1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <gmock/gmock.h>
18 #include <gtest/gtest.h>
19 
20 #include <vector>
21 
22 #include "EmbeddingLookup.h"
23 #include "NeuralNetworksWrapper.h"
24 
25 using ::testing::FloatNear;
26 using ::testing::Matcher;
27 
28 namespace android {
29 namespace nn {
30 namespace wrapper {
31 
32 namespace {
33 
ArrayFloatNear(const std::vector<float> & values,float max_abs_error=1.e-6)34 std::vector<Matcher<float>> ArrayFloatNear(const std::vector<float>& values,
35                                            float max_abs_error = 1.e-6) {
36     std::vector<Matcher<float>> matchers;
37     matchers.reserve(values.size());
38     for (const float& v : values) {
39         matchers.emplace_back(FloatNear(v, max_abs_error));
40     }
41     return matchers;
42 }
43 
44 }  // namespace
45 
46 using ::testing::ElementsAreArray;
47 
48 #define FOR_ALL_INPUT_AND_WEIGHT_TENSORS(ACTION) \
49     ACTION(Value, float)                         \
50     ACTION(Lookup, int)
51 
52 // For all output and intermediate states
53 #define FOR_ALL_OUTPUT_TENSORS(ACTION) ACTION(Output, float)
54 
55 class EmbeddingLookupOpModel {
56    public:
EmbeddingLookupOpModel(std::initializer_list<uint32_t> index_shape,std::initializer_list<uint32_t> weight_shape)57     EmbeddingLookupOpModel(std::initializer_list<uint32_t> index_shape,
58                            std::initializer_list<uint32_t> weight_shape) {
59         auto it = weight_shape.begin();
60         rows_ = *it++;
61         columns_ = *it++;
62         features_ = *it;
63 
64         std::vector<uint32_t> inputs;
65 
66         OperandType LookupTy(Type::TENSOR_INT32, index_shape);
67         inputs.push_back(model_.addOperand(&LookupTy));
68 
69         OperandType ValueTy(Type::TENSOR_FLOAT32, weight_shape);
70         inputs.push_back(model_.addOperand(&ValueTy));
71 
72         std::vector<uint32_t> outputs;
73 
74         OperandType OutputOpndTy(Type::TENSOR_FLOAT32, weight_shape);
75         outputs.push_back(model_.addOperand(&OutputOpndTy));
76 
77         auto multiAll = [](const std::vector<uint32_t>& dims) -> uint32_t {
78             uint32_t sz = 1;
79             for (uint32_t d : dims) {
80                 sz *= d;
81             }
82             return sz;
83         };
84 
85         Value_.insert(Value_.end(), multiAll(weight_shape), 0.f);
86         Output_.insert(Output_.end(), multiAll(weight_shape), 0.f);
87 
88         model_.addOperation(ANEURALNETWORKS_EMBEDDING_LOOKUP, inputs, outputs);
89         model_.identifyInputsAndOutputs(inputs, outputs);
90 
91         model_.finish();
92     }
93 
Invoke()94     void Invoke() {
95         ASSERT_TRUE(model_.isValid());
96 
97         Compilation compilation(&model_);
98         compilation.finish();
99         Execution execution(&compilation);
100 
101 #define SetInputOrWeight(X, T)                                               \
102     ASSERT_EQ(execution.setInput(EmbeddingLookup::k##X##Tensor, X##_.data(), \
103                                  sizeof(T) * X##_.size()),                   \
104               Result::NO_ERROR);
105 
106         FOR_ALL_INPUT_AND_WEIGHT_TENSORS(SetInputOrWeight);
107 
108 #undef SetInputOrWeight
109 
110 #define SetOutput(X, T)                                                       \
111     ASSERT_EQ(execution.setOutput(EmbeddingLookup::k##X##Tensor, X##_.data(), \
112                                   sizeof(T) * X##_.size()),                   \
113               Result::NO_ERROR);
114 
115         FOR_ALL_OUTPUT_TENSORS(SetOutput);
116 
117 #undef SetOutput
118 
119         ASSERT_EQ(execution.compute(), Result::NO_ERROR);
120     }
121 
122 #define DefineSetter(X, T) \
123     void Set##X(const std::vector<T>& f) { X##_.insert(X##_.end(), f.begin(), f.end()); }
124 
125     FOR_ALL_INPUT_AND_WEIGHT_TENSORS(DefineSetter);
126 
127 #undef DefineSetter
128 
Set3DWeightMatrix(const std::function<float (int,int,int)> & function)129     void Set3DWeightMatrix(const std::function<float(int, int, int)>& function) {
130         for (uint32_t i = 0; i < rows_; i++) {
131             for (uint32_t j = 0; j < columns_; j++) {
132                 for (uint32_t k = 0; k < features_; k++) {
133                     Value_[(i * columns_ + j) * features_ + k] = function(i, j, k);
134                 }
135             }
136         }
137     }
138 
GetOutput() const139     const std::vector<float>& GetOutput() const { return Output_; }
140 
141    private:
142     Model model_;
143     uint32_t rows_;
144     uint32_t columns_;
145     uint32_t features_;
146 
147 #define DefineTensor(X, T) std::vector<T> X##_;
148 
149     FOR_ALL_INPUT_AND_WEIGHT_TENSORS(DefineTensor);
150     FOR_ALL_OUTPUT_TENSORS(DefineTensor);
151 
152 #undef DefineTensor
153 };
154 
155 // TODO: write more tests that exercise the details of the op, such as
156 // lookup errors and variable input shapes.
TEST(EmbeddingLookupOpTest,SimpleTest)157 TEST(EmbeddingLookupOpTest, SimpleTest) {
158     EmbeddingLookupOpModel m({3}, {3, 2, 4});
159     m.SetLookup({1, 0, 2});
160     m.Set3DWeightMatrix([](int i, int j, int k) { return i + j / 10.0f + k / 100.0f; });
161 
162     m.Invoke();
163 
164     EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear({
165                                        1.00, 1.01, 1.02, 1.03, 1.10, 1.11, 1.12, 1.13,  // Row 1
166                                        0.00, 0.01, 0.02, 0.03, 0.10, 0.11, 0.12, 0.13,  // Row 0
167                                        2.00, 2.01, 2.02, 2.03, 2.10, 2.11, 2.12, 2.13,  // Row 2
168                                })));
169 }
170 
171 }  // namespace wrapper
172 }  // namespace nn
173 }  // namespace android
174