1 /*
2  * Copyright 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
18 
19 #include "ProgramCache.h"
20 
21 #include <GLES2/gl2.h>
22 #include <GLES2/gl2ext.h>
23 #include <log/log.h>
24 #include <renderengine/private/Description.h>
25 #include <utils/String8.h>
26 #include <utils/Trace.h>
27 #include "Program.h"
28 
29 ANDROID_SINGLETON_STATIC_INSTANCE(android::renderengine::gl::ProgramCache)
30 
31 namespace android {
32 namespace renderengine {
33 namespace gl {
34 
35 /*
36  * A simple formatter class to automatically add the endl and
37  * manage the indentation.
38  */
39 
40 class Formatter;
41 static Formatter& indent(Formatter& f);
42 static Formatter& dedent(Formatter& f);
43 
44 class Formatter {
45     String8 mString;
46     int mIndent;
47     typedef Formatter& (*FormaterManipFunc)(Formatter&);
48     friend Formatter& indent(Formatter& f);
49     friend Formatter& dedent(Formatter& f);
50 
51 public:
Formatter()52     Formatter() : mIndent(0) {}
53 
getString() const54     String8 getString() const { return mString; }
55 
operator <<(Formatter & out,const char * in)56     friend Formatter& operator<<(Formatter& out, const char* in) {
57         for (int i = 0; i < out.mIndent; i++) {
58             out.mString.append("    ");
59         }
60         out.mString.append(in);
61         out.mString.append("\n");
62         return out;
63     }
operator <<(Formatter & out,const String8 & in)64     friend inline Formatter& operator<<(Formatter& out, const String8& in) {
65         return operator<<(out, in.string());
66     }
operator <<(Formatter & to,FormaterManipFunc func)67     friend inline Formatter& operator<<(Formatter& to, FormaterManipFunc func) {
68         return (*func)(to);
69     }
70 };
indent(Formatter & f)71 Formatter& indent(Formatter& f) {
72     f.mIndent++;
73     return f;
74 }
dedent(Formatter & f)75 Formatter& dedent(Formatter& f) {
76     f.mIndent--;
77     return f;
78 }
79 
primeCache(EGLContext context,bool useColorManagement,bool toneMapperShaderOnly)80 void ProgramCache::primeCache(
81         EGLContext context, bool useColorManagement, bool toneMapperShaderOnly) {
82     auto& cache = mCaches[context];
83     uint32_t shaderCount = 0;
84 
85     if (toneMapperShaderOnly) {
86         Key shaderKey;
87         // base settings used by HDR->SDR tonemap only
88         shaderKey.set(Key::BLEND_MASK | Key::INPUT_TRANSFORM_MATRIX_MASK |
89                       Key::OUTPUT_TRANSFORM_MATRIX_MASK | Key::OUTPUT_TF_MASK |
90                       Key::OPACITY_MASK | Key::ALPHA_MASK |
91                       Key::ROUNDED_CORNERS_MASK | Key::TEXTURE_MASK,
92                       Key::BLEND_NORMAL | Key::INPUT_TRANSFORM_MATRIX_ON |
93                       Key::OUTPUT_TRANSFORM_MATRIX_ON | Key::OUTPUT_TF_SRGB |
94                       Key::OPACITY_OPAQUE | Key::ALPHA_EQ_ONE |
95                       Key::ROUNDED_CORNERS_OFF | Key::TEXTURE_EXT);
96         for (int i = 0; i < 4; i++) {
97             // Cache input transfer for HLG & ST2084
98             shaderKey.set(Key::INPUT_TF_MASK, (i & 1) ?
99                     Key::INPUT_TF_HLG : Key::INPUT_TF_ST2084);
100 
101             // Cache Y410 input on or off
102             shaderKey.set(Key::Y410_BT2020_MASK, (i & 2) ?
103                     Key::Y410_BT2020_ON : Key::Y410_BT2020_OFF);
104             if (cache.count(shaderKey) == 0) {
105                 cache.emplace(shaderKey, generateProgram(shaderKey));
106                 shaderCount++;
107             }
108         }
109         return;
110     }
111 
112     uint32_t keyMask = Key::BLEND_MASK | Key::OPACITY_MASK | Key::ALPHA_MASK | Key::TEXTURE_MASK
113         | Key::ROUNDED_CORNERS_MASK;
114     // Prime the cache for all combinations of the above masks,
115     // leaving off the experimental color matrix mask options.
116 
117     nsecs_t timeBefore = systemTime();
118     for (uint32_t keyVal = 0; keyVal <= keyMask; keyVal++) {
119         Key shaderKey;
120         shaderKey.set(keyMask, keyVal);
121         uint32_t tex = shaderKey.getTextureTarget();
122         if (tex != Key::TEXTURE_OFF && tex != Key::TEXTURE_EXT && tex != Key::TEXTURE_2D) {
123             continue;
124         }
125         if (cache.count(shaderKey) == 0) {
126             cache.emplace(shaderKey, generateProgram(shaderKey));
127             shaderCount++;
128         }
129     }
130 
131     // Prime for sRGB->P3 conversion
132     if (useColorManagement) {
133         Key shaderKey;
134         shaderKey.set(Key::BLEND_MASK | Key::OUTPUT_TRANSFORM_MATRIX_MASK | Key::INPUT_TF_MASK |
135                               Key::OUTPUT_TF_MASK,
136                       Key::BLEND_PREMULT | Key::OUTPUT_TRANSFORM_MATRIX_ON | Key::INPUT_TF_SRGB |
137                               Key::OUTPUT_TF_SRGB);
138         for (int i = 0; i < 16; i++) {
139             shaderKey.set(Key::OPACITY_MASK,
140                           (i & 1) ? Key::OPACITY_OPAQUE : Key::OPACITY_TRANSLUCENT);
141             shaderKey.set(Key::ALPHA_MASK, (i & 2) ? Key::ALPHA_LT_ONE : Key::ALPHA_EQ_ONE);
142 
143             // Cache rounded corners
144             shaderKey.set(Key::ROUNDED_CORNERS_MASK,
145                           (i & 4) ? Key::ROUNDED_CORNERS_ON : Key::ROUNDED_CORNERS_OFF);
146 
147             // Cache texture off option for window transition
148             shaderKey.set(Key::TEXTURE_MASK, (i & 8) ? Key::TEXTURE_EXT : Key::TEXTURE_OFF);
149             if (cache.count(shaderKey) == 0) {
150                 cache.emplace(shaderKey, generateProgram(shaderKey));
151                 shaderCount++;
152             }
153         }
154     }
155 
156     nsecs_t timeAfter = systemTime();
157     float compileTimeMs = static_cast<float>(timeAfter - timeBefore) / 1.0E6;
158     ALOGD("shader cache generated - %u shaders in %f ms\n", shaderCount, compileTimeMs);
159 }
160 
computeKey(const Description & description)161 ProgramCache::Key ProgramCache::computeKey(const Description& description) {
162     Key needs;
163     needs.set(Key::TEXTURE_MASK,
164               !description.textureEnabled
165                       ? Key::TEXTURE_OFF
166                       : description.texture.getTextureTarget() == GL_TEXTURE_EXTERNAL_OES
167                               ? Key::TEXTURE_EXT
168                               : description.texture.getTextureTarget() == GL_TEXTURE_2D
169                                       ? Key::TEXTURE_2D
170                                       : Key::TEXTURE_OFF)
171             .set(Key::ALPHA_MASK, (description.color.a < 1) ? Key::ALPHA_LT_ONE : Key::ALPHA_EQ_ONE)
172             .set(Key::BLEND_MASK,
173                  description.isPremultipliedAlpha ? Key::BLEND_PREMULT : Key::BLEND_NORMAL)
174             .set(Key::OPACITY_MASK,
175                  description.isOpaque ? Key::OPACITY_OPAQUE : Key::OPACITY_TRANSLUCENT)
176             .set(Key::Key::INPUT_TRANSFORM_MATRIX_MASK,
177                  description.hasInputTransformMatrix() ? Key::INPUT_TRANSFORM_MATRIX_ON
178                                                        : Key::INPUT_TRANSFORM_MATRIX_OFF)
179             .set(Key::Key::OUTPUT_TRANSFORM_MATRIX_MASK,
180                  description.hasOutputTransformMatrix() || description.hasColorMatrix()
181                          ? Key::OUTPUT_TRANSFORM_MATRIX_ON
182                          : Key::OUTPUT_TRANSFORM_MATRIX_OFF)
183             .set(Key::Key::DISPLAY_COLOR_TRANSFORM_MATRIX_MASK,
184                  description.hasDisplayColorMatrix() ? Key::DISPLAY_COLOR_TRANSFORM_MATRIX_ON
185                                                      : Key::DISPLAY_COLOR_TRANSFORM_MATRIX_OFF)
186             .set(Key::ROUNDED_CORNERS_MASK,
187                  description.cornerRadius > 0 ? Key::ROUNDED_CORNERS_ON : Key::ROUNDED_CORNERS_OFF)
188             .set(Key::SHADOW_MASK, description.drawShadows ? Key::SHADOW_ON : Key::SHADOW_OFF);
189     needs.set(Key::Y410_BT2020_MASK,
190               description.isY410BT2020 ? Key::Y410_BT2020_ON : Key::Y410_BT2020_OFF);
191 
192     if (needs.hasTransformMatrix() ||
193         (description.inputTransferFunction != description.outputTransferFunction)) {
194         switch (description.inputTransferFunction) {
195             case Description::TransferFunction::LINEAR:
196             default:
197                 needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_LINEAR);
198                 break;
199             case Description::TransferFunction::SRGB:
200                 needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_SRGB);
201                 break;
202             case Description::TransferFunction::ST2084:
203                 needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_ST2084);
204                 break;
205             case Description::TransferFunction::HLG:
206                 needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_HLG);
207                 break;
208         }
209 
210         switch (description.outputTransferFunction) {
211             case Description::TransferFunction::LINEAR:
212             default:
213                 needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_LINEAR);
214                 break;
215             case Description::TransferFunction::SRGB:
216                 needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_SRGB);
217                 break;
218             case Description::TransferFunction::ST2084:
219                 needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_ST2084);
220                 break;
221             case Description::TransferFunction::HLG:
222                 needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_HLG);
223                 break;
224         }
225     }
226 
227     return needs;
228 }
229 
230 // Generate EOTF that converts signal values to relative display light,
231 // both normalized to [0, 1].
generateEOTF(Formatter & fs,const Key & needs)232 void ProgramCache::generateEOTF(Formatter& fs, const Key& needs) {
233     switch (needs.getInputTF()) {
234         case Key::INPUT_TF_SRGB:
235             fs << R"__SHADER__(
236                 float EOTF_sRGB(float srgb) {
237                     return srgb <= 0.04045 ? srgb / 12.92 : pow((srgb + 0.055) / 1.055, 2.4);
238                 }
239 
240                 vec3 EOTF_sRGB(const vec3 srgb) {
241                     return vec3(EOTF_sRGB(srgb.r), EOTF_sRGB(srgb.g), EOTF_sRGB(srgb.b));
242                 }
243 
244                 vec3 EOTF(const vec3 srgb) {
245                     return sign(srgb.rgb) * EOTF_sRGB(abs(srgb.rgb));
246                 }
247             )__SHADER__";
248             break;
249         case Key::INPUT_TF_ST2084:
250             fs << R"__SHADER__(
251                 vec3 EOTF(const highp vec3 color) {
252                     const highp float m1 = (2610.0 / 4096.0) / 4.0;
253                     const highp float m2 = (2523.0 / 4096.0) * 128.0;
254                     const highp float c1 = (3424.0 / 4096.0);
255                     const highp float c2 = (2413.0 / 4096.0) * 32.0;
256                     const highp float c3 = (2392.0 / 4096.0) * 32.0;
257 
258                     highp vec3 tmp = pow(clamp(color, 0.0, 1.0), 1.0 / vec3(m2));
259                     tmp = max(tmp - c1, 0.0) / (c2 - c3 * tmp);
260                     return pow(tmp, 1.0 / vec3(m1));
261                 }
262             )__SHADER__";
263             break;
264         case Key::INPUT_TF_HLG:
265             fs << R"__SHADER__(
266                 highp float EOTF_channel(const highp float channel) {
267                     const highp float a = 0.17883277;
268                     const highp float b = 0.28466892;
269                     const highp float c = 0.55991073;
270                     return channel <= 0.5 ? channel * channel / 3.0 :
271                             (exp((channel - c) / a) + b) / 12.0;
272                 }
273 
274                 vec3 EOTF(const highp vec3 color) {
275                     return vec3(EOTF_channel(color.r), EOTF_channel(color.g),
276                             EOTF_channel(color.b));
277                 }
278             )__SHADER__";
279             break;
280         default:
281             fs << R"__SHADER__(
282                 vec3 EOTF(const vec3 linear) {
283                     return linear;
284                 }
285             )__SHADER__";
286             break;
287     }
288 }
289 
generateToneMappingProcess(Formatter & fs,const Key & needs)290 void ProgramCache::generateToneMappingProcess(Formatter& fs, const Key& needs) {
291     // Convert relative light to absolute light.
292     switch (needs.getInputTF()) {
293         case Key::INPUT_TF_ST2084:
294             fs << R"__SHADER__(
295                 highp vec3 ScaleLuminance(highp vec3 color) {
296                     return color * 10000.0;
297                 }
298             )__SHADER__";
299             break;
300         case Key::INPUT_TF_HLG:
301             fs << R"__SHADER__(
302                 highp vec3 ScaleLuminance(highp vec3 color) {
303                     // The formula is:
304                     // alpha * pow(Y, gamma - 1.0) * color + beta;
305                     // where alpha is 1000.0, gamma is 1.2, beta is 0.0.
306                     return color * 1000.0 * pow(color.y, 0.2);
307                 }
308             )__SHADER__";
309             break;
310         default:
311             fs << R"__SHADER__(
312                 highp vec3 ScaleLuminance(highp vec3 color) {
313                     return color * displayMaxLuminance;
314                 }
315             )__SHADER__";
316             break;
317     }
318 
319     // Tone map absolute light to display luminance range.
320     switch (needs.getInputTF()) {
321         case Key::INPUT_TF_ST2084:
322         case Key::INPUT_TF_HLG:
323             switch (needs.getOutputTF()) {
324                 case Key::OUTPUT_TF_HLG:
325                     // Right now when mixed PQ and HLG contents are presented,
326                     // HLG content will always be converted to PQ. However, for
327                     // completeness, we simply clamp the value to [0.0, 1000.0].
328                     fs << R"__SHADER__(
329                         highp vec3 ToneMap(highp vec3 color) {
330                             return clamp(color, 0.0, 1000.0);
331                         }
332                     )__SHADER__";
333                     break;
334                 case Key::OUTPUT_TF_ST2084:
335                     fs << R"__SHADER__(
336                         highp vec3 ToneMap(highp vec3 color) {
337                             return color;
338                         }
339                     )__SHADER__";
340                     break;
341                 default:
342                     fs << R"__SHADER__(
343                         highp vec3 ToneMap(highp vec3 color) {
344                             float maxMasteringLumi = maxMasteringLuminance;
345                             float maxContentLumi = maxContentLuminance;
346                             float maxInLumi = min(maxMasteringLumi, maxContentLumi);
347                             float maxOutLumi = displayMaxLuminance;
348 
349                             float nits = color.y;
350 
351                             // clamp to max input luminance
352                             nits = clamp(nits, 0.0, maxInLumi);
353 
354                             // scale [0.0, maxInLumi] to [0.0, maxOutLumi]
355                             if (maxInLumi <= maxOutLumi) {
356                                 return color * (maxOutLumi / maxInLumi);
357                             } else {
358                                 // three control points
359                                 const float x0 = 10.0;
360                                 const float y0 = 17.0;
361                                 float x1 = maxOutLumi * 0.75;
362                                 float y1 = x1;
363                                 float x2 = x1 + (maxInLumi - x1) / 2.0;
364                                 float y2 = y1 + (maxOutLumi - y1) * 0.75;
365 
366                                 // horizontal distances between the last three control points
367                                 float h12 = x2 - x1;
368                                 float h23 = maxInLumi - x2;
369                                 // tangents at the last three control points
370                                 float m1 = (y2 - y1) / h12;
371                                 float m3 = (maxOutLumi - y2) / h23;
372                                 float m2 = (m1 + m3) / 2.0;
373 
374                                 if (nits < x0) {
375                                     // scale [0.0, x0] to [0.0, y0] linearly
376                                     float slope = y0 / x0;
377                                     return color * slope;
378                                 } else if (nits < x1) {
379                                     // scale [x0, x1] to [y0, y1] linearly
380                                     float slope = (y1 - y0) / (x1 - x0);
381                                     nits = y0 + (nits - x0) * slope;
382                                 } else if (nits < x2) {
383                                     // scale [x1, x2] to [y1, y2] using Hermite interp
384                                     float t = (nits - x1) / h12;
385                                     nits = (y1 * (1.0 + 2.0 * t) + h12 * m1 * t) * (1.0 - t) * (1.0 - t) +
386                                             (y2 * (3.0 - 2.0 * t) + h12 * m2 * (t - 1.0)) * t * t;
387                                 } else {
388                                     // scale [x2, maxInLumi] to [y2, maxOutLumi] using Hermite interp
389                                     float t = (nits - x2) / h23;
390                                     nits = (y2 * (1.0 + 2.0 * t) + h23 * m2 * t) * (1.0 - t) * (1.0 - t) +
391                                             (maxOutLumi * (3.0 - 2.0 * t) + h23 * m3 * (t - 1.0)) * t * t;
392                                 }
393                             }
394 
395                             // color.y is greater than x0 and is thus non-zero
396                             return color * (nits / color.y);
397                         }
398                     )__SHADER__";
399                     break;
400             }
401             break;
402         default:
403             // inverse tone map; the output luminance can be up to maxOutLumi.
404             fs << R"__SHADER__(
405                 highp vec3 ToneMap(highp vec3 color) {
406                     const float maxOutLumi = 3000.0;
407 
408                     const float x0 = 5.0;
409                     const float y0 = 2.5;
410                     float x1 = displayMaxLuminance * 0.7;
411                     float y1 = maxOutLumi * 0.15;
412                     float x2 = displayMaxLuminance * 0.9;
413                     float y2 = maxOutLumi * 0.45;
414                     float x3 = displayMaxLuminance;
415                     float y3 = maxOutLumi;
416 
417                     float c1 = y1 / 3.0;
418                     float c2 = y2 / 2.0;
419                     float c3 = y3 / 1.5;
420 
421                     float nits = color.y;
422 
423                     float scale;
424                     if (nits <= x0) {
425                         // scale [0.0, x0] to [0.0, y0] linearly
426                         const float slope = y0 / x0;
427                         return color * slope;
428                     } else if (nits <= x1) {
429                         // scale [x0, x1] to [y0, y1] using a curve
430                         float t = (nits - x0) / (x1 - x0);
431                         nits = (1.0 - t) * (1.0 - t) * y0 + 2.0 * (1.0 - t) * t * c1 + t * t * y1;
432                     } else if (nits <= x2) {
433                         // scale [x1, x2] to [y1, y2] using a curve
434                         float t = (nits - x1) / (x2 - x1);
435                         nits = (1.0 - t) * (1.0 - t) * y1 + 2.0 * (1.0 - t) * t * c2 + t * t * y2;
436                     } else {
437                         // scale [x2, x3] to [y2, y3] using a curve
438                         float t = (nits - x2) / (x3 - x2);
439                         nits = (1.0 - t) * (1.0 - t) * y2 + 2.0 * (1.0 - t) * t * c3 + t * t * y3;
440                     }
441 
442                     // color.y is greater than x0 and is thus non-zero
443                     return color * (nits / color.y);
444                 }
445             )__SHADER__";
446             break;
447     }
448 
449     // convert absolute light to relative light.
450     switch (needs.getOutputTF()) {
451         case Key::OUTPUT_TF_ST2084:
452             fs << R"__SHADER__(
453                 highp vec3 NormalizeLuminance(highp vec3 color) {
454                     return color / 10000.0;
455                 }
456             )__SHADER__";
457             break;
458         case Key::OUTPUT_TF_HLG:
459             fs << R"__SHADER__(
460                 highp vec3 NormalizeLuminance(highp vec3 color) {
461                     return color / 1000.0 * pow(color.y / 1000.0, -0.2 / 1.2);
462                 }
463             )__SHADER__";
464             break;
465         default:
466             fs << R"__SHADER__(
467                 highp vec3 NormalizeLuminance(highp vec3 color) {
468                     return color / displayMaxLuminance;
469                 }
470             )__SHADER__";
471             break;
472     }
473 }
474 
475 // Generate OOTF that modifies the relative scence light to relative display light.
generateOOTF(Formatter & fs,const ProgramCache::Key & needs)476 void ProgramCache::generateOOTF(Formatter& fs, const ProgramCache::Key& needs) {
477     if (!needs.needsToneMapping()) {
478         fs << R"__SHADER__(
479             highp vec3 OOTF(const highp vec3 color) {
480                 return color;
481             }
482         )__SHADER__";
483     } else {
484         generateToneMappingProcess(fs, needs);
485         fs << R"__SHADER__(
486             highp vec3 OOTF(const highp vec3 color) {
487                 return NormalizeLuminance(ToneMap(ScaleLuminance(color)));
488             }
489         )__SHADER__";
490     }
491 }
492 
493 // Generate OETF that converts relative display light to signal values,
494 // both normalized to [0, 1]
generateOETF(Formatter & fs,const Key & needs)495 void ProgramCache::generateOETF(Formatter& fs, const Key& needs) {
496     switch (needs.getOutputTF()) {
497         case Key::OUTPUT_TF_SRGB:
498             fs << R"__SHADER__(
499                 float OETF_sRGB(const float linear) {
500                     return linear <= 0.0031308 ?
501                             linear * 12.92 : (pow(linear, 1.0 / 2.4) * 1.055) - 0.055;
502                 }
503 
504                 vec3 OETF_sRGB(const vec3 linear) {
505                     return vec3(OETF_sRGB(linear.r), OETF_sRGB(linear.g), OETF_sRGB(linear.b));
506                 }
507 
508                 vec3 OETF(const vec3 linear) {
509                     return sign(linear.rgb) * OETF_sRGB(abs(linear.rgb));
510                 }
511             )__SHADER__";
512             break;
513         case Key::OUTPUT_TF_ST2084:
514             fs << R"__SHADER__(
515                 vec3 OETF(const vec3 linear) {
516                     const highp float m1 = (2610.0 / 4096.0) / 4.0;
517                     const highp float m2 = (2523.0 / 4096.0) * 128.0;
518                     const highp float c1 = (3424.0 / 4096.0);
519                     const highp float c2 = (2413.0 / 4096.0) * 32.0;
520                     const highp float c3 = (2392.0 / 4096.0) * 32.0;
521 
522                     highp vec3 tmp = pow(linear, vec3(m1));
523                     tmp = (c1 + c2 * tmp) / (1.0 + c3 * tmp);
524                     return pow(tmp, vec3(m2));
525                 }
526             )__SHADER__";
527             break;
528         case Key::OUTPUT_TF_HLG:
529             fs << R"__SHADER__(
530                 highp float OETF_channel(const highp float channel) {
531                     const highp float a = 0.17883277;
532                     const highp float b = 0.28466892;
533                     const highp float c = 0.55991073;
534                     return channel <= 1.0 / 12.0 ? sqrt(3.0 * channel) :
535                             a * log(12.0 * channel - b) + c;
536                 }
537 
538                 vec3 OETF(const highp vec3 color) {
539                     return vec3(OETF_channel(color.r), OETF_channel(color.g),
540                             OETF_channel(color.b));
541                 }
542             )__SHADER__";
543             break;
544         default:
545             fs << R"__SHADER__(
546                 vec3 OETF(const vec3 linear) {
547                     return linear;
548                 }
549             )__SHADER__";
550             break;
551     }
552 }
553 
generateVertexShader(const Key & needs)554 String8 ProgramCache::generateVertexShader(const Key& needs) {
555     Formatter vs;
556     if (needs.hasTextureCoords()) {
557         vs << "attribute vec4 texCoords;"
558            << "varying vec2 outTexCoords;";
559     }
560     if (needs.hasRoundedCorners()) {
561         vs << "attribute lowp vec4 cropCoords;";
562         vs << "varying lowp vec2 outCropCoords;";
563     }
564     if (needs.drawShadows()) {
565         vs << "attribute lowp vec4 shadowColor;";
566         vs << "varying lowp vec4 outShadowColor;";
567         vs << "attribute lowp vec4 shadowParams;";
568         vs << "varying lowp vec3 outShadowParams;";
569     }
570     vs << "attribute vec4 position;"
571        << "uniform mat4 projection;"
572        << "uniform mat4 texture;"
573        << "void main(void) {" << indent << "gl_Position = projection * position;";
574     if (needs.hasTextureCoords()) {
575         vs << "outTexCoords = (texture * texCoords).st;";
576     }
577     if (needs.hasRoundedCorners()) {
578         vs << "outCropCoords = cropCoords.st;";
579     }
580     if (needs.drawShadows()) {
581         vs << "outShadowColor = shadowColor;";
582         vs << "outShadowParams = shadowParams.xyz;";
583     }
584     vs << dedent << "}";
585     return vs.getString();
586 }
587 
generateFragmentShader(const Key & needs)588 String8 ProgramCache::generateFragmentShader(const Key& needs) {
589     Formatter fs;
590     if (needs.getTextureTarget() == Key::TEXTURE_EXT) {
591         fs << "#extension GL_OES_EGL_image_external : require";
592     }
593 
594     // default precision is required-ish in fragment shaders
595     fs << "precision mediump float;";
596 
597     if (needs.getTextureTarget() == Key::TEXTURE_EXT) {
598         fs << "uniform samplerExternalOES sampler;";
599     } else if (needs.getTextureTarget() == Key::TEXTURE_2D) {
600         fs << "uniform sampler2D sampler;";
601     }
602 
603     if (needs.hasTextureCoords()) {
604         fs << "varying vec2 outTexCoords;";
605     }
606 
607     if (needs.hasRoundedCorners()) {
608         // Rounded corners implementation using a signed distance function.
609         fs << R"__SHADER__(
610             uniform float cornerRadius;
611             uniform vec2 cropCenter;
612             varying vec2 outCropCoords;
613 
614             /**
615              * This function takes the current crop coordinates and calculates an alpha value based
616              * on the corner radius and distance from the crop center.
617              */
618             float applyCornerRadius(vec2 cropCoords)
619             {
620                 vec2 position = cropCoords - cropCenter;
621                 // Scale down the dist vector here, as otherwise large corner
622                 // radii can cause floating point issues when computing the norm
623                 vec2 dist = (abs(position) - cropCenter + vec2(cornerRadius)) / 16.0;
624                 // Once we've found the norm, then scale back up.
625                 float plane = length(max(dist, vec2(0.0))) * 16.0;
626                 return 1.0 - clamp(plane - cornerRadius, 0.0, 1.0);
627             }
628             )__SHADER__";
629     }
630 
631     if (needs.drawShadows()) {
632         fs << R"__SHADER__(
633             varying lowp vec4 outShadowColor;
634             varying lowp vec3 outShadowParams;
635 
636             /**
637              * Returns the shadow color.
638              */
639             vec4 getShadowColor()
640             {
641                 lowp float d = length(outShadowParams.xy);
642                 vec2 uv = vec2(outShadowParams.z * (1.0 - d), 0.5);
643                 lowp float factor = texture2D(sampler, uv).a;
644                 return outShadowColor * factor;
645             }
646             )__SHADER__";
647     }
648 
649     if (needs.getTextureTarget() == Key::TEXTURE_OFF || needs.hasAlpha()) {
650         fs << "uniform vec4 color;";
651     }
652 
653     if (needs.isY410BT2020()) {
654         fs << R"__SHADER__(
655             vec3 convertY410BT2020(const vec3 color) {
656                 const vec3 offset = vec3(0.0625, 0.5, 0.5);
657                 const mat3 transform = mat3(
658                     vec3(1.1678,  1.1678, 1.1678),
659                     vec3(   0.0, -0.1878, 2.1481),
660                     vec3(1.6836, -0.6523,   0.0));
661                 // Y is in G, U is in R, and V is in B
662                 return clamp(transform * (color.grb - offset), 0.0, 1.0);
663             }
664             )__SHADER__";
665     }
666 
667     if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF()) ||
668         needs.hasDisplayColorMatrix()) {
669         if (needs.needsToneMapping()) {
670             fs << "uniform float displayMaxLuminance;";
671             fs << "uniform float maxMasteringLuminance;";
672             fs << "uniform float maxContentLuminance;";
673         }
674 
675         if (needs.hasInputTransformMatrix()) {
676             fs << "uniform mat4 inputTransformMatrix;";
677             fs << R"__SHADER__(
678                 highp vec3 InputTransform(const highp vec3 color) {
679                     return clamp(vec3(inputTransformMatrix * vec4(color, 1.0)), 0.0, 1.0);
680                 }
681             )__SHADER__";
682         } else {
683             fs << R"__SHADER__(
684                 highp vec3 InputTransform(const highp vec3 color) {
685                     return color;
686                 }
687             )__SHADER__";
688         }
689 
690         // the transformation from a wider colorspace to a narrower one can
691         // result in >1.0 or <0.0 pixel values
692         if (needs.hasOutputTransformMatrix()) {
693             fs << "uniform mat4 outputTransformMatrix;";
694             fs << R"__SHADER__(
695                 highp vec3 OutputTransform(const highp vec3 color) {
696                     return clamp(vec3(outputTransformMatrix * vec4(color, 1.0)), 0.0, 1.0);
697                 }
698             )__SHADER__";
699         } else {
700             fs << R"__SHADER__(
701                 highp vec3 OutputTransform(const highp vec3 color) {
702                     return clamp(color, 0.0, 1.0);
703                 }
704             )__SHADER__";
705         }
706 
707         if (needs.hasDisplayColorMatrix()) {
708             fs << "uniform mat4 displayColorMatrix;";
709             fs << R"__SHADER__(
710                 highp vec3 DisplayColorMatrix(const highp vec3 color) {
711                     return clamp(vec3(displayColorMatrix * vec4(color, 1.0)), 0.0, 1.0);
712                 }
713             )__SHADER__";
714         } else {
715             fs << R"__SHADER__(
716                 highp vec3 DisplayColorMatrix(const highp vec3 color) {
717                     return color;
718                 }
719             )__SHADER__";
720         }
721 
722         generateEOTF(fs, needs);
723         generateOOTF(fs, needs);
724         generateOETF(fs, needs);
725     }
726 
727     fs << "void main(void) {" << indent;
728     if (needs.drawShadows()) {
729         fs << "gl_FragColor = getShadowColor();";
730     } else {
731         if (needs.isTexturing()) {
732             fs << "gl_FragColor = texture2D(sampler, outTexCoords);";
733             if (needs.isY410BT2020()) {
734                 fs << "gl_FragColor.rgb = convertY410BT2020(gl_FragColor.rgb);";
735             }
736         } else {
737             fs << "gl_FragColor.rgb = color.rgb;";
738             fs << "gl_FragColor.a = 1.0;";
739         }
740         if (needs.isOpaque()) {
741             fs << "gl_FragColor.a = 1.0;";
742         }
743     }
744 
745     if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF()) ||
746         needs.hasDisplayColorMatrix()) {
747         if (!needs.isOpaque() && needs.isPremultiplied()) {
748             // un-premultiply if needed before linearization
749             // avoid divide by 0 by adding 0.5/256 to the alpha channel
750             fs << "gl_FragColor.rgb = gl_FragColor.rgb / (gl_FragColor.a + 0.0019);";
751         }
752         fs << "gl_FragColor.rgb = "
753               "DisplayColorMatrix(OETF(OutputTransform(OOTF(InputTransform(EOTF(gl_FragColor.rgb)))"
754               ")));";
755 
756         if (!needs.isOpaque() && needs.isPremultiplied()) {
757             // and re-premultiply if needed after gamma correction
758             fs << "gl_FragColor.rgb = gl_FragColor.rgb * (gl_FragColor.a + 0.0019);";
759         }
760     }
761 
762     /*
763      * Whether applying layer alpha before or after color transform doesn't matter,
764      * as long as we can undo premultiplication. But we cannot un-premultiply
765      * for color transform if the layer alpha = 0, e.g. 0 / (0 + 0.0019) = 0.
766      */
767     if (!needs.drawShadows()) {
768         if (needs.hasAlpha()) {
769             // modulate the current alpha value with alpha set
770             if (needs.isPremultiplied()) {
771                 // ... and the color too if we're premultiplied
772                 fs << "gl_FragColor *= color.a;";
773             } else {
774                 fs << "gl_FragColor.a *= color.a;";
775             }
776         }
777     }
778 
779     if (needs.hasRoundedCorners()) {
780         if (needs.isPremultiplied()) {
781             fs << "gl_FragColor *= vec4(applyCornerRadius(outCropCoords));";
782         } else {
783             fs << "gl_FragColor.a *= applyCornerRadius(outCropCoords);";
784         }
785     }
786 
787     fs << dedent << "}";
788     return fs.getString();
789 }
790 
generateProgram(const Key & needs)791 std::unique_ptr<Program> ProgramCache::generateProgram(const Key& needs) {
792     ATRACE_CALL();
793 
794     // vertex shader
795     String8 vs = generateVertexShader(needs);
796 
797     // fragment shader
798     String8 fs = generateFragmentShader(needs);
799 
800     return std::make_unique<Program>(needs, vs.string(), fs.string());
801 }
802 
useProgram(EGLContext context,const Description & description)803 void ProgramCache::useProgram(EGLContext context, const Description& description) {
804     // generate the key for the shader based on the description
805     Key needs(computeKey(description));
806 
807     // look-up the program in the cache
808     auto& cache = mCaches[context];
809     auto it = cache.find(needs);
810     if (it == cache.end()) {
811         // we didn't find our program, so generate one...
812         nsecs_t time = systemTime();
813         it = cache.emplace(needs, generateProgram(needs)).first;
814         time = systemTime() - time;
815 
816         ALOGV(">>> generated new program for context %p: needs=%08X, time=%u ms (%zu programs)",
817               context, needs.mKey, uint32_t(ns2ms(time)), cache.size());
818     }
819 
820     // here we have a suitable program for this description
821     std::unique_ptr<Program>& program = it->second;
822     if (program->isValid()) {
823         program->use();
824         program->setUniforms(description);
825     }
826 }
827 
828 } // namespace gl
829 } // namespace renderengine
830 } // namespace android
831