1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Operations"
18 
19 #include "OperationResolver.h"
20 #include "OperationsUtils.h"
21 #include "Tracing.h"
22 
23 namespace android {
24 namespace nn {
25 namespace channel_shuffle {
26 
27 constexpr char kOperationName[] = "CHANNEL_SHUFFLE";
28 
29 constexpr uint32_t kNumInputs = 3;
30 constexpr uint32_t kInputTensor = 0;
31 constexpr uint32_t kNumGroups = 1;
32 constexpr uint32_t kInputAxis = 2;
33 
34 constexpr uint32_t kNumOutputs = 1;
35 constexpr uint32_t kOutputTensor = 0;
36 
37 template <typename T>
eval(const T * inputData,const Shape & inputShape,int32_t numGroups,int32_t axis,T * outputData)38 inline bool eval(const T* inputData, const Shape& inputShape, int32_t numGroups, int32_t axis,
39                  T* outputData) {
40     const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
41     const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
42     const uint32_t innerSize =
43             getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
44     const uint32_t groupSize = axisSize / numGroups;
45     for (uint32_t outer = 0; outer < outerSize; ++outer) {
46         for (uint32_t inner = 0; inner < innerSize; ++inner) {
47             const T* inputBase = inputData + outer * axisSize * innerSize + inner;
48             T* outputBase = outputData + outer * axisSize * innerSize + inner;
49             for (uint32_t i = 0; i < groupSize; i++) {
50                 for (uint32_t j = 0; j < static_cast<uint32_t>(numGroups);
51                      j++, outputBase += innerSize) {
52                     *outputBase = inputBase[innerSize * (i + j * groupSize)];
53                 }
54             }
55         }
56     }
57     return true;
58 }
59 
validate(const IOperationValidationContext * context)60 Result<Version> validate(const IOperationValidationContext* context) {
61     NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
62     NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
63     auto inputType = context->getInputType(kInputTensor);
64     NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 ||
65                  inputType == OperandType::TENSOR_FLOAT32 ||
66                  inputType == OperandType::TENSOR_QUANT8_ASYMM ||
67                  inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED)
68             << "Unsupported tensor type for operation " << kOperationName;
69     const Shape& inputShape = context->getInputShape(kInputTensor);
70     if (hasKnownRank(inputShape)) {
71         NN_RET_CHECK_LE(getNumberOfDimensions(inputShape), 4);
72     }
73     NN_RET_CHECK(validateInputTypes(context, {inputType, OperandType::INT32, OperandType::INT32}));
74     NN_RET_CHECK(validateOutputTypes(context, {inputType}));
75     if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
76         return Version::ANDROID_R;
77     } else {
78         return Version::ANDROID_Q;
79     }
80 }
81 
prepare(IOperationExecutionContext * context)82 bool prepare(IOperationExecutionContext* context) {
83     Shape input = context->getInputShape(kInputTensor);
84     int32_t numGroups = context->getInputValue<int32_t>(kNumGroups);
85     int32_t axis = context->getInputValue<int32_t>(kInputAxis);
86     NN_RET_CHECK(handleNegativeAxis(input, &axis));
87     NN_RET_CHECK(numGroups > 0);
88     NN_RET_CHECK(getSizeOfDimension(input, axis) % numGroups == 0);
89     return context->setOutputShape(kOutputTensor, input);
90 }
91 
execute(IOperationExecutionContext * context)92 bool execute(IOperationExecutionContext* context) {
93     int32_t numGroups = context->getInputValue<int32_t>(kNumGroups);
94     int32_t axis = context->getInputValue<int32_t>(kInputAxis);
95     NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis));
96     switch (context->getInputType(kInputTensor)) {
97         case OperandType::TENSOR_FLOAT16:
98             return eval(context->getInputBuffer<_Float16>(kInputTensor),
99                         context->getInputShape(kInputTensor), numGroups, axis,
100                         context->getOutputBuffer<_Float16>(kOutputTensor));
101         case OperandType::TENSOR_FLOAT32:
102             return eval(context->getInputBuffer<float>(kInputTensor),
103                         context->getInputShape(kInputTensor), numGroups, axis,
104                         context->getOutputBuffer<float>(kOutputTensor));
105         case OperandType::TENSOR_QUANT8_ASYMM:
106             return eval(context->getInputBuffer<uint8_t>(kInputTensor),
107                         context->getInputShape(kInputTensor), numGroups, axis,
108                         context->getOutputBuffer<uint8_t>(kOutputTensor));
109         case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
110             return eval(context->getInputBuffer<int8_t>(kInputTensor),
111                         context->getInputShape(kInputTensor), numGroups, axis,
112                         context->getOutputBuffer<int8_t>(kOutputTensor));
113         default:
114             NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
115     }
116 }
117 
118 }  // namespace channel_shuffle
119 
120 NN_REGISTER_OPERATION(CHANNEL_SHUFFLE, channel_shuffle::kOperationName, channel_shuffle::validate,
121                       channel_shuffle::prepare, channel_shuffle::execute);
122 
123 }  // namespace nn
124 }  // namespace android
125