1 /*
2 * Copyright (C) 2019, The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "aidl_language.h"
18 #include "aidl_typenames.h"
19 #include "logging.h"
20
21 #include <stdlib.h>
22 #include <algorithm>
23 #include <iostream>
24 #include <limits>
25 #include <memory>
26
27 #include <android-base/parsedouble.h>
28 #include <android-base/parseint.h>
29 #include <android-base/strings.h>
30
31 using android::base::ConsumeSuffix;
32 using android::base::EndsWith;
33 using android::base::Join;
34 using android::base::StartsWith;
35 using std::string;
36 using std::unique_ptr;
37 using std::vector;
38
39 template <typename T>
CLZ(T x)40 constexpr int CLZ(T x) {
41 // __builtin_clz(0) is undefined
42 if (x == 0) return sizeof(T) * 8;
43 return (sizeof(T) == sizeof(uint64_t)) ? __builtin_clzl(x) : __builtin_clz(x);
44 }
45
46 template <typename T>
47 class OverflowGuard {
48 public:
OverflowGuard(T value)49 OverflowGuard(T value) : mValue(value) {}
Overflowed() const50 bool Overflowed() const { return mOverflowed; }
51
operator +()52 T operator+() { return +mValue; }
operator -()53 T operator-() {
54 if (isMin()) {
55 mOverflowed = true;
56 return 0;
57 }
58 return -mValue;
59 }
operator !()60 T operator!() { return !mValue; }
operator ~()61 T operator~() { return ~mValue; }
62
operator +(T o)63 T operator+(T o) {
64 T out;
65 mOverflowed = __builtin_add_overflow(mValue, o, &out);
66 return out;
67 }
operator -(T o)68 T operator-(T o) {
69 T out;
70 mOverflowed = __builtin_sub_overflow(mValue, o, &out);
71 return out;
72 }
operator *(T o)73 T operator*(T o) {
74 T out;
75 #ifdef _WIN32
76 // ___mulodi4 not on windows https://bugs.llvm.org/show_bug.cgi?id=46669
77 // we should still get an error here from ubsan, but the nice error
78 // is needed on linux for aidl_parser_fuzzer, where we are more
79 // concerned about overflows elsewhere in the compiler in addition to
80 // those in interfaces.
81 out = mValue * o;
82 #else
83 mOverflowed = __builtin_mul_overflow(mValue, o, &out);
84 #endif
85 return out;
86 }
operator /(T o)87 T operator/(T o) {
88 if (o == 0 || (isMin() && o == -1)) {
89 mOverflowed = true;
90 return 0;
91 }
92 return mValue / o;
93 }
operator %(T o)94 T operator%(T o) {
95 if (o == 0 || (isMin() && o == -1)) {
96 mOverflowed = true;
97 return 0;
98 }
99 return mValue % o;
100 }
operator |(T o)101 T operator|(T o) { return mValue | o; }
operator ^(T o)102 T operator^(T o) { return mValue ^ o; }
operator &(T o)103 T operator&(T o) { return mValue & o; }
operator <(T o)104 T operator<(T o) { return mValue < o; }
operator >(T o)105 T operator>(T o) { return mValue > o; }
operator <=(T o)106 T operator<=(T o) { return mValue <= o; }
operator >=(T o)107 T operator>=(T o) { return mValue >= o; }
operator ==(T o)108 T operator==(T o) { return mValue == o; }
operator !=(T o)109 T operator!=(T o) { return mValue != o; }
operator >>(T o)110 T operator>>(T o) {
111 if (o < 0 || o >= static_cast<T>(sizeof(T) * 8) || mValue < 0) {
112 mOverflowed = true;
113 return 0;
114 }
115 return mValue >> o;
116 }
operator <<(T o)117 T operator<<(T o) {
118 if (o < 0 || mValue < 0 || o > CLZ(mValue) || o >= static_cast<T>(sizeof(T) * 8)) {
119 mOverflowed = true;
120 return 0;
121 }
122 return mValue << o;
123 }
operator ||(T o)124 T operator||(T o) { return mValue || o; }
operator &&(T o)125 T operator&&(T o) { return mValue && o; }
126
127 private:
isMin()128 bool isMin() { return mValue == std::numeric_limits<T>::min(); }
129
130 T mValue;
131 bool mOverflowed = false;
132 };
133
134 template <typename T>
processGuard(const OverflowGuard<T> & guard,const AidlConstantValue & context)135 bool processGuard(const OverflowGuard<T>& guard, const AidlConstantValue& context) {
136 if (guard.Overflowed()) {
137 AIDL_ERROR(context) << "Constant expression computation overflows.";
138 return false;
139 }
140 return true;
141 }
142
143 // TODO: factor out all these macros
144 #define SHOULD_NOT_REACH() AIDL_FATAL(AIDL_LOCATION_HERE) << "Should not reach."
145 #define OPEQ(__y__) (string(op_) == string(__y__))
146 #define COMPUTE_UNARY(T, __op__) \
147 if (op == string(#__op__)) { \
148 OverflowGuard<T> guard(val); \
149 *out = __op__ guard; \
150 return processGuard(guard, context); \
151 }
152 #define COMPUTE_BINARY(T, __op__) \
153 if (op == string(#__op__)) { \
154 OverflowGuard<T> guard(lval); \
155 *out = guard __op__ rval; \
156 return processGuard(guard, context); \
157 }
158 #define OP_IS_BIN_ARITHMETIC (OPEQ("+") || OPEQ("-") || OPEQ("*") || OPEQ("/") || OPEQ("%"))
159 #define OP_IS_BIN_BITFLIP (OPEQ("|") || OPEQ("^") || OPEQ("&"))
160 #define OP_IS_BIN_COMP \
161 (OPEQ("<") || OPEQ(">") || OPEQ("<=") || OPEQ(">=") || OPEQ("==") || OPEQ("!="))
162 #define OP_IS_BIN_SHIFT (OPEQ(">>") || OPEQ("<<"))
163 #define OP_IS_BIN_LOGICAL (OPEQ("||") || OPEQ("&&"))
164
165 // NOLINT to suppress missing parentheses warnings about __def__.
166 #define SWITCH_KIND(__cond__, __action__, __def__) \
167 switch (__cond__) { \
168 case Type::BOOLEAN: \
169 __action__(bool); \
170 case Type::INT8: \
171 __action__(int8_t); \
172 case Type::INT32: \
173 __action__(int32_t); \
174 case Type::INT64: \
175 __action__(int64_t); \
176 default: \
177 __def__; /* NOLINT */ \
178 }
179
180 template <class T>
handleUnary(const AidlConstantValue & context,const string & op,T val,int64_t * out)181 bool handleUnary(const AidlConstantValue& context, const string& op, T val, int64_t* out) {
182 COMPUTE_UNARY(T, +)
183 COMPUTE_UNARY(T, -)
184 COMPUTE_UNARY(T, !)
185 COMPUTE_UNARY(T, ~)
186 AIDL_FATAL(context) << "Could not handleUnary for " << op << " " << val;
187 return false;
188 }
189 template <>
190 bool handleUnary<bool>(const AidlConstantValue& context, const string& op, bool val, int64_t* out) {
191 COMPUTE_UNARY(bool, +)
192 COMPUTE_UNARY(bool, -)
193 COMPUTE_UNARY(bool, !)
194
195 if (op == "~") {
196 AIDL_ERROR(context) << "Bitwise negation of a boolean expression is always true.";
197 return false;
198 }
199 AIDL_FATAL(context) << "Could not handleUnary for " << op << " " << val;
200 return false;
201 }
202
203 template <class T>
handleBinaryCommon(const AidlConstantValue & context,T lval,const string & op,T rval,int64_t * out)204 bool handleBinaryCommon(const AidlConstantValue& context, T lval, const string& op, T rval,
205 int64_t* out) {
206 COMPUTE_BINARY(T, +)
207 COMPUTE_BINARY(T, -)
208 COMPUTE_BINARY(T, *)
209 COMPUTE_BINARY(T, /)
210 COMPUTE_BINARY(T, %)
211 COMPUTE_BINARY(T, |)
212 COMPUTE_BINARY(T, ^)
213 COMPUTE_BINARY(T, &)
214 // comparison operators: return 0 or 1 by nature.
215 COMPUTE_BINARY(T, ==)
216 COMPUTE_BINARY(T, !=)
217 COMPUTE_BINARY(T, <)
218 COMPUTE_BINARY(T, >)
219 COMPUTE_BINARY(T, <=)
220 COMPUTE_BINARY(T, >=)
221
222 AIDL_FATAL(context) << "Could not handleBinaryCommon for " << lval << " " << op << " " << rval;
223 return false;
224 }
225
226 template <class T>
handleShift(const AidlConstantValue & context,T lval,const string & op,T rval,int64_t * out)227 bool handleShift(const AidlConstantValue& context, T lval, const string& op, T rval, int64_t* out) {
228 // just cast rval to int64_t and it should fit.
229 COMPUTE_BINARY(T, >>)
230 COMPUTE_BINARY(T, <<)
231
232 AIDL_FATAL(context) << "Could not handleShift for " << lval << " " << op << " " << rval;
233 return false;
234 }
235
handleLogical(const AidlConstantValue & context,bool lval,const string & op,bool rval,int64_t * out)236 bool handleLogical(const AidlConstantValue& context, bool lval, const string& op, bool rval,
237 int64_t* out) {
238 COMPUTE_BINARY(bool, ||);
239 COMPUTE_BINARY(bool, &&);
240
241 AIDL_FATAL(context) << "Could not handleLogical for " << lval << " " << op << " " << rval;
242 return false;
243 }
244
ParseFloating(std::string_view sv,double * parsed)245 bool ParseFloating(std::string_view sv, double* parsed) {
246 // float literal should be parsed successfully.
247 android::base::ConsumeSuffix(&sv, "f");
248 return android::base::ParseDouble(std::string(sv).data(), parsed);
249 }
250
ParseFloating(std::string_view sv,float * parsed)251 bool ParseFloating(std::string_view sv, float* parsed) {
252 // we only care about float literal (with suffix "f").
253 if (!android::base::ConsumeSuffix(&sv, "f")) {
254 return false;
255 }
256 return android::base::ParseFloat(std::string(sv).data(), parsed);
257 }
258
IsCompatibleType(Type type,const string & op)259 bool AidlUnaryConstExpression::IsCompatibleType(Type type, const string& op) {
260 // Verify the unary type here
261 switch (type) {
262 case Type::BOOLEAN: // fall-through
263 case Type::INT8: // fall-through
264 case Type::INT32: // fall-through
265 case Type::INT64:
266 return true;
267 case Type::FLOATING:
268 return (op == "+" || op == "-");
269 default:
270 return false;
271 }
272 }
273
AreCompatibleTypes(Type t1,Type t2)274 bool AidlBinaryConstExpression::AreCompatibleTypes(Type t1, Type t2) {
275 switch (t1) {
276 case Type::STRING:
277 if (t2 == Type::STRING) {
278 return true;
279 }
280 break;
281 case Type::BOOLEAN: // fall-through
282 case Type::INT8: // fall-through
283 case Type::INT32: // fall-through
284 case Type::INT64:
285 switch (t2) {
286 case Type::BOOLEAN: // fall-through
287 case Type::INT8: // fall-through
288 case Type::INT32: // fall-through
289 case Type::INT64:
290 return true;
291 break;
292 default:
293 break;
294 }
295 break;
296 default:
297 break;
298 }
299
300 return false;
301 }
302
303 // Returns the promoted kind for both operands
UsualArithmeticConversion(Type left,Type right)304 AidlConstantValue::Type AidlBinaryConstExpression::UsualArithmeticConversion(Type left,
305 Type right) {
306 // These are handled as special cases
307 AIDL_FATAL_IF(left == Type::STRING || right == Type::STRING, AIDL_LOCATION_HERE);
308 AIDL_FATAL_IF(left == Type::FLOATING || right == Type::FLOATING, AIDL_LOCATION_HERE);
309
310 // Kinds in concern: bool, (u)int[8|32|64]
311 if (left == right) return left; // easy case
312 if (left == Type::BOOLEAN) return right;
313 if (right == Type::BOOLEAN) return left;
314
315 return left < right ? right : left;
316 }
317
318 // Returns the promoted integral type where INT32 is the smallest type
IntegralPromotion(Type in)319 AidlConstantValue::Type AidlBinaryConstExpression::IntegralPromotion(Type in) {
320 return (Type::INT32 < in) ? in : Type::INT32;
321 }
322
Default(const AidlTypeSpecifier & specifier)323 AidlConstantValue* AidlConstantValue::Default(const AidlTypeSpecifier& specifier) {
324 AidlLocation location = specifier.GetLocation();
325
326 // allocation of int[0] is a bit wasteful in Java
327 if (specifier.IsArray()) {
328 return nullptr;
329 }
330
331 const std::string name = specifier.GetName();
332 if (name == "boolean") {
333 return Boolean(location, false);
334 }
335 if (name == "char") {
336 return Character(location, "'\\0'"); // literal to be used in backends
337 }
338 if (name == "byte" || name == "int" || name == "long") {
339 return Integral(location, "0");
340 }
341 if (name == "float") {
342 return Floating(location, "0.0f");
343 }
344 if (name == "double") {
345 return Floating(location, "0.0");
346 }
347 return nullptr;
348 }
349
Boolean(const AidlLocation & location,bool value)350 AidlConstantValue* AidlConstantValue::Boolean(const AidlLocation& location, bool value) {
351 return new AidlConstantValue(location, Type::BOOLEAN, value ? "true" : "false");
352 }
353
Character(const AidlLocation & location,const std::string & value)354 AidlConstantValue* AidlConstantValue::Character(const AidlLocation& location,
355 const std::string& value) {
356 return new AidlConstantValue(location, Type::CHARACTER, value);
357 }
358
Floating(const AidlLocation & location,const std::string & value)359 AidlConstantValue* AidlConstantValue::Floating(const AidlLocation& location,
360 const std::string& value) {
361 return new AidlConstantValue(location, Type::FLOATING, value);
362 }
363
IsHex(const string & value)364 bool AidlConstantValue::IsHex(const string& value) {
365 return StartsWith(value, "0x") || StartsWith(value, "0X");
366 }
367
ParseIntegral(const string & value,int64_t * parsed_value,Type * parsed_type)368 bool AidlConstantValue::ParseIntegral(const string& value, int64_t* parsed_value,
369 Type* parsed_type) {
370 if (parsed_value == nullptr || parsed_type == nullptr) {
371 return false;
372 }
373
374 const bool isLong = EndsWith(value, 'l') || EndsWith(value, 'L');
375 const std::string value_substr = isLong ? value.substr(0, value.size() - 1) : value;
376
377 if (IsHex(value)) {
378 // AIDL considers 'const int foo = 0xffffffff' as -1, but if we want to
379 // handle that when computing constant expressions, then we need to
380 // represent 0xffffffff as a uint32_t. However, AIDL only has signed types;
381 // so we parse as an unsigned int when possible and then cast to a signed
382 // int. One example of this is in ICameraService.aidl where a constant int
383 // is used for bit manipulations which ideally should be handled with an
384 // unsigned int.
385 //
386 // Note, for historical consistency, we need to consider small hex values
387 // as an integral type. Recognizing them as INT8 could break some files,
388 // even though it would simplify this code.
389 if (uint32_t rawValue32;
390 !isLong && android::base::ParseUint<uint32_t>(value_substr, &rawValue32)) {
391 *parsed_value = static_cast<int32_t>(rawValue32);
392 *parsed_type = Type::INT32;
393 } else if (uint64_t rawValue64; android::base::ParseUint<uint64_t>(value_substr, &rawValue64)) {
394 *parsed_value = static_cast<int64_t>(rawValue64);
395 *parsed_type = Type::INT64;
396 } else {
397 *parsed_value = 0;
398 *parsed_type = Type::ERROR;
399 return false;
400 }
401 return true;
402 }
403
404 if (!android::base::ParseInt<int64_t>(value_substr, parsed_value)) {
405 *parsed_value = 0;
406 *parsed_type = Type::ERROR;
407 return false;
408 }
409
410 if (isLong) {
411 *parsed_type = Type::INT64;
412 } else {
413 // guess literal type.
414 if (*parsed_value <= INT8_MAX && *parsed_value >= INT8_MIN) {
415 *parsed_type = Type::INT8;
416 } else if (*parsed_value <= INT32_MAX && *parsed_value >= INT32_MIN) {
417 *parsed_type = Type::INT32;
418 } else {
419 *parsed_type = Type::INT64;
420 }
421 }
422 return true;
423 }
424
Integral(const AidlLocation & location,const string & value)425 AidlConstantValue* AidlConstantValue::Integral(const AidlLocation& location, const string& value) {
426 AIDL_FATAL_IF(value.empty(), location);
427
428 Type parsed_type;
429 int64_t parsed_value = 0;
430 bool success = ParseIntegral(value, &parsed_value, &parsed_type);
431 if (!success) {
432 return nullptr;
433 }
434
435 return new AidlConstantValue(location, parsed_type, parsed_value, value);
436 }
437
Array(const AidlLocation & location,std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values)438 AidlConstantValue* AidlConstantValue::Array(
439 const AidlLocation& location, std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values) {
440 AIDL_FATAL_IF(values == nullptr, location);
441 std::vector<std::string> str_values;
442 for (const auto& v : *values) {
443 str_values.push_back(v->value_);
444 }
445 return new AidlConstantValue(location, Type::ARRAY, std::move(values), Join(str_values, ", "));
446 }
447
String(const AidlLocation & location,const string & value)448 AidlConstantValue* AidlConstantValue::String(const AidlLocation& location, const string& value) {
449 return new AidlConstantValue(location, Type::STRING, value);
450 }
451
ValueString(const AidlTypeSpecifier & type,const ConstantValueDecorator & decorator) const452 string AidlConstantValue::ValueString(const AidlTypeSpecifier& type,
453 const ConstantValueDecorator& decorator) const {
454 if (type.IsGeneric()) {
455 AIDL_ERROR(type) << "Generic type cannot be specified with a constant literal.";
456 return "";
457 }
458 if (!is_evaluated_) {
459 // TODO(b/142722772) CheckValid() should be called before ValueString()
460 bool success = CheckValid();
461 success &= evaluate();
462 if (!success) {
463 // the detailed error message shall be printed in evaluate
464 return "";
465 }
466 }
467 if (!is_valid_) {
468 AIDL_ERROR(this) << "Invalid constant value: " + value_;
469 return "";
470 }
471
472 const AidlDefinedType* defined_type = type.GetDefinedType();
473 if (defined_type && !type.IsArray()) {
474 const AidlEnumDeclaration* enum_type = defined_type->AsEnumDeclaration();
475 if (!enum_type) {
476 AIDL_ERROR(this) << "Invalid type (" << defined_type->GetCanonicalName()
477 << ") for a const value (" << value_ << ")";
478 return "";
479 }
480 if (type_ != Type::REF) {
481 AIDL_ERROR(this) << "Invalid value (" << value_ << ") for enum "
482 << enum_type->GetCanonicalName();
483 return "";
484 }
485 return decorator(type, value_);
486 }
487
488 const string& type_string = type.GetName();
489 int err = 0;
490
491 switch (final_type_) {
492 case Type::CHARACTER:
493 if (type_string == "char") {
494 return decorator(type, final_string_value_);
495 }
496 err = -1;
497 break;
498 case Type::STRING:
499 if (type_string == "String") {
500 return decorator(type, final_string_value_);
501 }
502 err = -1;
503 break;
504 case Type::BOOLEAN: // fall-through
505 case Type::INT8: // fall-through
506 case Type::INT32: // fall-through
507 case Type::INT64:
508 if (type_string == "byte") {
509 if (final_value_ > INT8_MAX || final_value_ < INT8_MIN) {
510 err = -1;
511 break;
512 }
513 return decorator(type, std::to_string(static_cast<int8_t>(final_value_)));
514 } else if (type_string == "int") {
515 if (final_value_ > INT32_MAX || final_value_ < INT32_MIN) {
516 err = -1;
517 break;
518 }
519 return decorator(type, std::to_string(static_cast<int32_t>(final_value_)));
520 } else if (type_string == "long") {
521 return decorator(type, std::to_string(final_value_));
522 } else if (type_string == "boolean") {
523 return decorator(type, final_value_ ? "true" : "false");
524 }
525 err = -1;
526 break;
527 case Type::ARRAY: {
528 if (!type.IsArray()) {
529 err = -1;
530 break;
531 }
532 vector<string> value_strings;
533 value_strings.reserve(values_.size());
534 bool success = true;
535
536 for (const auto& value : values_) {
537 const AidlTypeSpecifier& array_base = type.ArrayBase();
538 const string value_string = value->ValueString(array_base, decorator);
539 if (value_string.empty()) {
540 success = false;
541 break;
542 }
543 value_strings.push_back(value_string);
544 }
545 if (!success) {
546 err = -1;
547 break;
548 }
549
550 return decorator(type, "{" + Join(value_strings, ", ") + "}");
551 }
552 case Type::FLOATING: {
553 if (type_string == "double") {
554 double parsed_value;
555 if (!ParseFloating(value_, &parsed_value)) {
556 AIDL_ERROR(this) << "Could not parse " << value_;
557 err = -1;
558 break;
559 }
560 return decorator(type, std::to_string(parsed_value));
561 }
562 if (type_string == "float") {
563 float parsed_value;
564 if (!ParseFloating(value_, &parsed_value)) {
565 AIDL_ERROR(this) << "Could not parse " << value_;
566 err = -1;
567 break;
568 }
569 return decorator(type, std::to_string(parsed_value) + "f");
570 }
571 err = -1;
572 break;
573 }
574 default:
575 err = -1;
576 break;
577 }
578
579 AIDL_FATAL_IF(err == 0, this);
580 AIDL_ERROR(this) << "Invalid type specifier for " << ToString(final_type_) << ": " << type_string;
581 return "";
582 }
583
CheckValid() const584 bool AidlConstantValue::CheckValid() const {
585 // Nothing needs to be checked here. The constant value will be validated in
586 // the constructor or in the evaluate() function.
587 if (is_evaluated_) return is_valid_;
588
589 switch (type_) {
590 case Type::BOOLEAN: // fall-through
591 case Type::INT8: // fall-through
592 case Type::INT32: // fall-through
593 case Type::INT64: // fall-through
594 case Type::CHARACTER: // fall-through
595 case Type::STRING: // fall-through
596 case Type::REF: // fall-through
597 case Type::FLOATING: // fall-through
598 case Type::UNARY: // fall-through
599 case Type::BINARY:
600 is_valid_ = true;
601 break;
602 case Type::ARRAY:
603 is_valid_ = true;
604 for (const auto& v : values_) is_valid_ &= v->CheckValid();
605 break;
606 case Type::ERROR:
607 return false;
608 default:
609 AIDL_FATAL(this) << "Unrecognized constant value type: " << ToString(type_);
610 return false;
611 }
612
613 return true;
614 }
615
evaluate() const616 bool AidlConstantValue::evaluate() const {
617 if (is_evaluated_) {
618 return is_valid_;
619 }
620 int err = 0;
621 is_evaluated_ = true;
622
623 switch (type_) {
624 case Type::ARRAY: {
625 Type array_type = Type::ERROR;
626 bool success = true;
627 for (const auto& value : values_) {
628 success = value->CheckValid();
629 if (success) {
630 success = value->evaluate();
631 if (!success) {
632 AIDL_ERROR(this) << "Invalid array element: " << value->value_;
633 break;
634 }
635 if (array_type == Type::ERROR) {
636 array_type = value->final_type_;
637 } else if (!AidlBinaryConstExpression::AreCompatibleTypes(array_type,
638 value->final_type_)) {
639 AIDL_ERROR(this) << "Incompatible array element type: " << ToString(value->final_type_)
640 << ". Expecting type compatible with " << ToString(array_type);
641 success = false;
642 break;
643 }
644 } else {
645 break;
646 }
647 }
648 if (!success) {
649 err = -1;
650 break;
651 }
652 final_type_ = type_;
653 break;
654 }
655 case Type::BOOLEAN:
656 if ((value_ != "true") && (value_ != "false")) {
657 AIDL_ERROR(this) << "Invalid constant boolean value: " << value_;
658 err = -1;
659 break;
660 }
661 final_value_ = (value_ == "true") ? 1 : 0;
662 final_type_ = type_;
663 break;
664 case Type::INT8: // fall-through
665 case Type::INT32: // fall-through
666 case Type::INT64:
667 // Parsing happens in the constructor
668 final_type_ = type_;
669 break;
670 case Type::CHARACTER: // fall-through
671 case Type::STRING:
672 final_string_value_ = value_;
673 final_type_ = type_;
674 break;
675 case Type::FLOATING:
676 // Just parse on the fly in ValueString
677 final_type_ = type_;
678 break;
679 default:
680 AIDL_FATAL(this) << "Unrecognized constant value type: " << ToString(type_);
681 err = -1;
682 }
683
684 return (err == 0) ? true : false;
685 }
686
ToString(Type type)687 string AidlConstantValue::ToString(Type type) {
688 switch (type) {
689 case Type::BOOLEAN:
690 return "a literal boolean";
691 case Type::INT8:
692 return "an int8 literal";
693 case Type::INT32:
694 return "an int32 literal";
695 case Type::INT64:
696 return "an int64 literal";
697 case Type::ARRAY:
698 return "a literal array";
699 case Type::CHARACTER:
700 return "a literal char";
701 case Type::STRING:
702 return "a literal string";
703 case Type::REF:
704 return "a reference";
705 case Type::FLOATING:
706 return "a literal float";
707 case Type::UNARY:
708 return "a unary expression";
709 case Type::BINARY:
710 return "a binary expression";
711 case Type::ERROR:
712 AIDL_FATAL(AIDL_LOCATION_HERE) << "aidl internal error: error type failed to halt program";
713 return "";
714 default:
715 AIDL_FATAL(AIDL_LOCATION_HERE)
716 << "aidl internal error: unknown constant type: " << static_cast<int>(type);
717 return ""; // not reached
718 }
719 }
720
AidlConstantReference(const AidlLocation & location,const std::string & value)721 AidlConstantReference::AidlConstantReference(const AidlLocation& location, const std::string& value)
722 : AidlConstantValue(location, Type::REF, value) {
723 const auto pos = value.find_last_of('.');
724 if (pos == string::npos) {
725 field_name_ = value;
726 } else {
727 ref_type_ = std::make_unique<AidlTypeSpecifier>(location, value.substr(0, pos), false, nullptr,
728 Comments{});
729 field_name_ = value.substr(pos + 1);
730 }
731 }
732
Resolve(const AidlDefinedType * scope) const733 const AidlConstantValue* AidlConstantReference::Resolve(const AidlDefinedType* scope) const {
734 if (resolved_) return resolved_;
735
736 const AidlDefinedType* defined_type;
737 if (ref_type_) {
738 defined_type = ref_type_->GetDefinedType();
739 } else {
740 defined_type = scope;
741 }
742
743 if (!defined_type) {
744 // This can happen when "const reference" is used in an unsupported way,
745 // but missed in checks there. It works as a safety net.
746 AIDL_ERROR(*this) << "Can't resolve the reference (" << value_ << ")";
747 return nullptr;
748 }
749
750 if (auto enum_decl = defined_type->AsEnumDeclaration(); enum_decl) {
751 for (const auto& e : enum_decl->GetEnumerators()) {
752 if (e->GetName() == field_name_) {
753 return resolved_ = e->GetValue();
754 }
755 }
756 } else {
757 for (const auto& c : defined_type->GetConstantDeclarations()) {
758 if (c->GetName() == field_name_) {
759 return resolved_ = &c->GetValue();
760 }
761 }
762 }
763 AIDL_ERROR(*this) << "Can't find " << field_name_ << " in " << defined_type->GetName();
764 return nullptr;
765 }
766
CheckValid() const767 bool AidlConstantReference::CheckValid() const {
768 if (is_evaluated_) return is_valid_;
769 AIDL_FATAL_IF(!resolved_, this) << "Should be resolved first: " << value_;
770 is_valid_ = resolved_->CheckValid();
771 return is_valid_;
772 }
773
evaluate() const774 bool AidlConstantReference::evaluate() const {
775 if (is_evaluated_) return is_valid_;
776 AIDL_FATAL_IF(!resolved_, this) << "Should be resolved first: " << value_;
777 is_evaluated_ = true;
778
779 resolved_->evaluate();
780 is_valid_ = resolved_->is_valid_;
781 final_type_ = resolved_->final_type_;
782 if (is_valid_) {
783 if (final_type_ == Type::STRING) {
784 final_string_value_ = resolved_->final_string_value_;
785 } else {
786 final_value_ = resolved_->final_value_;
787 }
788 }
789 return is_valid_;
790 }
791
CheckValid() const792 bool AidlUnaryConstExpression::CheckValid() const {
793 if (is_evaluated_) return is_valid_;
794 AIDL_FATAL_IF(unary_ == nullptr, this);
795
796 is_valid_ = unary_->CheckValid();
797 if (!is_valid_) {
798 final_type_ = Type::ERROR;
799 return false;
800 }
801
802 return AidlConstantValue::CheckValid();
803 }
804
evaluate() const805 bool AidlUnaryConstExpression::evaluate() const {
806 if (is_evaluated_) {
807 return is_valid_;
808 }
809 is_evaluated_ = true;
810
811 // Recursively evaluate the expression tree
812 if (!unary_->is_evaluated_) {
813 // TODO(b/142722772) CheckValid() should be called before ValueString()
814 bool success = CheckValid();
815 success &= unary_->evaluate();
816 if (!success) {
817 is_valid_ = false;
818 return false;
819 }
820 }
821 if (!IsCompatibleType(unary_->final_type_, op_)) {
822 AIDL_ERROR(unary_) << "'" << op_ << "'"
823 << " is not compatible with " << ToString(unary_->final_type_)
824 << ": " + value_;
825 is_valid_ = false;
826 return false;
827 }
828 if (!unary_->is_valid_) {
829 AIDL_ERROR(unary_) << "Invalid constant unary expression: " + value_;
830 is_valid_ = false;
831 return false;
832 }
833 final_type_ = unary_->final_type_;
834
835 if (final_type_ == Type::FLOATING) {
836 // don't do anything here. ValueString() will handle everything.
837 is_valid_ = true;
838 return true;
839 }
840
841 #define CASE_UNARY(__type__) \
842 return is_valid_ = \
843 handleUnary(*this, op_, static_cast<__type__>(unary_->final_value_), &final_value_);
844
845 SWITCH_KIND(final_type_, CASE_UNARY, SHOULD_NOT_REACH(); final_type_ = Type::ERROR;
846 is_valid_ = false; return false;)
847 }
848
CheckValid() const849 bool AidlBinaryConstExpression::CheckValid() const {
850 bool success = false;
851 if (is_evaluated_) return is_valid_;
852 AIDL_FATAL_IF(left_val_ == nullptr, this);
853 AIDL_FATAL_IF(right_val_ == nullptr, this);
854
855 success = left_val_->CheckValid();
856 if (!success) {
857 final_type_ = Type::ERROR;
858 AIDL_ERROR(this) << "Invalid left operand in binary expression: " + value_;
859 }
860
861 success = right_val_->CheckValid();
862 if (!success) {
863 AIDL_ERROR(this) << "Invalid right operand in binary expression: " + value_;
864 final_type_ = Type::ERROR;
865 }
866
867 if (final_type_ == Type::ERROR) {
868 is_valid_ = false;
869 return false;
870 }
871
872 is_valid_ = true;
873 return AidlConstantValue::CheckValid();
874 }
875
evaluate() const876 bool AidlBinaryConstExpression::evaluate() const {
877 if (is_evaluated_) {
878 return is_valid_;
879 }
880 is_evaluated_ = true;
881 AIDL_FATAL_IF(left_val_ == nullptr, this);
882 AIDL_FATAL_IF(right_val_ == nullptr, this);
883
884 // Recursively evaluate the binary expression tree
885 if (!left_val_->is_evaluated_ || !right_val_->is_evaluated_) {
886 // TODO(b/142722772) CheckValid() should be called before ValueString()
887 bool success = CheckValid();
888 success &= left_val_->evaluate();
889 success &= right_val_->evaluate();
890 if (!success) {
891 is_valid_ = false;
892 return false;
893 }
894 }
895 if (!left_val_->is_valid_ || !right_val_->is_valid_) {
896 is_valid_ = false;
897 return false;
898 }
899 is_valid_ = AreCompatibleTypes(left_val_->final_type_, right_val_->final_type_);
900 if (!is_valid_) {
901 AIDL_ERROR(this) << "Cannot perform operation '" << op_ << "' on "
902 << ToString(right_val_->GetType()) << " and " << ToString(left_val_->GetType())
903 << ".";
904 return false;
905 }
906
907 bool isArithmeticOrBitflip = OP_IS_BIN_ARITHMETIC || OP_IS_BIN_BITFLIP;
908
909 // Handle String case first
910 if (left_val_->final_type_ == Type::STRING) {
911 AIDL_FATAL_IF(right_val_->final_type_ != Type::STRING, this);
912 if (!OPEQ("+")) {
913 AIDL_ERROR(this) << "Only '+' is supported for strings, not '" << op_ << "'.";
914 final_type_ = Type::ERROR;
915 is_valid_ = false;
916 return false;
917 }
918
919 // Remove trailing " from lhs
920 const string& lhs = left_val_->final_string_value_;
921 if (lhs.back() != '"') {
922 AIDL_ERROR(this) << "'" << lhs << "' is missing a trailing quote.";
923 final_type_ = Type::ERROR;
924 is_valid_ = false;
925 return false;
926 }
927 const string& rhs = right_val_->final_string_value_;
928 // Remove starting " from rhs
929 if (rhs.front() != '"') {
930 AIDL_ERROR(this) << "'" << rhs << "' is missing a leading quote.";
931 final_type_ = Type::ERROR;
932 is_valid_ = false;
933 return false;
934 }
935
936 final_string_value_ = string(lhs.begin(), lhs.end() - 1).append(rhs.begin() + 1, rhs.end());
937 final_type_ = Type::STRING;
938 return true;
939 }
940
941 // CASE: + - * / % | ^ & < > <= >= == !=
942 if (isArithmeticOrBitflip || OP_IS_BIN_COMP) {
943 // promoted kind for both operands.
944 Type promoted = UsualArithmeticConversion(IntegralPromotion(left_val_->final_type_),
945 IntegralPromotion(right_val_->final_type_));
946 // result kind.
947 final_type_ = isArithmeticOrBitflip
948 ? promoted // arithmetic or bitflip operators generates promoted type
949 : Type::BOOLEAN; // comparison operators generates bool
950
951 #define CASE_BINARY_COMMON(__type__) \
952 return is_valid_ = \
953 handleBinaryCommon(*this, static_cast<__type__>(left_val_->final_value_), op_, \
954 static_cast<__type__>(right_val_->final_value_), &final_value_);
955
956 SWITCH_KIND(promoted, CASE_BINARY_COMMON, SHOULD_NOT_REACH(); final_type_ = Type::ERROR;
957 is_valid_ = false; return false;)
958 }
959
960 // CASE: << >>
961 string newOp = op_;
962 if (OP_IS_BIN_SHIFT) {
963 // promoted kind for both operands.
964 final_type_ = UsualArithmeticConversion(IntegralPromotion(left_val_->final_type_),
965 IntegralPromotion(right_val_->final_type_));
966 auto numBits = right_val_->final_value_;
967 if (numBits < 0) {
968 // shifting with negative number of bits is undefined in C. In AIDL it
969 // is defined as shifting into the other direction.
970 newOp = OPEQ("<<") ? ">>" : "<<";
971 numBits = -numBits;
972 }
973
974 #define CASE_SHIFT(__type__) \
975 return is_valid_ = handleShift(*this, static_cast<__type__>(left_val_->final_value_), newOp, \
976 static_cast<__type__>(numBits), &final_value_);
977
978 SWITCH_KIND(final_type_, CASE_SHIFT, SHOULD_NOT_REACH(); final_type_ = Type::ERROR;
979 is_valid_ = false; return false;)
980 }
981
982 // CASE: && ||
983 if (OP_IS_BIN_LOGICAL) {
984 final_type_ = Type::BOOLEAN;
985 // easy; everything is bool.
986 return handleLogical(*this, left_val_->final_value_, op_, right_val_->final_value_,
987 &final_value_);
988 }
989
990 SHOULD_NOT_REACH();
991 is_valid_ = false;
992 return false;
993 }
994
995 // Constructor for integer(byte, int, long)
996 // Keep parsed integer & literal
AidlConstantValue(const AidlLocation & location,Type parsed_type,int64_t parsed_value,const string & checked_value)997 AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type parsed_type,
998 int64_t parsed_value, const string& checked_value)
999 : AidlNode(location),
1000 type_(parsed_type),
1001 value_(checked_value),
1002 final_type_(parsed_type),
1003 final_value_(parsed_value) {
1004 AIDL_FATAL_IF(value_.empty() && type_ != Type::ERROR, location);
1005 AIDL_FATAL_IF(type_ != Type::INT8 && type_ != Type::INT32 && type_ != Type::INT64, location);
1006 }
1007
1008 // Constructor for non-integer(String, char, boolean, float, double)
1009 // Keep literal as it is. (e.g. String literal has double quotes at both ends)
AidlConstantValue(const AidlLocation & location,Type type,const string & checked_value)1010 AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type type,
1011 const string& checked_value)
1012 : AidlNode(location),
1013 type_(type),
1014 value_(checked_value),
1015 final_type_(type) {
1016 AIDL_FATAL_IF(value_.empty() && type_ != Type::ERROR, location);
1017 switch (type_) {
1018 case Type::INT8:
1019 case Type::INT32:
1020 case Type::INT64:
1021 case Type::ARRAY:
1022 AIDL_FATAL(this) << "Invalid type: " << ToString(type_);
1023 break;
1024 default:
1025 break;
1026 }
1027 }
1028
1029 // Constructor for array
AidlConstantValue(const AidlLocation & location,Type type,std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values,const std::string & value)1030 AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type type,
1031 std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values,
1032 const std::string& value)
1033 : AidlNode(location),
1034 type_(type),
1035 values_(std::move(*values)),
1036 value_(value),
1037 is_valid_(false),
1038 is_evaluated_(false),
1039 final_type_(type) {
1040 AIDL_FATAL_IF(type_ != Type::ARRAY, location);
1041 }
1042
AidlUnaryConstExpression(const AidlLocation & location,const string & op,std::unique_ptr<AidlConstantValue> rval)1043 AidlUnaryConstExpression::AidlUnaryConstExpression(const AidlLocation& location, const string& op,
1044 std::unique_ptr<AidlConstantValue> rval)
1045 : AidlConstantValue(location, Type::UNARY, op + rval->value_),
1046 unary_(std::move(rval)),
1047 op_(op) {
1048 final_type_ = Type::UNARY;
1049 }
1050
AidlBinaryConstExpression(const AidlLocation & location,std::unique_ptr<AidlConstantValue> lval,const string & op,std::unique_ptr<AidlConstantValue> rval)1051 AidlBinaryConstExpression::AidlBinaryConstExpression(const AidlLocation& location,
1052 std::unique_ptr<AidlConstantValue> lval,
1053 const string& op,
1054 std::unique_ptr<AidlConstantValue> rval)
1055 : AidlConstantValue(location, Type::BINARY, lval->value_ + op + rval->value_),
1056 left_val_(std::move(lval)),
1057 right_val_(std::move(rval)),
1058 op_(op) {
1059 final_type_ = Type::BINARY;
1060 }
1061