1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Operations"
18 
19 #include <algorithm>
20 #include <utility>
21 #include <vector>
22 
23 #include "OperationResolver.h"
24 #include "OperationsUtils.h"
25 
26 namespace android {
27 namespace nn {
28 namespace topk_v2 {
29 
30 constexpr uint32_t kNumInputs = 2;
31 constexpr uint32_t kInputTensor = 0;
32 constexpr uint32_t kTopKScalar = 1;
33 
34 constexpr uint32_t kNumOutputs = 2;
35 constexpr uint32_t kOutputValuesTensor = 0;
36 constexpr uint32_t kOutputIndicesTensor = 1;
37 
38 namespace {
39 
40 template <typename T>
evalGeneric(const T * inputData,const Shape & inputShape,const int32_t k,T * valuesData,int32_t * indicesData)41 bool evalGeneric(const T* inputData, const Shape& inputShape, const int32_t k, T* valuesData,
42                  int32_t* indicesData) {
43     const int rowSize = inputShape.dimensions.back();
44     const int totalSize = getNumberOfElements(inputShape);
45     std::vector<std::pair<T, int32_t>> values(rowSize);
46     T* curOutputValue = valuesData;
47     int32_t* curOutputIndex = indicesData;
48     for (int rowBegin = 0; rowBegin < totalSize; rowBegin += rowSize) {
49         for (int i = 0; i < rowSize; ++i) {
50             values[i] = std::make_pair(inputData[rowBegin + i], i);
51         }
52         std::nth_element(values.begin(), values.begin() + (rowSize - k), values.end());
53         std::sort(values.begin() + (rowSize - k), values.end());
54         std::reverse(values.begin(), values.end());
55         for (int i = 0; i < k; ++i) {
56             *curOutputValue = values[i].first;
57             *curOutputIndex = values[i].second;
58             curOutputValue++;
59             curOutputIndex++;
60         }
61     }
62     return true;
63 }
64 
65 template <typename T>
executeTyped(IOperationExecutionContext * context)66 bool executeTyped(IOperationExecutionContext* context) {
67     return evalGeneric(context->getInputBuffer<T>(kInputTensor),
68                        context->getInputShape(kInputTensor),
69                        context->getInputValue<int32_t>(kTopKScalar),
70                        context->getOutputBuffer<T>(kOutputValuesTensor),
71                        context->getOutputBuffer<int32_t>(kOutputIndicesTensor));
72 }
73 
74 }  // namespace
75 
validate(const IOperationValidationContext * context)76 Result<Version> validate(const IOperationValidationContext* context) {
77     NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
78     NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
79     OperandType inputType = context->getInputType(kInputTensor);
80     NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 ||
81                  inputType == OperandType::TENSOR_FLOAT32 ||
82                  inputType == OperandType::TENSOR_INT32 ||
83                  inputType == OperandType::TENSOR_QUANT8_ASYMM ||
84                  inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED)
85             << "Unsupported input operand type for select op: " << inputType;
86     NN_RET_CHECK(validateInputTypes(context, {inputType, OperandType::INT32}));
87     NN_RET_CHECK(validateOutputTypes(context, {inputType, OperandType::TENSOR_INT32}));
88     Version minSupportedVersion = Version::ANDROID_Q;
89     if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
90         minSupportedVersion = Version::ANDROID_R;
91     }
92     return minSupportedVersion;
93 }
94 
prepare(IOperationExecutionContext * context)95 bool prepare(IOperationExecutionContext* context) {
96     const Shape inputShape = context->getInputShape(kInputTensor);
97     const int32_t k = context->getInputValue<int32_t>(kTopKScalar);
98     NN_RET_CHECK_GT(k, 0);
99     NN_RET_CHECK_LE(k, inputShape.dimensions.back());
100 
101     // Copy input shape to ensure that quantization parameters for the output
102     // values are the same as for the input tensor.
103     Shape outputValuesShape = inputShape;
104     outputValuesShape.dimensions.back() = k;
105     Shape outputIndicesShape;
106     outputIndicesShape.type = OperandType::TENSOR_INT32;
107     outputIndicesShape.dimensions = inputShape.dimensions;
108     outputIndicesShape.dimensions.back() = k;
109     return context->setOutputShape(kOutputValuesTensor, outputValuesShape) &&
110            context->setOutputShape(kOutputIndicesTensor, outputIndicesShape);
111 }
112 
execute(IOperationExecutionContext * context)113 bool execute(IOperationExecutionContext* context) {
114     const Shape inputShape = context->getInputShape(kInputTensor);
115     switch (inputShape.type) {
116         case OperandType::TENSOR_FLOAT16: {
117             return executeTyped<_Float16>(context);
118         } break;
119         case OperandType::TENSOR_FLOAT32: {
120             return executeTyped<float>(context);
121         } break;
122         case OperandType::TENSOR_INT32: {
123             return executeTyped<int32_t>(context);
124         } break;
125         case OperandType::TENSOR_QUANT8_ASYMM: {
126             return executeTyped<uint8_t>(context);
127         } break;
128         case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: {
129             return executeTyped<int8_t>(context);
130         } break;
131         default: {
132             LOG(ERROR) << "Unsupported data type: " << inputShape.type;
133             return false;
134         }
135     }
136 }
137 
138 }  // namespace topk_v2
139 
140 NN_REGISTER_OPERATION(TOPK_V2, "TOPK_V2", topk_v2::validate, topk_v2::prepare, topk_v2::execute);
141 
142 }  // namespace nn
143 }  // namespace android
144