_csum.
588     const char* tune2fs_args[] = {TUNE2FS_BIN, "-O",        "metadata_csum,64bit,extent",
589                                   "-T",        "now", blk_device.c_str()};
590     const char* resize2fs_args[] = {RESIZE2FS_BIN, "-b", blk_device.c_str()};
591 
592     if (!run_command(tune2fs_args, ARRAY_SIZE(tune2fs_args))) {
593         LERROR << "Failed to run " TUNE2FS_BIN " to enable "
594                << "ext4 metadata_csum on " << blk_device;
595         *fs_stat |= FS_STAT_ENABLE_METADATA_CSUM_FAILED;
596     } else if (!run_command(resize2fs_args, ARRAY_SIZE(resize2fs_args))) {
597         LERROR << "Failed to run " RESIZE2FS_BIN " to enable "
598                << "ext4 metadata_csum on " << blk_device;
599         *fs_stat |= FS_STAT_ENABLE_METADATA_CSUM_FAILED;
600     }
601 }
602 
603 // Read the primary superblock from an f2fs filesystem.  On failure return
604 // false.  If it's not an f2fs filesystem, also set FS_STAT_INVALID_MAGIC.
605 #define F2FS_BLKSIZE 4096
606 #define F2FS_SUPER_OFFSET 1024
read_f2fs_superblock(const std::string & blk_device,int * fs_stat)607 static bool read_f2fs_superblock(const std::string& blk_device, int* fs_stat) {
608     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
609     __le32 sb1, sb2;
610 
611     if (fd < 0) {
612         PERROR << "Failed to open '" << blk_device << "'";
613         return false;
614     }
615 
616     if (TEMP_FAILURE_RETRY(pread(fd, &sb1, sizeof(sb1), F2FS_SUPER_OFFSET)) != sizeof(sb1)) {
617         PERROR << "Can't read '" << blk_device << "' superblock1";
618         return false;
619     }
620     if (TEMP_FAILURE_RETRY(pread(fd, &sb2, sizeof(sb2), F2FS_BLKSIZE + F2FS_SUPER_OFFSET)) !=
621         sizeof(sb2)) {
622         PERROR << "Can't read '" << blk_device << "' superblock2";
623         return false;
624     }
625 
626     if (sb1 != cpu_to_le32(F2FS_SUPER_MAGIC) && sb2 != cpu_to_le32(F2FS_SUPER_MAGIC)) {
627         LINFO << "Invalid f2fs superblock on '" << blk_device << "'";
628         *fs_stat |= FS_STAT_INVALID_MAGIC;
629         return false;
630     }
631     return true;
632 }
633 
634 // exported silent version of the above that just answer the question is_f2fs
fs_mgr_is_f2fs(const std::string & blk_device)635 bool fs_mgr_is_f2fs(const std::string& blk_device) {
636     android::base::ErrnoRestorer restore;
637     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
638     if (fd < 0) return false;
639     __le32 sb;
640     if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_SUPER_OFFSET)) != sizeof(sb)) {
641         return false;
642     }
643     if (sb == cpu_to_le32(F2FS_SUPER_MAGIC)) return true;
644     if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_BLKSIZE + F2FS_SUPER_OFFSET)) !=
645         sizeof(sb)) {
646         return false;
647     }
648     return sb == cpu_to_le32(F2FS_SUPER_MAGIC);
649 }
650 
SetReadAheadSize(const std::string & entry_block_device,off64_t size_kb)651 static void SetReadAheadSize(const std::string& entry_block_device, off64_t size_kb) {
652     std::string block_device;
653     if (!Realpath(entry_block_device, &block_device)) {
654         PERROR << "Failed to realpath " << entry_block_device;
655         return;
656     }
657 
658     static constexpr std::string_view kDevBlockPrefix("/dev/block/");
659     if (!android::base::StartsWith(block_device, kDevBlockPrefix)) {
660         LWARNING << block_device << " is not a block device";
661         return;
662     }
663 
664     DeviceMapper& dm = DeviceMapper::Instance();
665     while (true) {
666         std::string block_name = block_device;
667         if (android::base::StartsWith(block_device, kDevBlockPrefix)) {
668             block_name = block_device.substr(kDevBlockPrefix.length());
669         }
670         std::string sys_partition =
671                 android::base::StringPrintf("/sys/class/block/%s/partition", block_name.c_str());
672         struct stat info;
673         if (lstat(sys_partition.c_str(), &info) == 0) {
674             // it has a partition like "sda12".
675             block_name += "/..";
676         }
677         std::string sys_ra = android::base::StringPrintf("/sys/class/block/%s/queue/read_ahead_kb",
678                                                          block_name.c_str());
679         std::string size = android::base::StringPrintf("%llu", (long long)size_kb);
680         android::base::WriteStringToFile(size, sys_ra.c_str());
681         LINFO << "Set readahead_kb: " << size << " on " << sys_ra;
682 
683         auto parent = dm.GetParentBlockDeviceByPath(block_device);
684         if (!parent) {
685             return;
686         }
687         block_device = *parent;
688     }
689 }
690 
691 //
692 // Prepare the filesystem on the given block device to be mounted.
693 //
694 // If the "check" option was given in the fstab record, or it seems that the
695 // filesystem was uncleanly shut down, we'll run fsck on the filesystem.
696 //
697 // If needed, we'll also enable (or disable) filesystem features as specified by
698 // the fstab record.
699 //
prepare_fs_for_mount(const std::string & blk_device,const FstabEntry & entry,const std::string & alt_mount_point="")700 static int prepare_fs_for_mount(const std::string& blk_device, const FstabEntry& entry,
701                                 const std::string& alt_mount_point = "") {
702     auto& mount_point = alt_mount_point.empty() ? entry.mount_point : alt_mount_point;
703     // We need this because sometimes we have legacy symlinks that are
704     // lingering around and need cleaning up.
705     struct stat info;
706     if (lstat(mount_point.c_str(), &info) == 0 && (info.st_mode & S_IFMT) == S_IFLNK) {
707         unlink(mount_point.c_str());
708     }
709     mkdir(mount_point.c_str(), 0755);
710 
711     // Don't need to return error, since it's a salt
712     if (entry.readahead_size_kb != -1) {
713         SetReadAheadSize(blk_device, entry.readahead_size_kb);
714     }
715 
716     int fs_stat = 0;
717 
718     if (is_extfs(entry.fs_type)) {
719         struct ext4_super_block sb;
720 
721         if (read_ext4_superblock(blk_device, &sb, &fs_stat)) {
722             if ((sb.s_feature_incompat & EXT4_FEATURE_INCOMPAT_RECOVER) != 0 ||
723                 (sb.s_state & EXT4_VALID_FS) == 0) {
724                 LINFO << "Filesystem on " << blk_device << " was not cleanly shutdown; "
725                       << "state flags: 0x" << std::hex << sb.s_state << ", "
726                       << "incompat feature flags: 0x" << std::hex << sb.s_feature_incompat;
727                 fs_stat |= FS_STAT_UNCLEAN_SHUTDOWN;
728             }
729 
730             // Note: quotas should be enabled before running fsck.
731             tune_quota(blk_device, entry, &sb, &fs_stat);
732         } else {
733             return fs_stat;
734         }
735     } else if (is_f2fs(entry.fs_type)) {
736         if (!read_f2fs_superblock(blk_device, &fs_stat)) {
737             return fs_stat;
738         }
739     }
740 
741     if (entry.fs_mgr_flags.check ||
742         (fs_stat & (FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED))) {
743         check_fs(blk_device, entry.fs_type, mount_point, &fs_stat);
744     }
745 
746     if (is_extfs(entry.fs_type) &&
747         (entry.reserved_size != 0 || entry.fs_mgr_flags.file_encryption ||
748          entry.fs_mgr_flags.fs_verity || entry.fs_mgr_flags.ext_meta_csum)) {
749         struct ext4_super_block sb;
750 
751         if (read_ext4_superblock(blk_device, &sb, &fs_stat)) {
752             tune_reserved_size(blk_device, entry, &sb, &fs_stat);
753             tune_encrypt(blk_device, entry, &sb, &fs_stat);
754             tune_verity(blk_device, entry, &sb, &fs_stat);
755             tune_casefold(blk_device, entry, &sb, &fs_stat);
756             tune_metadata_csum(blk_device, entry, &sb, &fs_stat);
757         }
758     }
759 
760     return fs_stat;
761 }
762 
763 // Mark the given block device as read-only, using the BLKROSET ioctl.
fs_mgr_set_blk_ro(const std::string & blockdev,bool readonly)764 bool fs_mgr_set_blk_ro(const std::string& blockdev, bool readonly) {
765     unique_fd fd(TEMP_FAILURE_RETRY(open(blockdev.c_str(), O_RDONLY | O_CLOEXEC)));
766     if (fd < 0) {
767         return false;
768     }
769 
770     int ON = readonly;
771     return ioctl(fd, BLKROSET, &ON) == 0;
772 }
773 
774 // Orange state means the device is unlocked, see the following link for details.
775 // https://source.android.com/security/verifiedboot/verified-boot#device_state
fs_mgr_is_device_unlocked()776 bool fs_mgr_is_device_unlocked() {
777     std::string verified_boot_state;
778     if (fs_mgr_get_boot_config("verifiedbootstate", &verified_boot_state)) {
779         return verified_boot_state == "orange";
780     }
781     return false;
782 }
783 
784 // __mount(): wrapper around the mount() system call which also
785 // sets the underlying block device to read-only if the mount is read-only.
786 // See "man 2 mount" for return values.
__mount(const std::string & source,const std::string & target,const FstabEntry & entry)787 static int __mount(const std::string& source, const std::string& target, const FstabEntry& entry) {
788     errno = 0;
789     unsigned long mountflags = entry.flags;
790     int ret = 0;
791     int save_errno = 0;
792     int gc_allowance = 0;
793     std::string opts;
794     bool try_f2fs_gc_allowance = is_f2fs(entry.fs_type) && entry.fs_checkpoint_opts.length() > 0;
795     Timer t;
796 
797     do {
798         if (save_errno == EINVAL && try_f2fs_gc_allowance) {
799             PINFO << "Kernel does not support checkpoint=disable:[n]%, trying without.";
800             try_f2fs_gc_allowance = false;
801         }
802         if (try_f2fs_gc_allowance) {
803             opts = entry.fs_options + entry.fs_checkpoint_opts + ":" +
804                    std::to_string(gc_allowance) + "%";
805         } else {
806             opts = entry.fs_options;
807         }
808         if (save_errno == EAGAIN) {
809             PINFO << "Retrying mount (source=" << source << ",target=" << target
810                   << ",type=" << entry.fs_type << ", gc_allowance=" << gc_allowance << "%)=" << ret
811                   << "(" << save_errno << ")";
812         }
813         ret = mount(source.c_str(), target.c_str(), entry.fs_type.c_str(), mountflags,
814                     opts.c_str());
815         save_errno = errno;
816         if (try_f2fs_gc_allowance) gc_allowance += 10;
817     } while ((ret && save_errno == EAGAIN && gc_allowance <= 100) ||
818              (ret && save_errno == EINVAL && try_f2fs_gc_allowance));
819     const char* target_missing = "";
820     const char* source_missing = "";
821     if (save_errno == ENOENT) {
822         if (access(target.c_str(), F_OK)) {
823             target_missing = "(missing)";
824         } else if (access(source.c_str(), F_OK)) {
825             source_missing = "(missing)";
826         }
827         errno = save_errno;
828     }
829     PINFO << __FUNCTION__ << "(source=" << source << source_missing << ",target=" << target
830           << target_missing << ",type=" << entry.fs_type << ")=" << ret;
831     if ((ret == 0) && (mountflags & MS_RDONLY) != 0) {
832         fs_mgr_set_blk_ro(source);
833     }
834     android::base::SetProperty("ro.boottime.init.mount." + Basename(target),
835                                std::to_string(t.duration().count()));
836     errno = save_errno;
837     return ret;
838 }
839 
fs_match(const std::string & in1,const std::string & in2)840 static bool fs_match(const std::string& in1, const std::string& in2) {
841     if (in1.empty() || in2.empty()) {
842         return false;
843     }
844 
845     auto in1_end = in1.size() - 1;
846     while (in1_end > 0 && in1[in1_end] == '/') {
847         in1_end--;
848     }
849 
850     auto in2_end = in2.size() - 1;
851     while (in2_end > 0 && in2[in2_end] == '/') {
852         in2_end--;
853     }
854 
855     if (in1_end != in2_end) {
856         return false;
857     }
858 
859     for (size_t i = 0; i <= in1_end; ++i) {
860         if (in1[i] != in2[i]) {
861             return false;
862         }
863     }
864 
865     return true;
866 }
867 
868 // Tries to mount any of the consecutive fstab entries that match
869 // the mountpoint of the one given by fstab[start_idx].
870 //
871 // end_idx: On return, will be the last entry that was looked at.
872 // attempted_idx: On return, will indicate which fstab entry
873 //     succeeded. In case of failure, it will be the start_idx.
874 // Sets errno to match the 1st mount failure on failure.
mount_with_alternatives(const Fstab & fstab,int start_idx,int * end_idx,int * attempted_idx)875 static bool mount_with_alternatives(const Fstab& fstab, int start_idx, int* end_idx,
876                                     int* attempted_idx) {
877     unsigned long i;
878     int mount_errno = 0;
879     bool mounted = false;
880 
881     // Hunt down an fstab entry for the same mount point that might succeed.
882     for (i = start_idx;
883          // We required that fstab entries for the same mountpoint be consecutive.
884          i < fstab.size() && fstab[start_idx].mount_point == fstab[i].mount_point; i++) {
885         // Don't try to mount/encrypt the same mount point again.
886         // Deal with alternate entries for the same point which are required to be all following
887         // each other.
888         if (mounted) {
889             LERROR << __FUNCTION__ << "(): skipping fstab dup mountpoint=" << fstab[i].mount_point
890                    << " rec[" << i << "].fs_type=" << fstab[i].fs_type << " already mounted as "
891                    << fstab[*attempted_idx].fs_type;
892             continue;
893         }
894 
895         int fs_stat = prepare_fs_for_mount(fstab[i].blk_device, fstab[i]);
896         if (fs_stat & FS_STAT_INVALID_MAGIC) {
897             LERROR << __FUNCTION__
898                    << "(): skipping mount due to invalid magic, mountpoint=" << fstab[i].mount_point
899                    << " blk_dev=" << realpath(fstab[i].blk_device) << " rec[" << i
900                    << "].fs_type=" << fstab[i].fs_type;
901             mount_errno = EINVAL;  // continue bootup for FDE
902             continue;
903         }
904 
905         int retry_count = 2;
906         while (retry_count-- > 0) {
907             if (!__mount(fstab[i].blk_device, fstab[i].mount_point, fstab[i])) {
908                 *attempted_idx = i;
909                 mounted = true;
910                 if (i != start_idx) {
911                     LERROR << __FUNCTION__ << "(): Mounted " << fstab[i].blk_device << " on "
912                            << fstab[i].mount_point << " with fs_type=" << fstab[i].fs_type
913                            << " instead of " << fstab[start_idx].fs_type;
914                 }
915                 fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
916                 mount_errno = 0;
917                 break;
918             } else {
919                 if (retry_count <= 0) break;  // run check_fs only once
920                 fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
921                 // back up the first errno for crypto decisions.
922                 if (mount_errno == 0) {
923                     mount_errno = errno;
924                 }
925                 // retry after fsck
926                 check_fs(fstab[i].blk_device, fstab[i].fs_type, fstab[i].mount_point, &fs_stat);
927             }
928         }
929         log_fs_stat(fstab[i].blk_device, fs_stat);
930     }
931 
932     /* Adjust i for the case where it was still withing the recs[] */
933     if (i < fstab.size()) --i;
934 
935     *end_idx = i;
936     if (!mounted) {
937         *attempted_idx = start_idx;
938         errno = mount_errno;
939         return false;
940     }
941     return true;
942 }
943 
TranslateExtLabels(FstabEntry * entry)944 static bool TranslateExtLabels(FstabEntry* entry) {
945     if (!StartsWith(entry->blk_device, "LABEL=")) {
946         return true;
947     }
948 
949     std::string label = entry->blk_device.substr(6);
950     if (label.size() > 16) {
951         LERROR << "FS label is longer than allowed by filesystem";
952         return false;
953     }
954 
955     auto blockdir = std::unique_ptr<DIR, decltype(&closedir)>{opendir("/dev/block"), closedir};
956     if (!blockdir) {
957         LERROR << "couldn't open /dev/block";
958         return false;
959     }
960 
961     struct dirent* ent;
962     while ((ent = readdir(blockdir.get()))) {
963         if (ent->d_type != DT_BLK)
964             continue;
965 
966         unique_fd fd(TEMP_FAILURE_RETRY(
967                 openat(dirfd(blockdir.get()), ent->d_name, O_RDONLY | O_CLOEXEC)));
968         if (fd < 0) {
969             LERROR << "Cannot open block device /dev/block/" << ent->d_name;
970             return false;
971         }
972 
973         ext4_super_block super_block;
974         if (TEMP_FAILURE_RETRY(lseek(fd, 1024, SEEK_SET)) < 0 ||
975             TEMP_FAILURE_RETRY(read(fd, &super_block, sizeof(super_block))) !=
976                     sizeof(super_block)) {
977             // Probably a loopback device or something else without a readable superblock.
978             continue;
979         }
980 
981         if (super_block.s_magic != EXT4_SUPER_MAGIC) {
982             LINFO << "/dev/block/" << ent->d_name << " not ext{234}";
983             continue;
984         }
985 
986         if (label == super_block.s_volume_name) {
987             std::string new_blk_device = "/dev/block/"s + ent->d_name;
988 
989             LINFO << "resolved label " << entry->blk_device << " to " << new_blk_device;
990 
991             entry->blk_device = new_blk_device;
992             return true;
993         }
994     }
995 
996     return false;
997 }
998 
needs_block_encryption(const FstabEntry & entry)999 static bool needs_block_encryption(const FstabEntry& entry) {
1000     if (android::base::GetBoolProperty("ro.vold.forceencryption", false) && entry.is_encryptable())
1001         return true;
1002     if (entry.fs_mgr_flags.force_crypt) return true;
1003     if (entry.fs_mgr_flags.crypt) {
1004         // Check for existence of convert_fde breadcrumb file.
1005         auto convert_fde_name = entry.mount_point + "/misc/vold/convert_fde";
1006         if (access(convert_fde_name.c_str(), F_OK) == 0) return true;
1007     }
1008     if (entry.fs_mgr_flags.force_fde_or_fbe) {
1009         // Check for absence of convert_fbe breadcrumb file.
1010         auto convert_fbe_name = entry.mount_point + "/convert_fbe";
1011         if (access(convert_fbe_name.c_str(), F_OK) != 0) return true;
1012     }
1013     return false;
1014 }
1015 
should_use_metadata_encryption(const FstabEntry & entry)1016 static bool should_use_metadata_encryption(const FstabEntry& entry) {
1017     return !entry.metadata_key_dir.empty() &&
1018            (entry.fs_mgr_flags.file_encryption || entry.fs_mgr_flags.force_fde_or_fbe);
1019 }
1020 
1021 // Check to see if a mountable volume has encryption requirements
handle_encryptable(const FstabEntry & entry)1022 static int handle_encryptable(const FstabEntry& entry) {
1023     // If this is block encryptable, need to trigger encryption.
1024     if (needs_block_encryption(entry)) {
1025         if (umount(entry.mount_point.c_str()) == 0) {
1026             return FS_MGR_MNTALL_DEV_NEEDS_ENCRYPTION;
1027         } else {
1028             PWARNING << "Could not umount " << entry.mount_point << " - allow continue unencrypted";
1029             return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED;
1030         }
1031     } else if (should_use_metadata_encryption(entry)) {
1032         if (umount(entry.mount_point.c_str()) == 0) {
1033             return FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION;
1034         } else {
1035             PERROR << "Could not umount " << entry.mount_point << " - fail since can't encrypt";
1036             return FS_MGR_MNTALL_FAIL;
1037         }
1038     } else if (entry.fs_mgr_flags.file_encryption || entry.fs_mgr_flags.force_fde_or_fbe) {
1039         LINFO << entry.mount_point << " is file encrypted";
1040         return FS_MGR_MNTALL_DEV_FILE_ENCRYPTED;
1041     } else if (entry.is_encryptable()) {
1042         return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED;
1043     } else {
1044         return FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
1045     }
1046 }
1047 
set_type_property(int status)1048 static void set_type_property(int status) {
1049     switch (status) {
1050         case FS_MGR_MNTALL_DEV_MIGHT_BE_ENCRYPTED:
1051             SetProperty("ro.crypto.type", "block");
1052             break;
1053         case FS_MGR_MNTALL_DEV_FILE_ENCRYPTED:
1054         case FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED:
1055         case FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION:
1056             SetProperty("ro.crypto.type", "file");
1057             break;
1058     }
1059 }
1060 
call_vdc(const std::vector<std::string> & args,int * ret)1061 static bool call_vdc(const std::vector<std::string>& args, int* ret) {
1062     std::vector<char const*> argv;
1063     argv.emplace_back("/system/bin/vdc");
1064     for (auto& arg : args) {
1065         argv.emplace_back(arg.c_str());
1066     }
1067     LOG(INFO) << "Calling: " << android::base::Join(argv, ' ');
1068     int err = logwrap_fork_execvp(argv.size(), argv.data(), ret, false, LOG_ALOG, false, nullptr);
1069     if (err != 0) {
1070         LOG(ERROR) << "vdc call failed with error code: " << err;
1071         return false;
1072     }
1073     LOG(DEBUG) << "vdc finished successfully";
1074     if (ret != nullptr) {
1075         *ret = WEXITSTATUS(*ret);
1076     }
1077     return true;
1078 }
1079 
fs_mgr_update_logical_partition(FstabEntry * entry)1080 bool fs_mgr_update_logical_partition(FstabEntry* entry) {
1081     // Logical partitions are specified with a named partition rather than a
1082     // block device, so if the block device is a path, then it has already
1083     // been updated.
1084     if (entry->blk_device[0] == '/') {
1085         return true;
1086     }
1087 
1088     DeviceMapper& dm = DeviceMapper::Instance();
1089     std::string device_name;
1090     if (!dm.GetDmDevicePathByName(entry->blk_device, &device_name)) {
1091         return false;
1092     }
1093 
1094     entry->blk_device = device_name;
1095     return true;
1096 }
1097 
SupportsCheckpoint(FstabEntry * entry)1098 static bool SupportsCheckpoint(FstabEntry* entry) {
1099     return entry->fs_mgr_flags.checkpoint_blk || entry->fs_mgr_flags.checkpoint_fs;
1100 }
1101 
1102 class CheckpointManager {
1103   public:
CheckpointManager(int needs_checkpoint=-1,bool metadata_encrypted=false)1104     CheckpointManager(int needs_checkpoint = -1, bool metadata_encrypted = false)
1105         : needs_checkpoint_(needs_checkpoint), metadata_encrypted_(metadata_encrypted) {}
1106 
NeedsCheckpoint()1107     bool NeedsCheckpoint() {
1108         if (needs_checkpoint_ != UNKNOWN) {
1109             return needs_checkpoint_ == YES;
1110         }
1111         if (!call_vdc({"checkpoint", "needsCheckpoint"}, &needs_checkpoint_)) {
1112             LERROR << "Failed to find if checkpointing is needed. Assuming no.";
1113             needs_checkpoint_ = NO;
1114         }
1115         return needs_checkpoint_ == YES;
1116     }
1117 
Update(FstabEntry * entry,const std::string & block_device=std::string ())1118     bool Update(FstabEntry* entry, const std::string& block_device = std::string()) {
1119         if (!SupportsCheckpoint(entry)) {
1120             return true;
1121         }
1122 
1123         if (entry->fs_mgr_flags.checkpoint_blk && !metadata_encrypted_) {
1124             call_vdc({"checkpoint", "restoreCheckpoint", entry->blk_device}, nullptr);
1125         }
1126 
1127         if (!NeedsCheckpoint()) {
1128             return true;
1129         }
1130 
1131         if (!UpdateCheckpointPartition(entry, block_device)) {
1132             LERROR << "Could not set up checkpoint partition, skipping!";
1133             return false;
1134         }
1135 
1136         return true;
1137     }
1138 
Revert(FstabEntry * entry)1139     bool Revert(FstabEntry* entry) {
1140         if (!SupportsCheckpoint(entry)) {
1141             return true;
1142         }
1143 
1144         if (device_map_.find(entry->blk_device) == device_map_.end()) {
1145             return true;
1146         }
1147 
1148         std::string bow_device = entry->blk_device;
1149         entry->blk_device = device_map_[bow_device];
1150         device_map_.erase(bow_device);
1151 
1152         DeviceMapper& dm = DeviceMapper::Instance();
1153         if (!dm.DeleteDevice("bow")) {
1154             PERROR << "Failed to remove bow device";
1155         }
1156 
1157         return true;
1158     }
1159 
1160   private:
UpdateCheckpointPartition(FstabEntry * entry,const std::string & block_device)1161     bool UpdateCheckpointPartition(FstabEntry* entry, const std::string& block_device) {
1162         if (entry->fs_mgr_flags.checkpoint_fs) {
1163             if (is_f2fs(entry->fs_type)) {
1164                 entry->fs_checkpoint_opts = ",checkpoint=disable";
1165             } else {
1166                 LERROR << entry->fs_type << " does not implement checkpoints.";
1167             }
1168         } else if (entry->fs_mgr_flags.checkpoint_blk) {
1169             auto actual_block_device = block_device.empty() ? entry->blk_device : block_device;
1170             if (fs_mgr_find_bow_device(actual_block_device).empty()) {
1171                 unique_fd fd(
1172                         TEMP_FAILURE_RETRY(open(entry->blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
1173                 if (fd < 0) {
1174                     PERROR << "Cannot open device " << entry->blk_device;
1175                     return false;
1176                 }
1177 
1178                 uint64_t size = get_block_device_size(fd) / 512;
1179                 if (!size) {
1180                     PERROR << "Cannot get device size";
1181                     return false;
1182                 }
1183 
1184                 android::dm::DmTable table;
1185                 auto bowTarget =
1186                         std::make_unique<android::dm::DmTargetBow>(0, size, entry->blk_device);
1187 
1188                 // dm-bow uses the first block as a log record, and relocates the real first block
1189                 // elsewhere. For metadata encrypted devices, dm-bow sits below dm-default-key, and
1190                 // for post Android Q devices dm-default-key uses a block size of 4096 always.
1191                 // So if dm-bow's block size, which by default is the block size of the underlying
1192                 // hardware, is less than dm-default-key's, blocks will get broken up and I/O will
1193                 // fail as it won't be data_unit_size aligned.
1194                 // However, since it is possible there is an already shipping non
1195                 // metadata-encrypted device with smaller blocks, we must not change this for
1196                 // devices shipped with Q or earlier unless they explicitly selected dm-default-key
1197                 // v2
1198                 unsigned int options_format_version = android::base::GetUintProperty<unsigned int>(
1199                         "ro.crypto.dm_default_key.options_format.version",
1200                         (android::fscrypt::GetFirstApiLevel() <= __ANDROID_API_Q__ ? 1 : 2));
1201                 if (options_format_version > 1) {
1202                     bowTarget->SetBlockSize(4096);
1203                 }
1204 
1205                 if (!table.AddTarget(std::move(bowTarget))) {
1206                     LERROR << "Failed to add bow target";
1207                     return false;
1208                 }
1209 
1210                 DeviceMapper& dm = DeviceMapper::Instance();
1211                 if (!dm.CreateDevice("bow", table)) {
1212                     PERROR << "Failed to create bow device";
1213                     return false;
1214                 }
1215 
1216                 std::string name;
1217                 if (!dm.GetDmDevicePathByName("bow", &name)) {
1218                     PERROR << "Failed to get bow device name";
1219                     return false;
1220                 }
1221 
1222                 device_map_[name] = entry->blk_device;
1223                 entry->blk_device = name;
1224             }
1225         }
1226         return true;
1227     }
1228 
1229     enum { UNKNOWN = -1, NO = 0, YES = 1 };
1230     int needs_checkpoint_;
1231     bool metadata_encrypted_;
1232     std::map<std::string, std::string> device_map_;
1233 };
1234 
fs_mgr_find_bow_device(const std::string & block_device)1235 std::string fs_mgr_find_bow_device(const std::string& block_device) {
1236     if (block_device.substr(0, 5) != "/dev/") {
1237         LOG(ERROR) << "Expected block device, got " << block_device;
1238         return std::string();
1239     }
1240 
1241     std::string sys_dir = std::string("/sys/") + block_device.substr(5);
1242 
1243     for (;;) {
1244         std::string name;
1245         if (!android::base::ReadFileToString(sys_dir + "/dm/name", &name)) {
1246             PLOG(ERROR) << block_device << " is not dm device";
1247             return std::string();
1248         }
1249 
1250         if (name == "bow\n") return sys_dir;
1251 
1252         std::string slaves = sys_dir + "/slaves";
1253         std::unique_ptr<DIR, decltype(&closedir)> directory(opendir(slaves.c_str()), closedir);
1254         if (!directory) {
1255             PLOG(ERROR) << "Can't open slave directory " << slaves;
1256             return std::string();
1257         }
1258 
1259         int count = 0;
1260         for (dirent* entry = readdir(directory.get()); entry; entry = readdir(directory.get())) {
1261             if (entry->d_type != DT_LNK) continue;
1262 
1263             if (count == 1) {
1264                 LOG(ERROR) << "Too many slaves in " << slaves;
1265                 return std::string();
1266             }
1267 
1268             ++count;
1269             sys_dir = std::string("/sys/block/") + entry->d_name;
1270         }
1271 
1272         if (count != 1) {
1273             LOG(ERROR) << "No slave in " << slaves;
1274             return std::string();
1275         }
1276     }
1277 }
1278 
1279 static constexpr const char* kUserdataWrapperName = "userdata-wrapper";
1280 
WrapUserdata(FstabEntry * entry,dev_t dev,const std::string & block_device)1281 static void WrapUserdata(FstabEntry* entry, dev_t dev, const std::string& block_device) {
1282     DeviceMapper& dm = DeviceMapper::Instance();
1283     if (dm.GetState(kUserdataWrapperName) != DmDeviceState::INVALID) {
1284         // This will report failure for us. If we do fail to get the path,
1285         // we leave the device unwrapped.
1286         dm.GetDmDevicePathByName(kUserdataWrapperName, &entry->blk_device);
1287         return;
1288     }
1289 
1290     unique_fd fd(open(block_device.c_str(), O_RDONLY | O_CLOEXEC));
1291     if (fd < 0) {
1292         PLOG(ERROR) << "open failed: " << entry->blk_device;
1293         return;
1294     }
1295 
1296     auto dev_str = android::base::StringPrintf("%u:%u", major(dev), minor(dev));
1297     uint64_t sectors = get_block_device_size(fd) / 512;
1298 
1299     android::dm::DmTable table;
1300     table.Emplace<DmTargetLinear>(0, sectors, dev_str, 0);
1301 
1302     std::string dm_path;
1303     if (!dm.CreateDevice(kUserdataWrapperName, table, &dm_path, 20s)) {
1304         LOG(ERROR) << "Failed to create userdata wrapper device";
1305         return;
1306     }
1307     entry->blk_device = dm_path;
1308 }
1309 
1310 // When using Virtual A/B, partitions can be backed by /data and mapped with
1311 // device-mapper in first-stage init. This can happen when merging an OTA or
1312 // when using adb remount to house "scratch". In this case, /data cannot be
1313 // mounted directly off the userdata block device, and e2fsck will refuse to
1314 // scan it, because the kernel reports the block device as in-use.
1315 //
1316 // As a workaround, when mounting /data, we create a trivial dm-linear wrapper
1317 // if the underlying block device already has dependencies. Note that we make
1318 // an exception for metadata-encrypted devices, since dm-default-key is already
1319 // a wrapper.
WrapUserdataIfNeeded(FstabEntry * entry,const std::string & actual_block_device={})1320 static void WrapUserdataIfNeeded(FstabEntry* entry, const std::string& actual_block_device = {}) {
1321     const auto& block_device =
1322             actual_block_device.empty() ? entry->blk_device : actual_block_device;
1323     if (entry->mount_point != "/data" || !entry->metadata_key_dir.empty() ||
1324         android::base::StartsWith(block_device, "/dev/block/dm-")) {
1325         return;
1326     }
1327 
1328     struct stat st;
1329     if (stat(block_device.c_str(), &st) < 0) {
1330         PLOG(ERROR) << "stat failed: " << block_device;
1331         return;
1332     }
1333 
1334     std::string path = android::base::StringPrintf("/sys/dev/block/%u:%u/holders",
1335                                                    major(st.st_rdev), minor(st.st_rdev));
1336     std::unique_ptr<DIR, decltype(&closedir)> dir(opendir(path.c_str()), closedir);
1337     if (!dir) {
1338         PLOG(ERROR) << "opendir failed: " << path;
1339         return;
1340     }
1341 
1342     struct dirent* d;
1343     bool has_holders = false;
1344     while ((d = readdir(dir.get())) != nullptr) {
1345         if (strcmp(d->d_name, ".") != 0 && strcmp(d->d_name, "..") != 0) {
1346             has_holders = true;
1347             break;
1348         }
1349     }
1350 
1351     if (has_holders) {
1352         WrapUserdata(entry, st.st_rdev, block_device);
1353     }
1354 }
1355 
IsMountPointMounted(const std::string & mount_point)1356 static bool IsMountPointMounted(const std::string& mount_point) {
1357     // Check if this is already mounted.
1358     Fstab fstab;
1359     if (!ReadFstabFromFile("/proc/mounts", &fstab)) {
1360         return false;
1361     }
1362     return GetEntryForMountPoint(&fstab, mount_point) != nullptr;
1363 }
1364 
1365 // When multiple fstab records share the same mount_point, it will try to mount each
1366 // one in turn, and ignore any duplicates after a first successful mount.
1367 // Returns -1 on error, and  FS_MGR_MNTALL_* otherwise.
fs_mgr_mount_all(Fstab * fstab,int mount_mode)1368 MountAllResult fs_mgr_mount_all(Fstab* fstab, int mount_mode) {
1369     int encryptable = FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
1370     int error_count = 0;
1371     CheckpointManager checkpoint_manager;
1372     AvbUniquePtr avb_handle(nullptr);
1373     bool wiped = false;
1374 
1375     bool userdata_mounted = false;
1376     if (fstab->empty()) {
1377         return {FS_MGR_MNTALL_FAIL, userdata_mounted};
1378     }
1379 
1380     // Keep i int to prevent unsigned integer overflow from (i = top_idx - 1),
1381     // where top_idx is 0. It will give SIGABRT
1382     for (int i = 0; i < static_cast<int>(fstab->size()); i++) {
1383         auto& current_entry = (*fstab)[i];
1384 
1385         // If a filesystem should have been mounted in the first stage, we
1386         // ignore it here. With one exception, if the filesystem is
1387         // formattable, then it can only be formatted in the second stage,
1388         // so we allow it to mount here.
1389         if (current_entry.fs_mgr_flags.first_stage_mount &&
1390             (!current_entry.fs_mgr_flags.formattable ||
1391              IsMountPointMounted(current_entry.mount_point))) {
1392             continue;
1393         }
1394 
1395         // Don't mount entries that are managed by vold or not for the mount mode.
1396         if (current_entry.fs_mgr_flags.vold_managed || current_entry.fs_mgr_flags.recovery_only ||
1397             ((mount_mode == MOUNT_MODE_LATE) && !current_entry.fs_mgr_flags.late_mount) ||
1398             ((mount_mode == MOUNT_MODE_EARLY) && current_entry.fs_mgr_flags.late_mount)) {
1399             continue;
1400         }
1401 
1402         // Skip swap and raw partition entries such as boot, recovery, etc.
1403         if (current_entry.fs_type == "swap" || current_entry.fs_type == "emmc" ||
1404             current_entry.fs_type == "mtd") {
1405             continue;
1406         }
1407 
1408         // Skip mounting the root partition, as it will already have been mounted.
1409         if (current_entry.mount_point == "/" || current_entry.mount_point == "/system") {
1410             if ((current_entry.flags & MS_RDONLY) != 0) {
1411                 fs_mgr_set_blk_ro(current_entry.blk_device);
1412             }
1413             continue;
1414         }
1415 
1416         // Terrible hack to make it possible to remount /data.
1417         // TODO: refactor fs_mgr_mount_all and get rid of this.
1418         if (mount_mode == MOUNT_MODE_ONLY_USERDATA && current_entry.mount_point != "/data") {
1419             continue;
1420         }
1421 
1422         // Translate LABEL= file system labels into block devices.
1423         if (is_extfs(current_entry.fs_type)) {
1424             if (!TranslateExtLabels(&current_entry)) {
1425                 LERROR << "Could not translate label to block device";
1426                 continue;
1427             }
1428         }
1429 
1430         if (current_entry.fs_mgr_flags.logical) {
1431             if (!fs_mgr_update_logical_partition(&current_entry)) {
1432                 LERROR << "Could not set up logical partition, skipping!";
1433                 continue;
1434             }
1435         }
1436 
1437         WrapUserdataIfNeeded(&current_entry);
1438 
1439         if (!checkpoint_manager.Update(&current_entry)) {
1440             continue;
1441         }
1442 
1443         if (current_entry.fs_mgr_flags.wait && !WaitForFile(current_entry.blk_device, 20s)) {
1444             LERROR << "Skipping '" << current_entry.blk_device << "' during mount_all";
1445             continue;
1446         }
1447 
1448         if (current_entry.fs_mgr_flags.avb) {
1449             if (!avb_handle) {
1450                 avb_handle = AvbHandle::Open();
1451                 if (!avb_handle) {
1452                     LERROR << "Failed to open AvbHandle";
1453                     set_type_property(encryptable);
1454                     return {FS_MGR_MNTALL_FAIL, userdata_mounted};
1455                 }
1456             }
1457             if (avb_handle->SetUpAvbHashtree(&current_entry, true /* wait_for_verity_dev */) ==
1458                 AvbHashtreeResult::kFail) {
1459                 LERROR << "Failed to set up AVB on partition: " << current_entry.mount_point
1460                        << ", skipping!";
1461                 // Skips mounting the device.
1462                 continue;
1463             }
1464         } else if (!current_entry.avb_keys.empty()) {
1465             if (AvbHandle::SetUpStandaloneAvbHashtree(&current_entry) == AvbHashtreeResult::kFail) {
1466                 LERROR << "Failed to set up AVB on standalone partition: "
1467                        << current_entry.mount_point << ", skipping!";
1468                 // Skips mounting the device.
1469                 continue;
1470             }
1471         } else if ((current_entry.fs_mgr_flags.verify)) {
1472             int rc = fs_mgr_setup_verity(&current_entry, true);
1473             if (rc == FS_MGR_SETUP_VERITY_DISABLED || rc == FS_MGR_SETUP_VERITY_SKIPPED) {
1474                 LINFO << "Verity disabled";
1475             } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) {
1476                 LERROR << "Could not set up verified partition, skipping!";
1477                 continue;
1478             }
1479         }
1480 
1481         int last_idx_inspected;
1482         int top_idx = i;
1483         int attempted_idx = -1;
1484 
1485         bool mret = mount_with_alternatives(*fstab, i, &last_idx_inspected, &attempted_idx);
1486         auto& attempted_entry = (*fstab)[attempted_idx];
1487         i = last_idx_inspected;
1488         int mount_errno = errno;
1489 
1490         // Handle success and deal with encryptability.
1491         if (mret) {
1492             int status = handle_encryptable(attempted_entry);
1493 
1494             if (status == FS_MGR_MNTALL_FAIL) {
1495                 // Fatal error - no point continuing.
1496                 return {status, userdata_mounted};
1497             }
1498 
1499             if (status != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
1500                 if (encryptable != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
1501                     // Log and continue
1502                     LERROR << "Only one encryptable/encrypted partition supported";
1503                 }
1504                 encryptable = status;
1505                 if (status == FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION) {
1506                     if (!call_vdc({"cryptfs", "encryptFstab", attempted_entry.blk_device,
1507                                    attempted_entry.mount_point, wiped ? "true" : "false",
1508                                    attempted_entry.fs_type},
1509                                   nullptr)) {
1510                         LERROR << "Encryption failed";
1511                         set_type_property(encryptable);
1512                         return {FS_MGR_MNTALL_FAIL, userdata_mounted};
1513                     }
1514                 }
1515             }
1516 
1517             if (current_entry.mount_point == "/data") {
1518                 userdata_mounted = true;
1519             }
1520             // Success!  Go get the next one.
1521             continue;
1522         }
1523 
1524         // Mounting failed, understand why and retry.
1525         wiped = partition_wiped(current_entry.blk_device.c_str());
1526         bool crypt_footer = false;
1527         if (mount_errno != EBUSY && mount_errno != EACCES &&
1528             current_entry.fs_mgr_flags.formattable && wiped) {
1529             // current_entry and attempted_entry point at the same partition, but sometimes
1530             // at two different lines in the fstab.  Use current_entry for formatting
1531             // as that is the preferred one.
1532             LERROR << __FUNCTION__ << "(): " << realpath(current_entry.blk_device)
1533                    << " is wiped and " << current_entry.mount_point << " " << current_entry.fs_type
1534                    << " is formattable. Format it.";
1535 
1536             checkpoint_manager.Revert(&current_entry);
1537 
1538             if (current_entry.is_encryptable() && current_entry.key_loc != KEY_IN_FOOTER) {
1539                 unique_fd fd(TEMP_FAILURE_RETRY(
1540                         open(current_entry.key_loc.c_str(), O_WRONLY | O_CLOEXEC)));
1541                 if (fd >= 0) {
1542                     LINFO << __FUNCTION__ << "(): also wipe " << current_entry.key_loc;
1543                     wipe_block_device(fd, get_file_size(fd));
1544                 } else {
1545                     PERROR << __FUNCTION__ << "(): " << current_entry.key_loc << " wouldn't open";
1546                 }
1547             } else if (current_entry.is_encryptable() && current_entry.key_loc == KEY_IN_FOOTER) {
1548                 crypt_footer = true;
1549             }
1550 
1551             // EncryptInplace will be used when vdc gives an error or needs to format partitions
1552             // other than /data
1553             if (should_use_metadata_encryption(current_entry) &&
1554                 current_entry.mount_point == "/data") {
1555 
1556                 // vdc->Format requires "ro.crypto.type" to set an encryption flag
1557                 encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED;
1558                 set_type_property(encryptable);
1559 
1560                 if (!call_vdc({"cryptfs", "encryptFstab", current_entry.blk_device,
1561                                current_entry.mount_point, "true" /* shouldFormat */,
1562                                current_entry.fs_type},
1563                               nullptr)) {
1564                     LERROR << "Encryption failed";
1565                 } else {
1566                     userdata_mounted = true;
1567                     continue;
1568                 }
1569             }
1570 
1571             if (fs_mgr_do_format(current_entry, crypt_footer) == 0) {
1572                 // Let's replay the mount actions.
1573                 i = top_idx - 1;
1574                 continue;
1575             } else {
1576                 LERROR << __FUNCTION__ << "(): Format failed. "
1577                        << "Suggest recovery...";
1578                 encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY;
1579                 continue;
1580             }
1581         }
1582 
1583         // mount(2) returned an error, handle the encryptable/formattable case.
1584         if (mount_errno != EBUSY && mount_errno != EACCES && attempted_entry.is_encryptable()) {
1585             if (wiped) {
1586                 LERROR << __FUNCTION__ << "(): " << attempted_entry.blk_device << " is wiped and "
1587                        << attempted_entry.mount_point << " " << attempted_entry.fs_type
1588                        << " is encryptable. Suggest recovery...";
1589                 encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY;
1590                 continue;
1591             } else {
1592                 // Need to mount a tmpfs at this mountpoint for now, and set
1593                 // properties that vold will query later for decrypting
1594                 LERROR << __FUNCTION__ << "(): possibly an encryptable blkdev "
1595                        << attempted_entry.blk_device << " for mount " << attempted_entry.mount_point
1596                        << " type " << attempted_entry.fs_type;
1597                 if (fs_mgr_do_tmpfs_mount(attempted_entry.mount_point.c_str()) < 0) {
1598                     ++error_count;
1599                     continue;
1600                 }
1601             }
1602             encryptable = FS_MGR_MNTALL_DEV_MIGHT_BE_ENCRYPTED;
1603         } else if (mount_errno != EBUSY && mount_errno != EACCES &&
1604                    should_use_metadata_encryption(attempted_entry)) {
1605             if (!call_vdc({"cryptfs", "mountFstab", attempted_entry.blk_device,
1606                            attempted_entry.mount_point},
1607                           nullptr)) {
1608                 ++error_count;
1609             } else if (current_entry.mount_point == "/data") {
1610                 userdata_mounted = true;
1611             }
1612             encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED;
1613             continue;
1614         } else {
1615             // fs_options might be null so we cannot use PERROR << directly.
1616             // Use StringPrintf to output "(null)" instead.
1617             if (attempted_entry.fs_mgr_flags.no_fail) {
1618                 PERROR << android::base::StringPrintf(
1619                         "Ignoring failure to mount an un-encryptable or wiped "
1620                         "partition on %s at %s options: %s",
1621                         attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(),
1622                         attempted_entry.fs_options.c_str());
1623             } else {
1624                 PERROR << android::base::StringPrintf(
1625                         "Failed to mount an un-encryptable or wiped partition "
1626                         "on %s at %s options: %s",
1627                         attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(),
1628                         attempted_entry.fs_options.c_str());
1629                 ++error_count;
1630             }
1631             continue;
1632         }
1633     }
1634 
1635     set_type_property(encryptable);
1636 
1637 #if ALLOW_ADBD_DISABLE_VERITY == 1  // "userdebug" build
1638     fs_mgr_overlayfs_mount_all(fstab);
1639 #endif
1640 
1641     if (error_count) {
1642         return {FS_MGR_MNTALL_FAIL, userdata_mounted};
1643     } else {
1644         return {encryptable, userdata_mounted};
1645     }
1646 }
1647 
fs_mgr_umount_all(android::fs_mgr::Fstab * fstab)1648 int fs_mgr_umount_all(android::fs_mgr::Fstab* fstab) {
1649     AvbUniquePtr avb_handle(nullptr);
1650     int ret = FsMgrUmountStatus::SUCCESS;
1651     for (auto& current_entry : *fstab) {
1652         if (!IsMountPointMounted(current_entry.mount_point)) {
1653             continue;
1654         }
1655 
1656         if (umount(current_entry.mount_point.c_str()) == -1) {
1657             PERROR << "Failed to umount " << current_entry.mount_point;
1658             ret |= FsMgrUmountStatus::ERROR_UMOUNT;
1659             continue;
1660         }
1661 
1662         if (current_entry.fs_mgr_flags.logical) {
1663             if (!fs_mgr_update_logical_partition(&current_entry)) {
1664                 LERROR << "Could not get logical partition blk_device, skipping!";
1665                 ret |= FsMgrUmountStatus::ERROR_DEVICE_MAPPER;
1666                 continue;
1667             }
1668         }
1669 
1670         if (current_entry.fs_mgr_flags.avb || !current_entry.avb_keys.empty()) {
1671             if (!AvbHandle::TearDownAvbHashtree(&current_entry, true /* wait */)) {
1672                 LERROR << "Failed to tear down AVB on mount point: " << current_entry.mount_point;
1673                 ret |= FsMgrUmountStatus::ERROR_VERITY;
1674                 continue;
1675             }
1676         } else if ((current_entry.fs_mgr_flags.verify)) {
1677             if (!fs_mgr_teardown_verity(&current_entry)) {
1678                 LERROR << "Failed to tear down verified partition on mount point: "
1679                        << current_entry.mount_point;
1680                 ret |= FsMgrUmountStatus::ERROR_VERITY;
1681                 continue;
1682             }
1683         }
1684     }
1685     return ret;
1686 }
1687 
GetMillisProperty(const std::string & name,std::chrono::milliseconds default_value)1688 static std::chrono::milliseconds GetMillisProperty(const std::string& name,
1689                                                    std::chrono::milliseconds default_value) {
1690     auto value = GetUintProperty(name, static_cast<uint64_t>(default_value.count()));
1691     return std::chrono::milliseconds(std::move(value));
1692 }
1693 
fs_mgr_unmount_all_data_mounts(const std::string & data_block_device)1694 static bool fs_mgr_unmount_all_data_mounts(const std::string& data_block_device) {
1695     LINFO << __FUNCTION__ << "(): about to umount everything on top of " << data_block_device;
1696     Timer t;
1697     auto timeout = GetMillisProperty("init.userspace_reboot.userdata_remount.timeoutmillis", 5s);
1698     while (true) {
1699         bool umount_done = true;
1700         Fstab proc_mounts;
1701         if (!ReadFstabFromFile("/proc/mounts", &proc_mounts)) {
1702             LERROR << __FUNCTION__ << "(): Can't read /proc/mounts";
1703             return false;
1704         }
1705         // Now proceed with other bind mounts on top of /data.
1706         for (const auto& entry : proc_mounts) {
1707             std::string block_device;
1708             if (StartsWith(entry.blk_device, "/dev/block") &&
1709                 !Realpath(entry.blk_device, &block_device)) {
1710                 PWARNING << __FUNCTION__ << "(): failed to realpath " << entry.blk_device;
1711                 block_device = entry.blk_device;
1712             }
1713             if (data_block_device == block_device) {
1714                 if (umount2(entry.mount_point.c_str(), 0) != 0) {
1715                     PERROR << __FUNCTION__ << "(): Failed to umount " << entry.mount_point;
1716                     umount_done = false;
1717                 }
1718             }
1719         }
1720         if (umount_done) {
1721             LINFO << __FUNCTION__ << "(): Unmounting /data took " << t;
1722             return true;
1723         }
1724         if (t.duration() > timeout) {
1725             LERROR << __FUNCTION__ << "(): Timed out unmounting all mounts on "
1726                    << data_block_device;
1727             Fstab remaining_mounts;
1728             if (!ReadFstabFromFile("/proc/mounts", &remaining_mounts)) {
1729                 LERROR << __FUNCTION__ << "(): Can't read /proc/mounts";
1730             } else {
1731                 LERROR << __FUNCTION__ << "(): Following mounts remaining";
1732                 for (const auto& e : remaining_mounts) {
1733                     LERROR << __FUNCTION__ << "(): mount point: " << e.mount_point
1734                            << " block device: " << e.blk_device;
1735                 }
1736             }
1737             return false;
1738         }
1739         std::this_thread::sleep_for(50ms);
1740     }
1741 }
1742 
UnwindDmDeviceStack(const std::string & block_device,std::vector<std::string> * dm_stack)1743 static bool UnwindDmDeviceStack(const std::string& block_device,
1744                                 std::vector<std::string>* dm_stack) {
1745     if (!StartsWith(block_device, "/dev/block/")) {
1746         LWARNING << block_device << " is not a block device";
1747         return false;
1748     }
1749     std::string current = block_device;
1750     DeviceMapper& dm = DeviceMapper::Instance();
1751     while (true) {
1752         dm_stack->push_back(current);
1753         if (!dm.IsDmBlockDevice(current)) {
1754             break;
1755         }
1756         auto parent = dm.GetParentBlockDeviceByPath(current);
1757         if (!parent) {
1758             return false;
1759         }
1760         current = *parent;
1761     }
1762     return true;
1763 }
1764 
fs_mgr_get_mounted_entry_for_userdata(Fstab * fstab,const std::string & data_block_device)1765 FstabEntry* fs_mgr_get_mounted_entry_for_userdata(Fstab* fstab,
1766                                                   const std::string& data_block_device) {
1767     std::vector<std::string> dm_stack;
1768     if (!UnwindDmDeviceStack(data_block_device, &dm_stack)) {
1769         LERROR << "Failed to unwind dm-device stack for " << data_block_device;
1770         return nullptr;
1771     }
1772     for (auto& entry : *fstab) {
1773         if (entry.mount_point != "/data") {
1774             continue;
1775         }
1776         std::string block_device;
1777         if (entry.fs_mgr_flags.logical) {
1778             if (!fs_mgr_update_logical_partition(&entry)) {
1779                 LERROR << "Failed to update logic partition " << entry.blk_device;
1780                 continue;
1781             }
1782             block_device = entry.blk_device;
1783         } else if (!Realpath(entry.blk_device, &block_device)) {
1784             PWARNING << "Failed to realpath " << entry.blk_device;
1785             block_device = entry.blk_device;
1786         }
1787         if (std::find(dm_stack.begin(), dm_stack.end(), block_device) != dm_stack.end()) {
1788             return &entry;
1789         }
1790     }
1791     LERROR << "Didn't find entry that was used to mount /data onto " << data_block_device;
1792     return nullptr;
1793 }
1794 
1795 // TODO(b/143970043): return different error codes based on which step failed.
fs_mgr_remount_userdata_into_checkpointing(Fstab * fstab)1796 int fs_mgr_remount_userdata_into_checkpointing(Fstab* fstab) {
1797     Fstab proc_mounts;
1798     if (!ReadFstabFromFile("/proc/mounts", &proc_mounts)) {
1799         LERROR << "Can't read /proc/mounts";
1800         return -1;
1801     }
1802     auto mounted_entry = GetEntryForMountPoint(&proc_mounts, "/data");
1803     if (mounted_entry == nullptr) {
1804         LERROR << "/data is not mounted";
1805         return -1;
1806     }
1807     std::string block_device;
1808     if (!Realpath(mounted_entry->blk_device, &block_device)) {
1809         PERROR << "Failed to realpath " << mounted_entry->blk_device;
1810         return -1;
1811     }
1812     auto fstab_entry = fs_mgr_get_mounted_entry_for_userdata(fstab, block_device);
1813     if (fstab_entry == nullptr) {
1814         LERROR << "Can't find /data in fstab";
1815         return -1;
1816     }
1817     bool force_umount = GetBoolProperty("sys.init.userdata_remount.force_umount", false);
1818     if (force_umount) {
1819         LINFO << "Will force an umount of userdata even if it's not required";
1820     }
1821     if (!force_umount && !SupportsCheckpoint(fstab_entry)) {
1822         LINFO << "Userdata doesn't support checkpointing. Nothing to do";
1823         return 0;
1824     }
1825     CheckpointManager checkpoint_manager;
1826     if (!force_umount && !checkpoint_manager.NeedsCheckpoint()) {
1827         LINFO << "Checkpointing not needed. Don't remount";
1828         return 0;
1829     }
1830     if (!force_umount && fstab_entry->fs_mgr_flags.checkpoint_fs) {
1831         // Userdata is f2fs, simply remount it.
1832         if (!checkpoint_manager.Update(fstab_entry)) {
1833             LERROR << "Failed to remount userdata in checkpointing mode";
1834             return -1;
1835         }
1836         if (mount(block_device.c_str(), fstab_entry->mount_point.c_str(), "none",
1837                   MS_REMOUNT | fstab_entry->flags, fstab_entry->fs_options.c_str()) != 0) {
1838             PERROR << "Failed to remount userdata in checkpointing mode";
1839             return -1;
1840         }
1841     } else {
1842         LINFO << "Unmounting /data before remounting into checkpointing mode";
1843         if (!fs_mgr_unmount_all_data_mounts(block_device)) {
1844             LERROR << "Failed to umount /data";
1845             return -1;
1846         }
1847         DeviceMapper& dm = DeviceMapper::Instance();
1848         while (dm.IsDmBlockDevice(block_device)) {
1849             auto next_device = dm.GetParentBlockDeviceByPath(block_device);
1850             auto name = dm.GetDmDeviceNameByPath(block_device);
1851             if (!name) {
1852                 LERROR << "Failed to get dm-name for " << block_device;
1853                 return -1;
1854             }
1855             LINFO << "Deleting " << block_device << " named " << *name;
1856             if (!dm.DeleteDevice(*name, 3s)) {
1857                 return -1;
1858             }
1859             if (!next_device) {
1860                 LERROR << "Failed to find parent device for " << block_device;
1861             }
1862             block_device = *next_device;
1863         }
1864         LINFO << "Remounting /data";
1865         // TODO(b/143970043): remove this hack after fs_mgr_mount_all is refactored.
1866         auto result = fs_mgr_mount_all(fstab, MOUNT_MODE_ONLY_USERDATA);
1867         return result.code == FS_MGR_MNTALL_FAIL ? -1 : 0;
1868     }
1869     return 0;
1870 }
1871 
1872 // wrapper to __mount() and expects a fully prepared fstab_rec,
1873 // unlike fs_mgr_do_mount which does more things with avb / verity etc.
fs_mgr_do_mount_one(const FstabEntry & entry,const std::string & alt_mount_point)1874 int fs_mgr_do_mount_one(const FstabEntry& entry, const std::string& alt_mount_point) {
1875     // First check the filesystem if requested.
1876     if (entry.fs_mgr_flags.wait && !WaitForFile(entry.blk_device, 20s)) {
1877         LERROR << "Skipping mounting '" << entry.blk_device << "'";
1878     }
1879 
1880     auto& mount_point = alt_mount_point.empty() ? entry.mount_point : alt_mount_point;
1881 
1882     // Run fsck if needed
1883     prepare_fs_for_mount(entry.blk_device, entry, mount_point);
1884 
1885     int ret = __mount(entry.blk_device, mount_point, entry);
1886     if (ret) {
1887       ret = (errno == EBUSY) ? FS_MGR_DOMNT_BUSY : FS_MGR_DOMNT_FAILED;
1888     }
1889 
1890     return ret;
1891 }
1892 
1893 // If tmp_mount_point is non-null, mount the filesystem there.  This is for the
1894 // tmp mount we do to check the user password
1895 // If multiple fstab entries are to be mounted on "n_name", it will try to mount each one
1896 // in turn, and stop on 1st success, or no more match.
fs_mgr_do_mount_helper(Fstab * fstab,const std::string & n_name,const std::string & n_blk_device,const char * tmp_mount_point,int needs_checkpoint,bool metadata_encrypted)1897 static int fs_mgr_do_mount_helper(Fstab* fstab, const std::string& n_name,
1898                                   const std::string& n_blk_device, const char* tmp_mount_point,
1899                                   int needs_checkpoint, bool metadata_encrypted) {
1900     int mount_errors = 0;
1901     int first_mount_errno = 0;
1902     std::string mount_point;
1903     CheckpointManager checkpoint_manager(needs_checkpoint, metadata_encrypted);
1904     AvbUniquePtr avb_handle(nullptr);
1905 
1906     if (!fstab) {
1907         return FS_MGR_DOMNT_FAILED;
1908     }
1909 
1910     for (auto& fstab_entry : *fstab) {
1911         if (!fs_match(fstab_entry.mount_point, n_name)) {
1912             continue;
1913         }
1914 
1915         // We found our match.
1916         // If this swap or a raw partition, report an error.
1917         if (fstab_entry.fs_type == "swap" || fstab_entry.fs_type == "emmc" ||
1918             fstab_entry.fs_type == "mtd") {
1919             LERROR << "Cannot mount filesystem of type " << fstab_entry.fs_type << " on "
1920                    << n_blk_device;
1921             return FS_MGR_DOMNT_FAILED;
1922         }
1923 
1924         if (fstab_entry.fs_mgr_flags.logical) {
1925             if (!fs_mgr_update_logical_partition(&fstab_entry)) {
1926                 LERROR << "Could not set up logical partition, skipping!";
1927                 continue;
1928             }
1929         }
1930 
1931         WrapUserdataIfNeeded(&fstab_entry, n_blk_device);
1932 
1933         if (!checkpoint_manager.Update(&fstab_entry, n_blk_device)) {
1934             LERROR << "Could not set up checkpoint partition, skipping!";
1935             continue;
1936         }
1937 
1938         // First check the filesystem if requested.
1939         if (fstab_entry.fs_mgr_flags.wait && !WaitForFile(n_blk_device, 20s)) {
1940             LERROR << "Skipping mounting '" << n_blk_device << "'";
1941             continue;
1942         }
1943 
1944         // Now mount it where requested */
1945         if (tmp_mount_point) {
1946             mount_point = tmp_mount_point;
1947         } else {
1948             mount_point = fstab_entry.mount_point;
1949         }
1950 
1951         int fs_stat = prepare_fs_for_mount(n_blk_device, fstab_entry, mount_point);
1952 
1953         if (fstab_entry.fs_mgr_flags.avb) {
1954             if (!avb_handle) {
1955                 avb_handle = AvbHandle::Open();
1956                 if (!avb_handle) {
1957                     LERROR << "Failed to open AvbHandle";
1958                     return FS_MGR_DOMNT_FAILED;
1959                 }
1960             }
1961             if (avb_handle->SetUpAvbHashtree(&fstab_entry, true /* wait_for_verity_dev */) ==
1962                 AvbHashtreeResult::kFail) {
1963                 LERROR << "Failed to set up AVB on partition: " << fstab_entry.mount_point
1964                        << ", skipping!";
1965                 // Skips mounting the device.
1966                 continue;
1967             }
1968         } else if (!fstab_entry.avb_keys.empty()) {
1969             if (AvbHandle::SetUpStandaloneAvbHashtree(&fstab_entry) == AvbHashtreeResult::kFail) {
1970                 LERROR << "Failed to set up AVB on standalone partition: "
1971                        << fstab_entry.mount_point << ", skipping!";
1972                 // Skips mounting the device.
1973                 continue;
1974             }
1975         } else if (fstab_entry.fs_mgr_flags.verify) {
1976             int rc = fs_mgr_setup_verity(&fstab_entry, true);
1977             if (rc == FS_MGR_SETUP_VERITY_DISABLED || rc == FS_MGR_SETUP_VERITY_SKIPPED) {
1978                 LINFO << "Verity disabled";
1979             } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) {
1980                 LERROR << "Could not set up verified partition, skipping!";
1981                 continue;
1982             }
1983         }
1984 
1985         int retry_count = 2;
1986         while (retry_count-- > 0) {
1987             if (!__mount(n_blk_device, mount_point, fstab_entry)) {
1988                 fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
1989                 return FS_MGR_DOMNT_SUCCESS;
1990             } else {
1991                 if (retry_count <= 0) break;  // run check_fs only once
1992                 if (!first_mount_errno) first_mount_errno = errno;
1993                 mount_errors++;
1994                 fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
1995                 // try again after fsck
1996                 check_fs(n_blk_device, fstab_entry.fs_type, mount_point, &fs_stat);
1997             }
1998         }
1999         log_fs_stat(fstab_entry.blk_device, fs_stat);
2000     }
2001 
2002     // Reach here means the mount attempt fails.
2003     if (mount_errors) {
2004         PERROR << "Cannot mount filesystem on " << n_blk_device << " at " << mount_point;
2005         if (first_mount_errno == EBUSY) return FS_MGR_DOMNT_BUSY;
2006     } else {
2007         // We didn't find a match, say so and return an error.
2008         LERROR << "Cannot find mount point " << n_name << " in fstab";
2009     }
2010     return FS_MGR_DOMNT_FAILED;
2011 }
2012 
fs_mgr_do_mount(Fstab * fstab,const char * n_name,char * n_blk_device,char * tmp_mount_point)2013 int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point) {
2014     return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, -1, false);
2015 }
2016 
fs_mgr_do_mount(Fstab * fstab,const char * n_name,char * n_blk_device,char * tmp_mount_point,bool needs_checkpoint,bool metadata_encrypted)2017 int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point,
2018                     bool needs_checkpoint, bool metadata_encrypted) {
2019     return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, needs_checkpoint,
2020                                   metadata_encrypted);
2021 }
2022 
2023 /*
2024  * mount a tmpfs filesystem at the given point.
2025  * return 0 on success, non-zero on failure.
2026  */
fs_mgr_do_tmpfs_mount(const char * n_name)2027 int fs_mgr_do_tmpfs_mount(const char *n_name)
2028 {
2029     int ret;
2030 
2031     ret = mount("tmpfs", n_name, "tmpfs", MS_NOATIME | MS_NOSUID | MS_NODEV | MS_NOEXEC,
2032                 CRYPTO_TMPFS_OPTIONS);
2033     if (ret < 0) {
2034         LERROR << "Cannot mount tmpfs filesystem at " << n_name;
2035         return -1;
2036     }
2037 
2038     /* Success */
2039     return 0;
2040 }
2041 
InstallZramDevice(const std::string & device)2042 static bool InstallZramDevice(const std::string& device) {
2043     if (!android::base::WriteStringToFile(device, ZRAM_BACK_DEV)) {
2044         PERROR << "Cannot write " << device << " in: " << ZRAM_BACK_DEV;
2045         return false;
2046     }
2047     LINFO << "Success to set " << device << " to " << ZRAM_BACK_DEV;
2048     return true;
2049 }
2050 
PrepareZramBackingDevice(off64_t size)2051 static bool PrepareZramBackingDevice(off64_t size) {
2052 
2053     constexpr const char* file_path = "/data/per_boot/zram_swap";
2054     if (size == 0) return true;
2055 
2056     // Prepare target path
2057     unique_fd target_fd(TEMP_FAILURE_RETRY(open(file_path, O_RDWR | O_CREAT | O_CLOEXEC, 0600)));
2058     if (target_fd.get() == -1) {
2059         PERROR << "Cannot open target path: " << file_path;
2060         return false;
2061     }
2062     if (fallocate(target_fd.get(), 0, 0, size) < 0) {
2063         PERROR << "Cannot truncate target path: " << file_path;
2064         return false;
2065     }
2066 
2067     // Allocate loop device and attach it to file_path.
2068     LoopControl loop_control;
2069     std::string loop_device;
2070     if (!loop_control.Attach(target_fd.get(), 5s, &loop_device)) {
2071         return false;
2072     }
2073 
2074     ConfigureQueueDepth(loop_device, "/");
2075 
2076     // set block size & direct IO
2077     unique_fd loop_fd(TEMP_FAILURE_RETRY(open(loop_device.c_str(), O_RDWR | O_CLOEXEC)));
2078     if (loop_fd.get() == -1) {
2079         PERROR << "Cannot open " << loop_device;
2080         return false;
2081     }
2082     if (!LoopControl::EnableDirectIo(loop_fd.get())) {
2083         return false;
2084     }
2085 
2086     return InstallZramDevice(loop_device);
2087 }
2088 
fs_mgr_swapon_all(const Fstab & fstab)2089 bool fs_mgr_swapon_all(const Fstab& fstab) {
2090     bool ret = true;
2091     for (const auto& entry : fstab) {
2092         // Skip non-swap entries.
2093         if (entry.fs_type != "swap") {
2094             continue;
2095         }
2096 
2097         if (entry.zram_size > 0) {
2098 	    if (!PrepareZramBackingDevice(entry.zram_backingdev_size)) {
2099                 LERROR << "Failure of zram backing device file for '" << entry.blk_device << "'";
2100             }
2101             // A zram_size was specified, so we need to configure the
2102             // device.  There is no point in having multiple zram devices
2103             // on a system (all the memory comes from the same pool) so
2104             // we can assume the device number is 0.
2105             if (entry.max_comp_streams >= 0) {
2106                 auto zram_mcs_fp = std::unique_ptr<FILE, decltype(&fclose)>{
2107                         fopen(ZRAM_CONF_MCS, "re"), fclose};
2108                 if (zram_mcs_fp == nullptr) {
2109                     LERROR << "Unable to open zram conf comp device " << ZRAM_CONF_MCS;
2110                     ret = false;
2111                     continue;
2112                 }
2113                 fprintf(zram_mcs_fp.get(), "%d\n", entry.max_comp_streams);
2114             }
2115 
2116             auto zram_fp =
2117                     std::unique_ptr<FILE, decltype(&fclose)>{fopen(ZRAM_CONF_DEV, "re+"), fclose};
2118             if (zram_fp == nullptr) {
2119                 LERROR << "Unable to open zram conf device " << ZRAM_CONF_DEV;
2120                 ret = false;
2121                 continue;
2122             }
2123             fprintf(zram_fp.get(), "%" PRId64 "\n", entry.zram_size);
2124         }
2125 
2126         if (entry.fs_mgr_flags.wait && !WaitForFile(entry.blk_device, 20s)) {
2127             LERROR << "Skipping mkswap for '" << entry.blk_device << "'";
2128             ret = false;
2129             continue;
2130         }
2131 
2132         // Initialize the swap area.
2133         const char* mkswap_argv[2] = {
2134                 MKSWAP_BIN,
2135                 entry.blk_device.c_str(),
2136         };
2137         int err = logwrap_fork_execvp(ARRAY_SIZE(mkswap_argv), mkswap_argv, nullptr, false,
2138                                       LOG_KLOG, false, nullptr);
2139         if (err) {
2140             LERROR << "mkswap failed for " << entry.blk_device;
2141             ret = false;
2142             continue;
2143         }
2144 
2145         /* If -1, then no priority was specified in fstab, so don't set
2146          * SWAP_FLAG_PREFER or encode the priority */
2147         int flags = 0;
2148         if (entry.swap_prio >= 0) {
2149             flags = (entry.swap_prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK;
2150             flags |= SWAP_FLAG_PREFER;
2151         } else {
2152             flags = 0;
2153         }
2154         err = swapon(entry.blk_device.c_str(), flags);
2155         if (err) {
2156             LERROR << "swapon failed for " << entry.blk_device;
2157             ret = false;
2158         }
2159     }
2160 
2161     return ret;
2162 }
2163 
fs_mgr_is_verity_enabled(const FstabEntry & entry)2164 bool fs_mgr_is_verity_enabled(const FstabEntry& entry) {
2165     if (!entry.fs_mgr_flags.verify && !entry.fs_mgr_flags.avb) {
2166         return false;
2167     }
2168 
2169     DeviceMapper& dm = DeviceMapper::Instance();
2170 
2171     std::string mount_point = GetVerityDeviceName(entry);
2172     if (dm.GetState(mount_point) == DmDeviceState::INVALID) {
2173         return false;
2174     }
2175 
2176     const char* status;
2177     std::vector<DeviceMapper::TargetInfo> table;
2178     if (!dm.GetTableStatus(mount_point, &table) || table.empty() || table[0].data.empty()) {
2179         if (!entry.fs_mgr_flags.verify_at_boot) {
2180             return false;
2181         }
2182         status = "V";
2183     } else {
2184         status = table[0].data.c_str();
2185     }
2186 
2187     if (*status == 'C' || *status == 'V') {
2188         return true;
2189     }
2190 
2191     return false;
2192 }
2193 
fs_mgr_get_hashtree_algorithm(const android::fs_mgr::FstabEntry & entry)2194 std::string fs_mgr_get_hashtree_algorithm(const android::fs_mgr::FstabEntry& entry) {
2195     if (!entry.fs_mgr_flags.verify && !entry.fs_mgr_flags.avb) {
2196         return "";
2197     }
2198     DeviceMapper& dm = DeviceMapper::Instance();
2199     std::string device = GetVerityDeviceName(entry);
2200 
2201     std::vector<DeviceMapper::TargetInfo> table;
2202     if (dm.GetState(device) == DmDeviceState::INVALID || !dm.GetTableInfo(device, &table)) {
2203         return "";
2204     }
2205     for (const auto& target : table) {
2206         if (strcmp(target.spec.target_type, "verity") != 0) {
2207             continue;
2208         }
2209 
2210         // The format is stable for dm-verity version 0 & 1. And the data is expected to have
2211         // the fixed format:
2212         // <version> <dev> <hash_dev> <data_block_size> <hash_block_size> <num_data_blocks>
2213         // <hash_start_block> <algorithm> <digest> <salt>
2214         // Details in https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html
2215 
2216         std::vector<std::string> tokens = android::base::Split(target.data, " \t\r\n");
2217         if (tokens[0] != "0" && tokens[0] != "1") {
2218             LOG(WARNING) << "Unrecognized device mapper version in " << target.data;
2219             return "";
2220         }
2221 
2222         // Hashtree algorithm is the 8th token in the output
2223         return android::base::Trim(tokens[7]);
2224     }
2225 
2226     return "";
2227 }
2228 
fs_mgr_verity_is_check_at_most_once(const android::fs_mgr::FstabEntry & entry)2229 bool fs_mgr_verity_is_check_at_most_once(const android::fs_mgr::FstabEntry& entry) {
2230     if (!entry.fs_mgr_flags.verify && !entry.fs_mgr_flags.avb) {
2231         return false;
2232     }
2233 
2234     DeviceMapper& dm = DeviceMapper::Instance();
2235     std::string device = GetVerityDeviceName(entry);
2236 
2237     std::vector<DeviceMapper::TargetInfo> table;
2238     if (dm.GetState(device) == DmDeviceState::INVALID || !dm.GetTableInfo(device, &table)) {
2239         return false;
2240     }
2241     for (const auto& target : table) {
2242         if (strcmp(target.spec.target_type, "verity") == 0 &&
2243             target.data.find("check_at_most_once") != std::string::npos) {
2244             return true;
2245         }
2246     }
2247     return false;
2248 }
2249 
fs_mgr_get_super_partition_name(int slot)2250 std::string fs_mgr_get_super_partition_name(int slot) {
2251     // Devices upgrading to dynamic partitions are allowed to specify a super
2252     // partition name. This includes cuttlefish, which is a non-A/B device.
2253     std::string super_partition;
2254     if (fs_mgr_get_boot_config_from_bootconfig_source("super_partition", &super_partition) ||
2255         fs_mgr_get_boot_config_from_kernel_cmdline("super_partition", &super_partition)) {
2256         if (fs_mgr_get_slot_suffix().empty()) {
2257             return super_partition;
2258         }
2259         std::string suffix;
2260         if (slot == 0) {
2261             suffix = "_a";
2262         } else if (slot == 1) {
2263             suffix = "_b";
2264         } else if (slot == -1) {
2265             suffix = fs_mgr_get_slot_suffix();
2266         }
2267         return super_partition + suffix;
2268     }
2269     return LP_METADATA_DEFAULT_PARTITION_NAME;
2270 }
2271 
fs_mgr_create_canonical_mount_point(const std::string & mount_point)2272 bool fs_mgr_create_canonical_mount_point(const std::string& mount_point) {
2273     auto saved_errno = errno;
2274     auto ok = true;
2275     auto created_mount_point = !mkdir(mount_point.c_str(), 0755);
2276     std::string real_mount_point;
2277     if (!Realpath(mount_point, &real_mount_point)) {
2278         ok = false;
2279         PERROR << "failed to realpath(" << mount_point << ")";
2280     } else if (mount_point != real_mount_point) {
2281         ok = false;
2282         LERROR << "mount point is not canonical: realpath(" << mount_point << ") -> "
2283                << real_mount_point;
2284     }
2285     if (!ok && created_mount_point) {
2286         rmdir(mount_point.c_str());
2287     }
2288     errno = saved_errno;
2289     return ok;
2290 }
2291 
fs_mgr_mount_overlayfs_fstab_entry(const FstabEntry & entry)2292 bool fs_mgr_mount_overlayfs_fstab_entry(const FstabEntry& entry) {
2293     auto overlayfs_valid_result = fs_mgr_overlayfs_valid();
2294     if (overlayfs_valid_result == OverlayfsValidResult::kNotSupported) {
2295         LERROR << __FUNCTION__ << "(): kernel does not support overlayfs";
2296         return false;
2297     }
2298 
2299 #if ALLOW_ADBD_DISABLE_VERITY == 0
2300     // Allowlist the mount point if user build.
2301     static const std::vector<const std::string> kAllowedPaths = {
2302             "/odm", "/odm_dlkm", "/oem", "/product", "/system_ext", "/vendor", "/vendor_dlkm",
2303     };
2304     static const std::vector<const std::string> kAllowedPrefixes = {
2305             "/mnt/product/",
2306             "/mnt/vendor/",
2307     };
2308     if (std::none_of(kAllowedPaths.begin(), kAllowedPaths.end(),
2309                      [&entry](const auto& path) -> bool {
2310                          return entry.mount_point == path ||
2311                                 StartsWith(entry.mount_point, path + "/");
2312                      }) &&
2313         std::none_of(kAllowedPrefixes.begin(), kAllowedPrefixes.end(),
2314                      [&entry](const auto& prefix) -> bool {
2315                          return entry.mount_point != prefix &&
2316                                 StartsWith(entry.mount_point, prefix);
2317                      })) {
2318         LERROR << __FUNCTION__
2319                << "(): mount point is forbidden on user build: " << entry.mount_point;
2320         return false;
2321     }
2322 #endif  // ALLOW_ADBD_DISABLE_VERITY == 0
2323 
2324     if (!fs_mgr_create_canonical_mount_point(entry.mount_point)) {
2325         return false;
2326     }
2327 
2328     auto options = "lowerdir=" + entry.lowerdir;
2329     if (overlayfs_valid_result == OverlayfsValidResult::kOverrideCredsRequired) {
2330         options += ",override_creds=off";
2331     }
2332 
2333     // Use "overlay-" + entry.blk_device as the mount() source, so that adb-remout-test don't
2334     // confuse this with adb remount overlay, whose device name is "overlay".
2335     // Overlayfs is a pseudo filesystem, so the source device is a symbolic value and isn't used to
2336     // back the filesystem. However the device name would be shown in /proc/mounts.
2337     auto source = "overlay-" + entry.blk_device;
2338     auto report = "__mount(source=" + source + ",target=" + entry.mount_point + ",type=overlay," +
2339                   options + ")=";
2340     auto ret = mount(source.c_str(), entry.mount_point.c_str(), "overlay", MS_RDONLY | MS_NOATIME,
2341                      options.c_str());
2342     if (ret) {
2343         PERROR << report << ret;
2344         return false;
2345     }
2346     LINFO << report << ret;
2347     return true;
2348 }
2349