1 /*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "libtimeinstate"
18
19 #include "cputimeinstate.h"
20 #include <bpf_timeinstate.h>
21
22 #include <dirent.h>
23 #include <errno.h>
24 #include <inttypes.h>
25 #include <sys/sysinfo.h>
26
27 #include <mutex>
28 #include <numeric>
29 #include <optional>
30 #include <set>
31 #include <string>
32 #include <unordered_map>
33 #include <vector>
34
35 #include <android-base/file.h>
36 #include <android-base/parseint.h>
37 #include <android-base/stringprintf.h>
38 #include <android-base/strings.h>
39 #include <android-base/unique_fd.h>
40 #include <bpf/BpfMap.h>
41 #include <libbpf.h>
42 #include <log/log.h>
43
44 using android::base::StringPrintf;
45 using android::base::unique_fd;
46
47 namespace android {
48 namespace bpf {
49
50 static std::mutex gInitializedMutex;
51 static bool gInitialized = false;
52 static std::mutex gTrackingMutex;
53 static bool gTracking = false;
54 static uint32_t gNPolicies = 0;
55 static uint32_t gNCpus = 0;
56 static std::vector<std::vector<uint32_t>> gPolicyFreqs;
57 static std::vector<std::vector<uint32_t>> gPolicyCpus;
58 static std::set<uint32_t> gAllFreqs;
59 static unique_fd gTisTotalMapFd;
60 static unique_fd gTisMapFd;
61 static unique_fd gConcurrentMapFd;
62 static unique_fd gUidLastUpdateMapFd;
63 static unique_fd gPidTisMapFd;
64
readNumbersFromFile(const std::string & path)65 static std::optional<std::vector<uint32_t>> readNumbersFromFile(const std::string &path) {
66 std::string data;
67
68 if (!android::base::ReadFileToString(path, &data)) return {};
69
70 auto strings = android::base::Split(data, " \n");
71 std::vector<uint32_t> ret;
72 for (const auto &s : strings) {
73 if (s.empty()) continue;
74 uint32_t n;
75 if (!android::base::ParseUint(s, &n)) return {};
76 ret.emplace_back(n);
77 }
78 return ret;
79 }
80
isPolicyFile(const struct dirent * d)81 static int isPolicyFile(const struct dirent *d) {
82 return android::base::StartsWith(d->d_name, "policy");
83 }
84
comparePolicyFiles(const struct dirent ** d1,const struct dirent ** d2)85 static int comparePolicyFiles(const struct dirent **d1, const struct dirent **d2) {
86 uint32_t policyN1, policyN2;
87 if (sscanf((*d1)->d_name, "policy%" SCNu32 "", &policyN1) != 1 ||
88 sscanf((*d2)->d_name, "policy%" SCNu32 "", &policyN2) != 1)
89 return 0;
90 return policyN1 - policyN2;
91 }
92
initGlobals()93 static bool initGlobals() {
94 std::lock_guard<std::mutex> guard(gInitializedMutex);
95 if (gInitialized) return true;
96
97 gNCpus = get_nprocs_conf();
98
99 struct dirent **dirlist;
100 const char basepath[] = "/sys/devices/system/cpu/cpufreq";
101 int ret = scandir(basepath, &dirlist, isPolicyFile, comparePolicyFiles);
102 if (ret == -1 || ret == 0) return false;
103 gNPolicies = ret;
104
105 std::vector<std::string> policyFileNames;
106 for (uint32_t i = 0; i < gNPolicies; ++i) {
107 policyFileNames.emplace_back(dirlist[i]->d_name);
108 free(dirlist[i]);
109 }
110 free(dirlist);
111
112 for (const auto &policy : policyFileNames) {
113 std::vector<uint32_t> freqs;
114 for (const auto &name : {"available", "boost"}) {
115 std::string path =
116 StringPrintf("%s/%s/scaling_%s_frequencies", basepath, policy.c_str(), name);
117 auto nums = readNumbersFromFile(path);
118 if (!nums) continue;
119 freqs.insert(freqs.end(), nums->begin(), nums->end());
120 }
121 if (freqs.empty()) return false;
122 std::sort(freqs.begin(), freqs.end());
123 gPolicyFreqs.emplace_back(freqs);
124
125 for (auto freq : freqs) gAllFreqs.insert(freq);
126
127 std::string path = StringPrintf("%s/%s/%s", basepath, policy.c_str(), "related_cpus");
128 auto cpus = readNumbersFromFile(path);
129 if (!cpus) return false;
130 gPolicyCpus.emplace_back(*cpus);
131 }
132
133 gTisTotalMapFd =
134 unique_fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_total_time_in_state_map")};
135 if (gTisTotalMapFd < 0) return false;
136
137 gTisMapFd = unique_fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_time_in_state_map")};
138 if (gTisMapFd < 0) return false;
139
140 gConcurrentMapFd =
141 unique_fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_concurrent_times_map")};
142 if (gConcurrentMapFd < 0) return false;
143
144 gUidLastUpdateMapFd =
145 unique_fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_last_update_map")};
146 if (gUidLastUpdateMapFd < 0) return false;
147
148 gPidTisMapFd = unique_fd{mapRetrieveRO(BPF_FS_PATH "map_time_in_state_pid_time_in_state_map")};
149 if (gPidTisMapFd < 0) return false;
150
151 unique_fd trackedPidMapFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_pid_tracked_map"));
152 if (trackedPidMapFd < 0) return false;
153
154 gInitialized = true;
155 return true;
156 }
157
retrieveProgramFd(const std::string & eventType,const std::string & eventName)158 static int retrieveProgramFd(const std::string &eventType, const std::string &eventName) {
159 std::string path = StringPrintf(BPF_FS_PATH "prog_time_in_state_tracepoint_%s_%s",
160 eventType.c_str(), eventName.c_str());
161 return retrieveProgram(path.c_str());
162 }
163
attachTracepointProgram(const std::string & eventType,const std::string & eventName)164 static bool attachTracepointProgram(const std::string &eventType, const std::string &eventName) {
165 int prog_fd = retrieveProgramFd(eventType, eventName);
166 if (prog_fd < 0) return false;
167 return bpf_attach_tracepoint(prog_fd, eventType.c_str(), eventName.c_str()) >= 0;
168 }
169
getPolicyFreqIdx(uint32_t policy)170 static std::optional<uint32_t> getPolicyFreqIdx(uint32_t policy) {
171 auto path = StringPrintf("/sys/devices/system/cpu/cpufreq/policy%u/scaling_cur_freq",
172 gPolicyCpus[policy][0]);
173 auto freqVec = readNumbersFromFile(path);
174 if (!freqVec.has_value() || freqVec->size() != 1) return {};
175 for (uint32_t idx = 0; idx < gPolicyFreqs[policy].size(); ++idx) {
176 if ((*freqVec)[0] == gPolicyFreqs[policy][idx]) return idx + 1;
177 }
178 return {};
179 }
180
181 // Check if tracking is expected to work without activating it.
isTrackingUidTimesSupported()182 bool isTrackingUidTimesSupported() {
183 auto freqs = getCpuFreqs();
184 if (!freqs || freqs->empty()) return false;
185 if (gTracking) return true;
186 if (retrieveProgramFd("sched", "sched_switch") < 0) return false;
187 if (retrieveProgramFd("power", "cpu_frequency") < 0) return false;
188 if (retrieveProgramFd("sched", "sched_process_free") < 0) return false;
189 return true;
190 }
191
192 // Start tracking and aggregating data to be reported by getUidCpuFreqTimes and getUidsCpuFreqTimes.
193 // Returns true on success, false otherwise.
194 // Tracking is active only once a live process has successfully called this function; if the calling
195 // process dies then it must be called again to resume tracking.
196 // This function should *not* be called while tracking is already active; doing so is unnecessary
197 // and can lead to accounting errors.
startTrackingUidTimes()198 bool startTrackingUidTimes() {
199 std::lock_guard<std::mutex> guard(gTrackingMutex);
200 if (!initGlobals()) return false;
201 if (gTracking) return true;
202
203 unique_fd cpuPolicyFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_cpu_policy_map"));
204 if (cpuPolicyFd < 0) return false;
205
206 for (uint32_t i = 0; i < gPolicyCpus.size(); ++i) {
207 for (auto &cpu : gPolicyCpus[i]) {
208 if (writeToMapEntry(cpuPolicyFd, &cpu, &i, BPF_ANY)) return false;
209 }
210 }
211
212 unique_fd freqToIdxFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_freq_to_idx_map"));
213 if (freqToIdxFd < 0) return false;
214 freq_idx_key_t key;
215 for (uint32_t i = 0; i < gNPolicies; ++i) {
216 key.policy = i;
217 for (uint32_t j = 0; j < gPolicyFreqs[i].size(); ++j) {
218 key.freq = gPolicyFreqs[i][j];
219 // Start indexes at 1 so that uninitialized state is distinguishable from lowest freq.
220 // The uid_times map still uses 0-based indexes, and the sched_switch program handles
221 // conversion between them, so this does not affect our map reading code.
222 uint32_t idx = j + 1;
223 if (writeToMapEntry(freqToIdxFd, &key, &idx, BPF_ANY)) return false;
224 }
225 }
226
227 unique_fd cpuLastUpdateFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_cpu_last_update_map"));
228 if (cpuLastUpdateFd < 0) return false;
229 std::vector<uint64_t> zeros(get_nprocs_conf(), 0);
230 uint32_t zero = 0;
231 if (writeToMapEntry(cpuLastUpdateFd, &zero, zeros.data(), BPF_ANY)) return false;
232
233 unique_fd nrActiveFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_nr_active_map"));
234 if (nrActiveFd < 0) return false;
235 if (writeToMapEntry(nrActiveFd, &zero, &zero, BPF_ANY)) return false;
236
237 unique_fd policyNrActiveFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_policy_nr_active_map"));
238 if (policyNrActiveFd < 0) return false;
239 for (uint32_t i = 0; i < gNPolicies; ++i) {
240 if (writeToMapEntry(policyNrActiveFd, &i, &zero, BPF_ANY)) return false;
241 }
242
243 unique_fd policyFreqIdxFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_policy_freq_idx_map"));
244 if (policyFreqIdxFd < 0) return false;
245 for (uint32_t i = 0; i < gNPolicies; ++i) {
246 auto freqIdx = getPolicyFreqIdx(i);
247 if (!freqIdx.has_value()) return false;
248 if (writeToMapEntry(policyFreqIdxFd, &i, &(*freqIdx), BPF_ANY)) return false;
249 }
250
251 gTracking = attachTracepointProgram("sched", "sched_switch") &&
252 attachTracepointProgram("power", "cpu_frequency") &&
253 attachTracepointProgram("sched", "sched_process_free");
254 return gTracking;
255 }
256
getCpuFreqs()257 std::optional<std::vector<std::vector<uint32_t>>> getCpuFreqs() {
258 if (!gInitialized && !initGlobals()) return {};
259 return gPolicyFreqs;
260 }
261
getTotalCpuFreqTimes()262 std::optional<std::vector<std::vector<uint64_t>>> getTotalCpuFreqTimes() {
263 if (!gInitialized && !initGlobals()) return {};
264
265 std::vector<std::vector<uint64_t>> out;
266 uint32_t maxFreqCount = 0;
267 for (const auto &freqList : gPolicyFreqs) {
268 if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size();
269 out.emplace_back(freqList.size(), 0);
270 }
271
272 std::vector<uint64_t> vals(gNCpus);
273 const uint32_t freqCount = maxFreqCount <= MAX_FREQS_FOR_TOTAL ? maxFreqCount :
274 MAX_FREQS_FOR_TOTAL;
275 for (uint32_t freqIdx = 0; freqIdx < freqCount; ++freqIdx) {
276 if (findMapEntry(gTisTotalMapFd, &freqIdx, vals.data())) return {};
277 for (uint32_t policyIdx = 0; policyIdx < gNPolicies; ++policyIdx) {
278 if (freqIdx >= gPolicyFreqs[policyIdx].size()) continue;
279 for (const auto &cpu : gPolicyCpus[policyIdx]) {
280 out[policyIdx][freqIdx] += vals[cpu];
281 }
282 }
283 }
284
285 return out;
286 }
287 // Retrieve the times in ns that uid spent running at each CPU frequency.
288 // Return contains no value on error, otherwise it contains a vector of vectors using the format:
289 // [[t0_0, t0_1, ...],
290 // [t1_0, t1_1, ...], ...]
291 // where ti_j is the ns that uid spent running on the ith cluster at that cluster's jth lowest freq.
getUidCpuFreqTimes(uint32_t uid)292 std::optional<std::vector<std::vector<uint64_t>>> getUidCpuFreqTimes(uint32_t uid) {
293 if (!gInitialized && !initGlobals()) return {};
294
295 std::vector<std::vector<uint64_t>> out;
296 uint32_t maxFreqCount = 0;
297 for (const auto &freqList : gPolicyFreqs) {
298 if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size();
299 out.emplace_back(freqList.size(), 0);
300 }
301
302 std::vector<tis_val_t> vals(gNCpus);
303 time_key_t key = {.uid = uid};
304 for (uint32_t i = 0; i <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++i) {
305 key.bucket = i;
306 if (findMapEntry(gTisMapFd, &key, vals.data())) {
307 if (errno != ENOENT || getFirstMapKey(gTisMapFd, &key)) return {};
308 continue;
309 }
310
311 auto offset = i * FREQS_PER_ENTRY;
312 auto nextOffset = (i + 1) * FREQS_PER_ENTRY;
313 for (uint32_t j = 0; j < gNPolicies; ++j) {
314 if (offset >= gPolicyFreqs[j].size()) continue;
315 auto begin = out[j].begin() + offset;
316 auto end = nextOffset < gPolicyFreqs[j].size() ? begin + FREQS_PER_ENTRY : out[j].end();
317
318 for (const auto &cpu : gPolicyCpus[j]) {
319 std::transform(begin, end, std::begin(vals[cpu].ar), begin, std::plus<uint64_t>());
320 }
321 }
322 }
323
324 return out;
325 }
326
uidUpdatedSince(uint32_t uid,uint64_t lastUpdate,uint64_t * newLastUpdate)327 static std::optional<bool> uidUpdatedSince(uint32_t uid, uint64_t lastUpdate,
328 uint64_t *newLastUpdate) {
329 uint64_t uidLastUpdate;
330 if (findMapEntry(gUidLastUpdateMapFd, &uid, &uidLastUpdate)) return {};
331 // Updates that occurred during the previous read may have been missed. To mitigate
332 // this, don't ignore entries updated up to 1s before *lastUpdate
333 constexpr uint64_t NSEC_PER_SEC = 1000000000;
334 if (uidLastUpdate + NSEC_PER_SEC < lastUpdate) return false;
335 if (uidLastUpdate > *newLastUpdate) *newLastUpdate = uidLastUpdate;
336 return true;
337 }
338
339 // Retrieve the times in ns that each uid spent running at each CPU freq.
340 // Return contains no value on error, otherwise it contains a map from uids to vectors of vectors
341 // using the format:
342 // { uid0 -> [[t0_0_0, t0_0_1, ...], [t0_1_0, t0_1_1, ...], ...],
343 // uid1 -> [[t1_0_0, t1_0_1, ...], [t1_1_0, t1_1_1, ...], ...], ... }
344 // where ti_j_k is the ns uid i spent running on the jth cluster at the cluster's kth lowest freq.
345 std::optional<std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>>>
getUidsCpuFreqTimes()346 getUidsCpuFreqTimes() {
347 return getUidsUpdatedCpuFreqTimes(nullptr);
348 }
349
350 // Retrieve the times in ns that each uid spent running at each CPU freq, excluding UIDs that have
351 // not run since before lastUpdate.
352 // Return format is the same as getUidsCpuFreqTimes()
353 std::optional<std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>>>
getUidsUpdatedCpuFreqTimes(uint64_t * lastUpdate)354 getUidsUpdatedCpuFreqTimes(uint64_t *lastUpdate) {
355 if (!gInitialized && !initGlobals()) return {};
356 time_key_t key, prevKey;
357 std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>> map;
358 if (getFirstMapKey(gTisMapFd, &key)) {
359 if (errno == ENOENT) return map;
360 return std::nullopt;
361 }
362
363 std::vector<std::vector<uint64_t>> mapFormat;
364 for (const auto &freqList : gPolicyFreqs) mapFormat.emplace_back(freqList.size(), 0);
365
366 uint64_t newLastUpdate = lastUpdate ? *lastUpdate : 0;
367 std::vector<tis_val_t> vals(gNCpus);
368 do {
369 if (lastUpdate) {
370 auto uidUpdated = uidUpdatedSince(key.uid, *lastUpdate, &newLastUpdate);
371 if (!uidUpdated.has_value()) return {};
372 if (!*uidUpdated) continue;
373 }
374 if (findMapEntry(gTisMapFd, &key, vals.data())) return {};
375 if (map.find(key.uid) == map.end()) map.emplace(key.uid, mapFormat);
376
377 auto offset = key.bucket * FREQS_PER_ENTRY;
378 auto nextOffset = (key.bucket + 1) * FREQS_PER_ENTRY;
379 for (uint32_t i = 0; i < gNPolicies; ++i) {
380 if (offset >= gPolicyFreqs[i].size()) continue;
381 auto begin = map[key.uid][i].begin() + offset;
382 auto end = nextOffset < gPolicyFreqs[i].size() ? begin + FREQS_PER_ENTRY :
383 map[key.uid][i].end();
384 for (const auto &cpu : gPolicyCpus[i]) {
385 std::transform(begin, end, std::begin(vals[cpu].ar), begin, std::plus<uint64_t>());
386 }
387 }
388 prevKey = key;
389 } while (prevKey = key, !getNextMapKey(gTisMapFd, &prevKey, &key));
390 if (errno != ENOENT) return {};
391 if (lastUpdate && newLastUpdate > *lastUpdate) *lastUpdate = newLastUpdate;
392 return map;
393 }
394
verifyConcurrentTimes(const concurrent_time_t & ct)395 static bool verifyConcurrentTimes(const concurrent_time_t &ct) {
396 uint64_t activeSum = std::accumulate(ct.active.begin(), ct.active.end(), (uint64_t)0);
397 uint64_t policySum = 0;
398 for (const auto &vec : ct.policy) {
399 policySum += std::accumulate(vec.begin(), vec.end(), (uint64_t)0);
400 }
401 return activeSum == policySum;
402 }
403
404 // Retrieve the times in ns that uid spent running concurrently with each possible number of other
405 // tasks on each cluster (policy times) and overall (active times).
406 // Return contains no value on error, otherwise it contains a concurrent_time_t with the format:
407 // {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...]}
408 // where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent
409 // running on the ith cluster, concurrently with tasks on j other cpus in the same cluster
getUidConcurrentTimes(uint32_t uid,bool retry)410 std::optional<concurrent_time_t> getUidConcurrentTimes(uint32_t uid, bool retry) {
411 if (!gInitialized && !initGlobals()) return {};
412 concurrent_time_t ret = {.active = std::vector<uint64_t>(gNCpus, 0)};
413 for (const auto &cpuList : gPolicyCpus) ret.policy.emplace_back(cpuList.size(), 0);
414 std::vector<concurrent_val_t> vals(gNCpus);
415 time_key_t key = {.uid = uid};
416 for (key.bucket = 0; key.bucket <= (gNCpus - 1) / CPUS_PER_ENTRY; ++key.bucket) {
417 if (findMapEntry(gConcurrentMapFd, &key, vals.data())) {
418 if (errno != ENOENT || getFirstMapKey(gConcurrentMapFd, &key)) return {};
419 continue;
420 }
421 auto offset = key.bucket * CPUS_PER_ENTRY;
422 auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY;
423
424 auto activeBegin = ret.active.begin() + offset;
425 auto activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret.active.end();
426
427 for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) {
428 std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin,
429 std::plus<uint64_t>());
430 }
431
432 for (uint32_t policy = 0; policy < gNPolicies; ++policy) {
433 if (offset >= gPolicyCpus[policy].size()) continue;
434 auto policyBegin = ret.policy[policy].begin() + offset;
435 auto policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY
436 : ret.policy[policy].end();
437
438 for (const auto &cpu : gPolicyCpus[policy]) {
439 std::transform(policyBegin, policyEnd, std::begin(vals[cpu].policy), policyBegin,
440 std::plus<uint64_t>());
441 }
442 }
443 }
444 if (!verifyConcurrentTimes(ret) && retry) return getUidConcurrentTimes(uid, false);
445 return ret;
446 }
447
448 // Retrieve the times in ns that each uid spent running concurrently with each possible number of
449 // other tasks on each cluster (policy times) and overall (active times).
450 // Return contains no value on error, otherwise it contains a map from uids to concurrent_time_t's
451 // using the format:
452 // { uid0 -> {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...] }, ...}
453 // where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent
454 // running on the ith cluster, concurrently with tasks on j other cpus in the same cluster.
getUidsConcurrentTimes()455 std::optional<std::unordered_map<uint32_t, concurrent_time_t>> getUidsConcurrentTimes() {
456 return getUidsUpdatedConcurrentTimes(nullptr);
457 }
458
459 // Retrieve the times in ns that each uid spent running concurrently with each possible number of
460 // other tasks on each cluster (policy times) and overall (active times), excluding UIDs that have
461 // not run since before lastUpdate.
462 // Return format is the same as getUidsConcurrentTimes()
getUidsUpdatedConcurrentTimes(uint64_t * lastUpdate)463 std::optional<std::unordered_map<uint32_t, concurrent_time_t>> getUidsUpdatedConcurrentTimes(
464 uint64_t *lastUpdate) {
465 if (!gInitialized && !initGlobals()) return {};
466 time_key_t key, prevKey;
467 std::unordered_map<uint32_t, concurrent_time_t> ret;
468 if (getFirstMapKey(gConcurrentMapFd, &key)) {
469 if (errno == ENOENT) return ret;
470 return {};
471 }
472
473 concurrent_time_t retFormat = {.active = std::vector<uint64_t>(gNCpus, 0)};
474 for (const auto &cpuList : gPolicyCpus) retFormat.policy.emplace_back(cpuList.size(), 0);
475
476 std::vector<concurrent_val_t> vals(gNCpus);
477 std::vector<uint64_t>::iterator activeBegin, activeEnd, policyBegin, policyEnd;
478
479 uint64_t newLastUpdate = lastUpdate ? *lastUpdate : 0;
480 do {
481 if (key.bucket > (gNCpus - 1) / CPUS_PER_ENTRY) return {};
482 if (lastUpdate) {
483 auto uidUpdated = uidUpdatedSince(key.uid, *lastUpdate, &newLastUpdate);
484 if (!uidUpdated.has_value()) return {};
485 if (!*uidUpdated) continue;
486 }
487 if (findMapEntry(gConcurrentMapFd, &key, vals.data())) return {};
488 if (ret.find(key.uid) == ret.end()) ret.emplace(key.uid, retFormat);
489
490 auto offset = key.bucket * CPUS_PER_ENTRY;
491 auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY;
492
493 activeBegin = ret[key.uid].active.begin();
494 activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret[key.uid].active.end();
495
496 for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) {
497 std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin,
498 std::plus<uint64_t>());
499 }
500
501 for (uint32_t policy = 0; policy < gNPolicies; ++policy) {
502 if (offset >= gPolicyCpus[policy].size()) continue;
503 policyBegin = ret[key.uid].policy[policy].begin() + offset;
504 policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY
505 : ret[key.uid].policy[policy].end();
506
507 for (const auto &cpu : gPolicyCpus[policy]) {
508 std::transform(policyBegin, policyEnd, std::begin(vals[cpu].policy), policyBegin,
509 std::plus<uint64_t>());
510 }
511 }
512 } while (prevKey = key, !getNextMapKey(gConcurrentMapFd, &prevKey, &key));
513 if (errno != ENOENT) return {};
514 for (const auto &[key, value] : ret) {
515 if (!verifyConcurrentTimes(value)) {
516 auto val = getUidConcurrentTimes(key, false);
517 if (val.has_value()) ret[key] = val.value();
518 }
519 }
520 if (lastUpdate && newLastUpdate > *lastUpdate) *lastUpdate = newLastUpdate;
521 return ret;
522 }
523
524 // Clear all time in state data for a given uid. Returns false on error, true otherwise.
525 // This is only suitable for clearing data when an app is uninstalled; if called on a UID with
526 // running tasks it will cause time in state vs. concurrent time totals to be inconsistent for that
527 // UID.
clearUidTimes(uint32_t uid)528 bool clearUidTimes(uint32_t uid) {
529 if (!gInitialized && !initGlobals()) return false;
530
531 time_key_t key = {.uid = uid};
532
533 uint32_t maxFreqCount = 0;
534 for (const auto &freqList : gPolicyFreqs) {
535 if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size();
536 }
537
538 tis_val_t zeros = {0};
539 std::vector<tis_val_t> vals(gNCpus, zeros);
540 for (key.bucket = 0; key.bucket <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++key.bucket) {
541 if (writeToMapEntry(gTisMapFd, &key, vals.data(), BPF_EXIST) && errno != ENOENT)
542 return false;
543 if (deleteMapEntry(gTisMapFd, &key) && errno != ENOENT) return false;
544 }
545
546 concurrent_val_t czeros = { .active = {0}, .policy = {0}, };
547 std::vector<concurrent_val_t> cvals(gNCpus, czeros);
548 for (key.bucket = 0; key.bucket <= (gNCpus - 1) / CPUS_PER_ENTRY; ++key.bucket) {
549 if (writeToMapEntry(gConcurrentMapFd, &key, cvals.data(), BPF_EXIST) && errno != ENOENT)
550 return false;
551 if (deleteMapEntry(gConcurrentMapFd, &key) && errno != ENOENT) return false;
552 }
553
554 if (deleteMapEntry(gUidLastUpdateMapFd, &uid) && errno != ENOENT) return false;
555 return true;
556 }
557
startTrackingProcessCpuTimes(pid_t pid)558 bool startTrackingProcessCpuTimes(pid_t pid) {
559 if (!gInitialized && !initGlobals()) return false;
560
561 unique_fd trackedPidHashMapFd(
562 mapRetrieveWO(BPF_FS_PATH "map_time_in_state_pid_tracked_hash_map"));
563 if (trackedPidHashMapFd < 0) return false;
564
565 unique_fd trackedPidMapFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_pid_tracked_map"));
566 if (trackedPidMapFd < 0) return false;
567
568 for (uint32_t index = 0; index < MAX_TRACKED_PIDS; index++) {
569 // Find first available [index, pid] entry in the pid_tracked_hash_map map
570 if (writeToMapEntry(trackedPidHashMapFd, &index, &pid, BPF_NOEXIST) != 0) {
571 if (errno != EEXIST) {
572 return false;
573 }
574 continue; // This index is already taken
575 }
576
577 tracked_pid_t tracked_pid = {.pid = pid, .state = TRACKED_PID_STATE_ACTIVE};
578 if (writeToMapEntry(trackedPidMapFd, &index, &tracked_pid, BPF_ANY) != 0) {
579 return false;
580 }
581 return true;
582 }
583 return false;
584 }
585
586 // Marks the specified task identified by its PID (aka TID) for CPU time-in-state tracking
587 // aggregated with other tasks sharing the same TGID and aggregation key.
startAggregatingTaskCpuTimes(pid_t pid,uint16_t aggregationKey)588 bool startAggregatingTaskCpuTimes(pid_t pid, uint16_t aggregationKey) {
589 if (!gInitialized && !initGlobals()) return false;
590
591 unique_fd taskAggregationMapFd(
592 mapRetrieveWO(BPF_FS_PATH "map_time_in_state_pid_task_aggregation_map"));
593 if (taskAggregationMapFd < 0) return false;
594
595 return writeToMapEntry(taskAggregationMapFd, &pid, &aggregationKey, BPF_ANY) == 0;
596 }
597
598 // Retrieves the times in ns that each thread spent running at each CPU freq, aggregated by
599 // aggregation key.
600 // Return contains no value on error, otherwise it contains a map from aggregation keys
601 // to vectors of vectors using the format:
602 // { aggKey0 -> [[t0_0_0, t0_0_1, ...], [t0_1_0, t0_1_1, ...], ...],
603 // aggKey1 -> [[t1_0_0, t1_0_1, ...], [t1_1_0, t1_1_1, ...], ...], ... }
604 // where ti_j_k is the ns tid i spent running on the jth cluster at the cluster's kth lowest freq.
605 std::optional<std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>>>
getAggregatedTaskCpuFreqTimes(pid_t tgid,const std::vector<uint16_t> & aggregationKeys)606 getAggregatedTaskCpuFreqTimes(pid_t tgid, const std::vector<uint16_t> &aggregationKeys) {
607 if (!gInitialized && !initGlobals()) return {};
608
609 uint32_t maxFreqCount = 0;
610 std::vector<std::vector<uint64_t>> mapFormat;
611 for (const auto &freqList : gPolicyFreqs) {
612 if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size();
613 mapFormat.emplace_back(freqList.size(), 0);
614 }
615
616 bool dataCollected = false;
617 std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>> map;
618 std::vector<tis_val_t> vals(gNCpus);
619 for (uint16_t aggregationKey : aggregationKeys) {
620 map.emplace(aggregationKey, mapFormat);
621
622 aggregated_task_tis_key_t key{.tgid = tgid, .aggregation_key = aggregationKey};
623 for (key.bucket = 0; key.bucket <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++key.bucket) {
624 if (findMapEntry(gPidTisMapFd, &key, vals.data()) != 0) {
625 if (errno != ENOENT) {
626 return {};
627 }
628 continue;
629 } else {
630 dataCollected = true;
631 }
632
633 // Combine data by aggregating time-in-state data grouped by CPU cluster aka policy.
634 uint32_t offset = key.bucket * FREQS_PER_ENTRY;
635 uint32_t nextOffset = offset + FREQS_PER_ENTRY;
636 for (uint32_t j = 0; j < gNPolicies; ++j) {
637 if (offset >= gPolicyFreqs[j].size()) continue;
638 auto begin = map[key.aggregation_key][j].begin() + offset;
639 auto end = nextOffset < gPolicyFreqs[j].size() ? begin + FREQS_PER_ENTRY
640 : map[key.aggregation_key][j].end();
641 for (const auto &cpu : gPolicyCpus[j]) {
642 std::transform(begin, end, std::begin(vals[cpu].ar), begin,
643 std::plus<uint64_t>());
644 }
645 }
646 }
647 }
648
649 if (!dataCollected) {
650 // Check if eBPF is supported on this device. If it is, gTisMap should not be empty.
651 time_key_t key;
652 if (getFirstMapKey(gTisMapFd, &key) != 0) {
653 return {};
654 }
655 }
656 return map;
657 }
658
659 } // namespace bpf
660 } // namespace android
661