1 /*
2  * Copyright (C) 2019, The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *     http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "aidl_language.h"
18 #include "aidl_typenames.h"
19 #include "logging.h"
20 
21 #include <stdlib.h>
22 #include <algorithm>
23 #include <iostream>
24 #include <limits>
25 #include <memory>
26 
27 #include <android-base/parsedouble.h>
28 #include <android-base/parseint.h>
29 #include <android-base/strings.h>
30 
31 using android::base::ConsumeSuffix;
32 using android::base::EndsWith;
33 using android::base::Join;
34 using android::base::StartsWith;
35 using std::string;
36 using std::unique_ptr;
37 using std::vector;
38 
39 template <typename T>
CLZ(T x)40 constexpr int CLZ(T x) {
41   // __builtin_clz(0) is undefined
42   if (x == 0) return sizeof(T) * 8;
43   return (sizeof(T) == sizeof(uint64_t)) ? __builtin_clzl(x) : __builtin_clz(x);
44 }
45 
46 template <typename T>
47 class OverflowGuard {
48  public:
OverflowGuard(T value)49   OverflowGuard(T value) : mValue(value) {}
Overflowed() const50   bool Overflowed() const { return mOverflowed; }
51 
operator +()52   T operator+() { return +mValue; }
operator -()53   T operator-() {
54     if (isMin()) {
55       mOverflowed = true;
56       return 0;
57     }
58     return -mValue;
59   }
operator !()60   T operator!() { return !mValue; }
operator ~()61   T operator~() { return ~mValue; }
62 
operator +(T o)63   T operator+(T o) {
64     T out;
65     mOverflowed = __builtin_add_overflow(mValue, o, &out);
66     return out;
67   }
operator -(T o)68   T operator-(T o) {
69     T out;
70     mOverflowed = __builtin_sub_overflow(mValue, o, &out);
71     return out;
72   }
operator *(T o)73   T operator*(T o) {
74     T out;
75 #ifdef _WIN32
76     // ___mulodi4 not on windows https://bugs.llvm.org/show_bug.cgi?id=46669
77     // we should still get an error here from ubsan, but the nice error
78     // is needed on linux for aidl_parser_fuzzer, where we are more
79     // concerned about overflows elsewhere in the compiler in addition to
80     // those in interfaces.
81     out = mValue * o;
82 #else
83     mOverflowed = __builtin_mul_overflow(mValue, o, &out);
84 #endif
85     return out;
86   }
operator /(T o)87   T operator/(T o) {
88     if (o == 0 || (isMin() && o == -1)) {
89       mOverflowed = true;
90       return 0;
91     }
92     return mValue / o;
93   }
operator %(T o)94   T operator%(T o) {
95     if (o == 0 || (isMin() && o == -1)) {
96       mOverflowed = true;
97       return 0;
98     }
99     return mValue % o;
100   }
operator |(T o)101   T operator|(T o) { return mValue | o; }
operator ^(T o)102   T operator^(T o) { return mValue ^ o; }
operator &(T o)103   T operator&(T o) { return mValue & o; }
operator <(T o)104   T operator<(T o) { return mValue < o; }
operator >(T o)105   T operator>(T o) { return mValue > o; }
operator <=(T o)106   T operator<=(T o) { return mValue <= o; }
operator >=(T o)107   T operator>=(T o) { return mValue >= o; }
operator ==(T o)108   T operator==(T o) { return mValue == o; }
operator !=(T o)109   T operator!=(T o) { return mValue != o; }
operator >>(T o)110   T operator>>(T o) {
111     if (o < 0 || o >= static_cast<T>(sizeof(T) * 8) || mValue < 0) {
112       mOverflowed = true;
113       return 0;
114     }
115     return mValue >> o;
116   }
operator <<(T o)117   T operator<<(T o) {
118     if (o < 0 || mValue < 0 || o > CLZ(mValue) || o >= static_cast<T>(sizeof(T) * 8)) {
119       mOverflowed = true;
120       return 0;
121     }
122     return mValue << o;
123   }
operator ||(T o)124   T operator||(T o) { return mValue || o; }
operator &&(T o)125   T operator&&(T o) { return mValue && o; }
126 
127  private:
isMin()128   bool isMin() { return mValue == std::numeric_limits<T>::min(); }
129 
130   T mValue;
131   bool mOverflowed = false;
132 };
133 
134 template <typename T>
processGuard(const OverflowGuard<T> & guard,const AidlConstantValue & context)135 bool processGuard(const OverflowGuard<T>& guard, const AidlConstantValue& context) {
136   if (guard.Overflowed()) {
137     AIDL_ERROR(context) << "Constant expression computation overflows.";
138     return false;
139   }
140   return true;
141 }
142 
143 // TODO: factor out all these macros
144 #define SHOULD_NOT_REACH() AIDL_FATAL(AIDL_LOCATION_HERE) << "Should not reach."
145 #define OPEQ(__y__) (string(op_) == string(__y__))
146 #define COMPUTE_UNARY(T, __op__)         \
147   if (op == string(#__op__)) {           \
148     OverflowGuard<T> guard(val);         \
149     *out = __op__ guard;                 \
150     return processGuard(guard, context); \
151   }
152 #define COMPUTE_BINARY(T, __op__)        \
153   if (op == string(#__op__)) {           \
154     OverflowGuard<T> guard(lval);        \
155     *out = guard __op__ rval;            \
156     return processGuard(guard, context); \
157   }
158 #define OP_IS_BIN_ARITHMETIC (OPEQ("+") || OPEQ("-") || OPEQ("*") || OPEQ("/") || OPEQ("%"))
159 #define OP_IS_BIN_BITFLIP (OPEQ("|") || OPEQ("^") || OPEQ("&"))
160 #define OP_IS_BIN_COMP \
161   (OPEQ("<") || OPEQ(">") || OPEQ("<=") || OPEQ(">=") || OPEQ("==") || OPEQ("!="))
162 #define OP_IS_BIN_SHIFT (OPEQ(">>") || OPEQ("<<"))
163 #define OP_IS_BIN_LOGICAL (OPEQ("||") || OPEQ("&&"))
164 
165 // NOLINT to suppress missing parentheses warnings about __def__.
166 #define SWITCH_KIND(__cond__, __action__, __def__) \
167   switch (__cond__) {                              \
168     case Type::BOOLEAN:                            \
169       __action__(bool);                            \
170     case Type::INT8:                               \
171       __action__(int8_t);                          \
172     case Type::INT32:                              \
173       __action__(int32_t);                         \
174     case Type::INT64:                              \
175       __action__(int64_t);                         \
176     default:                                       \
177       __def__; /* NOLINT */                        \
178   }
179 
180 template <class T>
handleUnary(const AidlConstantValue & context,const string & op,T val,int64_t * out)181 bool handleUnary(const AidlConstantValue& context, const string& op, T val, int64_t* out) {
182   COMPUTE_UNARY(T, +)
183   COMPUTE_UNARY(T, -)
184   COMPUTE_UNARY(T, !)
185   COMPUTE_UNARY(T, ~)
186   AIDL_FATAL(context) << "Could not handleUnary for " << op << " " << val;
187   return false;
188 }
189 template <>
190 bool handleUnary<bool>(const AidlConstantValue& context, const string& op, bool val, int64_t* out) {
191   COMPUTE_UNARY(bool, +)
192   COMPUTE_UNARY(bool, -)
193   COMPUTE_UNARY(bool, !)
194 
195   if (op == "~") {
196     AIDL_ERROR(context) << "Bitwise negation of a boolean expression is always true.";
197     return false;
198   }
199   AIDL_FATAL(context) << "Could not handleUnary for " << op << " " << val;
200   return false;
201 }
202 
203 template <class T>
handleBinaryCommon(const AidlConstantValue & context,T lval,const string & op,T rval,int64_t * out)204 bool handleBinaryCommon(const AidlConstantValue& context, T lval, const string& op, T rval,
205                         int64_t* out) {
206   COMPUTE_BINARY(T, +)
207   COMPUTE_BINARY(T, -)
208   COMPUTE_BINARY(T, *)
209   COMPUTE_BINARY(T, /)
210   COMPUTE_BINARY(T, %)
211   COMPUTE_BINARY(T, |)
212   COMPUTE_BINARY(T, ^)
213   COMPUTE_BINARY(T, &)
214   // comparison operators: return 0 or 1 by nature.
215   COMPUTE_BINARY(T, ==)
216   COMPUTE_BINARY(T, !=)
217   COMPUTE_BINARY(T, <)
218   COMPUTE_BINARY(T, >)
219   COMPUTE_BINARY(T, <=)
220   COMPUTE_BINARY(T, >=)
221 
222   AIDL_FATAL(context) << "Could not handleBinaryCommon for " << lval << " " << op << " " << rval;
223   return false;
224 }
225 
226 template <class T>
handleShift(const AidlConstantValue & context,T lval,const string & op,T rval,int64_t * out)227 bool handleShift(const AidlConstantValue& context, T lval, const string& op, T rval, int64_t* out) {
228   // just cast rval to int64_t and it should fit.
229   COMPUTE_BINARY(T, >>)
230   COMPUTE_BINARY(T, <<)
231 
232   AIDL_FATAL(context) << "Could not handleShift for " << lval << " " << op << " " << rval;
233   return false;
234 }
235 
handleLogical(const AidlConstantValue & context,bool lval,const string & op,bool rval,int64_t * out)236 bool handleLogical(const AidlConstantValue& context, bool lval, const string& op, bool rval,
237                    int64_t* out) {
238   COMPUTE_BINARY(bool, ||);
239   COMPUTE_BINARY(bool, &&);
240 
241   AIDL_FATAL(context) << "Could not handleLogical for " << lval << " " << op << " " << rval;
242   return false;
243 }
244 
ParseFloating(std::string_view sv,double * parsed)245 bool ParseFloating(std::string_view sv, double* parsed) {
246   // float literal should be parsed successfully.
247   android::base::ConsumeSuffix(&sv, "f");
248   return android::base::ParseDouble(std::string(sv).data(), parsed);
249 }
250 
ParseFloating(std::string_view sv,float * parsed)251 bool ParseFloating(std::string_view sv, float* parsed) {
252   // we only care about float literal (with suffix "f").
253   if (!android::base::ConsumeSuffix(&sv, "f")) {
254     return false;
255   }
256   return android::base::ParseFloat(std::string(sv).data(), parsed);
257 }
258 
IsCompatibleType(Type type,const string & op)259 bool AidlUnaryConstExpression::IsCompatibleType(Type type, const string& op) {
260   // Verify the unary type here
261   switch (type) {
262     case Type::BOOLEAN:  // fall-through
263     case Type::INT8:     // fall-through
264     case Type::INT32:    // fall-through
265     case Type::INT64:
266       return true;
267     case Type::FLOATING:
268       return (op == "+" || op == "-");
269     default:
270       return false;
271   }
272 }
273 
AreCompatibleTypes(Type t1,Type t2)274 bool AidlBinaryConstExpression::AreCompatibleTypes(Type t1, Type t2) {
275   switch (t1) {
276     case Type::STRING:
277       if (t2 == Type::STRING) {
278         return true;
279       }
280       break;
281     case Type::BOOLEAN:  // fall-through
282     case Type::INT8:     // fall-through
283     case Type::INT32:    // fall-through
284     case Type::INT64:
285       switch (t2) {
286         case Type::BOOLEAN:  // fall-through
287         case Type::INT8:     // fall-through
288         case Type::INT32:    // fall-through
289         case Type::INT64:
290           return true;
291           break;
292         default:
293           break;
294       }
295       break;
296     default:
297       break;
298   }
299 
300   return false;
301 }
302 
303 // Returns the promoted kind for both operands
UsualArithmeticConversion(Type left,Type right)304 AidlConstantValue::Type AidlBinaryConstExpression::UsualArithmeticConversion(Type left,
305                                                                              Type right) {
306   // These are handled as special cases
307   AIDL_FATAL_IF(left == Type::STRING || right == Type::STRING, AIDL_LOCATION_HERE);
308   AIDL_FATAL_IF(left == Type::FLOATING || right == Type::FLOATING, AIDL_LOCATION_HERE);
309 
310   // Kinds in concern: bool, (u)int[8|32|64]
311   if (left == right) return left;  // easy case
312   if (left == Type::BOOLEAN) return right;
313   if (right == Type::BOOLEAN) return left;
314 
315   return left < right ? right : left;
316 }
317 
318 // Returns the promoted integral type where INT32 is the smallest type
IntegralPromotion(Type in)319 AidlConstantValue::Type AidlBinaryConstExpression::IntegralPromotion(Type in) {
320   return (Type::INT32 < in) ? in : Type::INT32;
321 }
322 
Default(const AidlTypeSpecifier & specifier)323 AidlConstantValue* AidlConstantValue::Default(const AidlTypeSpecifier& specifier) {
324   AidlLocation location = specifier.GetLocation();
325 
326   // allocation of int[0] is a bit wasteful in Java
327   if (specifier.IsArray()) {
328     return nullptr;
329   }
330 
331   const std::string name = specifier.GetName();
332   if (name == "boolean") {
333     return Boolean(location, false);
334   }
335   if (name == "char") {
336     return Character(location, "'\\0'");  // literal to be used in backends
337   }
338   if (name == "byte" || name == "int" || name == "long") {
339     return Integral(location, "0");
340   }
341   if (name == "float") {
342     return Floating(location, "0.0f");
343   }
344   if (name == "double") {
345     return Floating(location, "0.0");
346   }
347   return nullptr;
348 }
349 
Boolean(const AidlLocation & location,bool value)350 AidlConstantValue* AidlConstantValue::Boolean(const AidlLocation& location, bool value) {
351   return new AidlConstantValue(location, Type::BOOLEAN, value ? "true" : "false");
352 }
353 
Character(const AidlLocation & location,const std::string & value)354 AidlConstantValue* AidlConstantValue::Character(const AidlLocation& location,
355                                                 const std::string& value) {
356   return new AidlConstantValue(location, Type::CHARACTER, value);
357 }
358 
Floating(const AidlLocation & location,const std::string & value)359 AidlConstantValue* AidlConstantValue::Floating(const AidlLocation& location,
360                                                const std::string& value) {
361   return new AidlConstantValue(location, Type::FLOATING, value);
362 }
363 
IsHex(const string & value)364 bool AidlConstantValue::IsHex(const string& value) {
365   return StartsWith(value, "0x") || StartsWith(value, "0X");
366 }
367 
ParseIntegral(const string & value,int64_t * parsed_value,Type * parsed_type)368 bool AidlConstantValue::ParseIntegral(const string& value, int64_t* parsed_value,
369                                       Type* parsed_type) {
370   if (parsed_value == nullptr || parsed_type == nullptr) {
371     return false;
372   }
373 
374   const bool isLong = EndsWith(value, 'l') || EndsWith(value, 'L');
375   const std::string value_substr = isLong ? value.substr(0, value.size() - 1) : value;
376 
377   if (IsHex(value)) {
378     // AIDL considers 'const int foo = 0xffffffff' as -1, but if we want to
379     // handle that when computing constant expressions, then we need to
380     // represent 0xffffffff as a uint32_t. However, AIDL only has signed types;
381     // so we parse as an unsigned int when possible and then cast to a signed
382     // int. One example of this is in ICameraService.aidl where a constant int
383     // is used for bit manipulations which ideally should be handled with an
384     // unsigned int.
385     //
386     // Note, for historical consistency, we need to consider small hex values
387     // as an integral type. Recognizing them as INT8 could break some files,
388     // even though it would simplify this code.
389     if (uint32_t rawValue32;
390         !isLong && android::base::ParseUint<uint32_t>(value_substr, &rawValue32)) {
391       *parsed_value = static_cast<int32_t>(rawValue32);
392       *parsed_type = Type::INT32;
393     } else if (uint64_t rawValue64; android::base::ParseUint<uint64_t>(value_substr, &rawValue64)) {
394       *parsed_value = static_cast<int64_t>(rawValue64);
395       *parsed_type = Type::INT64;
396     } else {
397       *parsed_value = 0;
398       *parsed_type = Type::ERROR;
399       return false;
400     }
401     return true;
402   }
403 
404   if (!android::base::ParseInt<int64_t>(value_substr, parsed_value)) {
405     *parsed_value = 0;
406     *parsed_type = Type::ERROR;
407     return false;
408   }
409 
410   if (isLong) {
411     *parsed_type = Type::INT64;
412   } else {
413     // guess literal type.
414     if (*parsed_value <= INT8_MAX && *parsed_value >= INT8_MIN) {
415       *parsed_type = Type::INT8;
416     } else if (*parsed_value <= INT32_MAX && *parsed_value >= INT32_MIN) {
417       *parsed_type = Type::INT32;
418     } else {
419       *parsed_type = Type::INT64;
420     }
421   }
422   return true;
423 }
424 
Integral(const AidlLocation & location,const string & value)425 AidlConstantValue* AidlConstantValue::Integral(const AidlLocation& location, const string& value) {
426   AIDL_FATAL_IF(value.empty(), location);
427 
428   Type parsed_type;
429   int64_t parsed_value = 0;
430   bool success = ParseIntegral(value, &parsed_value, &parsed_type);
431   if (!success) {
432     return nullptr;
433   }
434 
435   return new AidlConstantValue(location, parsed_type, parsed_value, value);
436 }
437 
Array(const AidlLocation & location,std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values)438 AidlConstantValue* AidlConstantValue::Array(
439     const AidlLocation& location, std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values) {
440   AIDL_FATAL_IF(values == nullptr, location);
441   std::vector<std::string> str_values;
442   for (const auto& v : *values) {
443     str_values.push_back(v->value_);
444   }
445   return new AidlConstantValue(location, Type::ARRAY, std::move(values), Join(str_values, ", "));
446 }
447 
String(const AidlLocation & location,const string & value)448 AidlConstantValue* AidlConstantValue::String(const AidlLocation& location, const string& value) {
449   return new AidlConstantValue(location, Type::STRING, value);
450 }
451 
ValueString(const AidlTypeSpecifier & type,const ConstantValueDecorator & decorator) const452 string AidlConstantValue::ValueString(const AidlTypeSpecifier& type,
453                                       const ConstantValueDecorator& decorator) const {
454   if (type.IsGeneric()) {
455     AIDL_ERROR(type) << "Generic type cannot be specified with a constant literal.";
456     return "";
457   }
458   if (!is_evaluated_) {
459     // TODO(b/142722772) CheckValid() should be called before ValueString()
460     bool success = CheckValid();
461     success &= evaluate();
462     if (!success) {
463       // the detailed error message shall be printed in evaluate
464       return "";
465     }
466   }
467   if (!is_valid_) {
468     AIDL_ERROR(this) << "Invalid constant value: " + value_;
469     return "";
470   }
471 
472   const AidlDefinedType* defined_type = type.GetDefinedType();
473   if (defined_type && !type.IsArray()) {
474     const AidlEnumDeclaration* enum_type = defined_type->AsEnumDeclaration();
475     if (!enum_type) {
476       AIDL_ERROR(this) << "Invalid type (" << defined_type->GetCanonicalName()
477                        << ") for a const value (" << value_ << ")";
478       return "";
479     }
480     if (type_ != Type::REF) {
481       AIDL_ERROR(this) << "Invalid value (" << value_ << ") for enum "
482                        << enum_type->GetCanonicalName();
483       return "";
484     }
485     return decorator(type, value_);
486   }
487 
488   const string& type_string = type.GetName();
489   int err = 0;
490 
491   switch (final_type_) {
492     case Type::CHARACTER:
493       if (type_string == "char") {
494         return decorator(type, final_string_value_);
495       }
496       err = -1;
497       break;
498     case Type::STRING:
499       if (type_string == "String") {
500         return decorator(type, final_string_value_);
501       }
502       err = -1;
503       break;
504     case Type::BOOLEAN:  // fall-through
505     case Type::INT8:     // fall-through
506     case Type::INT32:    // fall-through
507     case Type::INT64:
508       if (type_string == "byte") {
509         if (final_value_ > INT8_MAX || final_value_ < INT8_MIN) {
510           err = -1;
511           break;
512         }
513         return decorator(type, std::to_string(static_cast<int8_t>(final_value_)));
514       } else if (type_string == "int") {
515         if (final_value_ > INT32_MAX || final_value_ < INT32_MIN) {
516           err = -1;
517           break;
518         }
519         return decorator(type, std::to_string(static_cast<int32_t>(final_value_)));
520       } else if (type_string == "long") {
521         return decorator(type, std::to_string(final_value_));
522       } else if (type_string == "boolean") {
523         return decorator(type, final_value_ ? "true" : "false");
524       }
525       err = -1;
526       break;
527     case Type::ARRAY: {
528       if (!type.IsArray()) {
529         err = -1;
530         break;
531       }
532       vector<string> value_strings;
533       value_strings.reserve(values_.size());
534       bool success = true;
535 
536       for (const auto& value : values_) {
537         const AidlTypeSpecifier& array_base = type.ArrayBase();
538         const string value_string = value->ValueString(array_base, decorator);
539         if (value_string.empty()) {
540           success = false;
541           break;
542         }
543         value_strings.push_back(value_string);
544       }
545       if (!success) {
546         err = -1;
547         break;
548       }
549 
550       return decorator(type, "{" + Join(value_strings, ", ") + "}");
551     }
552     case Type::FLOATING: {
553       if (type_string == "double") {
554         double parsed_value;
555         if (!ParseFloating(value_, &parsed_value)) {
556           AIDL_ERROR(this) << "Could not parse " << value_;
557           err = -1;
558           break;
559         }
560         return decorator(type, std::to_string(parsed_value));
561       }
562       if (type_string == "float") {
563         float parsed_value;
564         if (!ParseFloating(value_, &parsed_value)) {
565           AIDL_ERROR(this) << "Could not parse " << value_;
566           err = -1;
567           break;
568         }
569         return decorator(type, std::to_string(parsed_value) + "f");
570       }
571       err = -1;
572       break;
573     }
574     default:
575       err = -1;
576       break;
577   }
578 
579   AIDL_FATAL_IF(err == 0, this);
580   AIDL_ERROR(this) << "Invalid type specifier for " << ToString(final_type_) << ": " << type_string;
581   return "";
582 }
583 
CheckValid() const584 bool AidlConstantValue::CheckValid() const {
585   // Nothing needs to be checked here. The constant value will be validated in
586   // the constructor or in the evaluate() function.
587   if (is_evaluated_) return is_valid_;
588 
589   switch (type_) {
590     case Type::BOOLEAN:    // fall-through
591     case Type::INT8:       // fall-through
592     case Type::INT32:      // fall-through
593     case Type::INT64:      // fall-through
594     case Type::CHARACTER:  // fall-through
595     case Type::STRING:     // fall-through
596     case Type::REF:        // fall-through
597     case Type::FLOATING:   // fall-through
598     case Type::UNARY:      // fall-through
599     case Type::BINARY:
600       is_valid_ = true;
601       break;
602     case Type::ARRAY:
603       is_valid_ = true;
604       for (const auto& v : values_) is_valid_ &= v->CheckValid();
605       break;
606     case Type::ERROR:
607       return false;
608     default:
609       AIDL_FATAL(this) << "Unrecognized constant value type: " << ToString(type_);
610       return false;
611   }
612 
613   return true;
614 }
615 
evaluate() const616 bool AidlConstantValue::evaluate() const {
617   if (is_evaluated_) {
618     return is_valid_;
619   }
620   int err = 0;
621   is_evaluated_ = true;
622 
623   switch (type_) {
624     case Type::ARRAY: {
625       Type array_type = Type::ERROR;
626       bool success = true;
627       for (const auto& value : values_) {
628         success = value->CheckValid();
629         if (success) {
630           success = value->evaluate();
631           if (!success) {
632             AIDL_ERROR(this) << "Invalid array element: " << value->value_;
633             break;
634           }
635           if (array_type == Type::ERROR) {
636             array_type = value->final_type_;
637           } else if (!AidlBinaryConstExpression::AreCompatibleTypes(array_type,
638                                                                     value->final_type_)) {
639             AIDL_ERROR(this) << "Incompatible array element type: " << ToString(value->final_type_)
640                              << ". Expecting type compatible with " << ToString(array_type);
641             success = false;
642             break;
643           }
644         } else {
645           break;
646         }
647       }
648       if (!success) {
649         err = -1;
650         break;
651       }
652       final_type_ = type_;
653       break;
654     }
655     case Type::BOOLEAN:
656       if ((value_ != "true") && (value_ != "false")) {
657         AIDL_ERROR(this) << "Invalid constant boolean value: " << value_;
658         err = -1;
659         break;
660       }
661       final_value_ = (value_ == "true") ? 1 : 0;
662       final_type_ = type_;
663       break;
664     case Type::INT8:   // fall-through
665     case Type::INT32:  // fall-through
666     case Type::INT64:
667       // Parsing happens in the constructor
668       final_type_ = type_;
669       break;
670     case Type::CHARACTER:  // fall-through
671     case Type::STRING:
672       final_string_value_ = value_;
673       final_type_ = type_;
674       break;
675     case Type::FLOATING:
676       // Just parse on the fly in ValueString
677       final_type_ = type_;
678       break;
679     default:
680       AIDL_FATAL(this) << "Unrecognized constant value type: " << ToString(type_);
681       err = -1;
682   }
683 
684   return (err == 0) ? true : false;
685 }
686 
ToString(Type type)687 string AidlConstantValue::ToString(Type type) {
688   switch (type) {
689     case Type::BOOLEAN:
690       return "a literal boolean";
691     case Type::INT8:
692       return "an int8 literal";
693     case Type::INT32:
694       return "an int32 literal";
695     case Type::INT64:
696       return "an int64 literal";
697     case Type::ARRAY:
698       return "a literal array";
699     case Type::CHARACTER:
700       return "a literal char";
701     case Type::STRING:
702       return "a literal string";
703     case Type::REF:
704       return "a reference";
705     case Type::FLOATING:
706       return "a literal float";
707     case Type::UNARY:
708       return "a unary expression";
709     case Type::BINARY:
710       return "a binary expression";
711     case Type::ERROR:
712       AIDL_FATAL(AIDL_LOCATION_HERE) << "aidl internal error: error type failed to halt program";
713       return "";
714     default:
715       AIDL_FATAL(AIDL_LOCATION_HERE)
716           << "aidl internal error: unknown constant type: " << static_cast<int>(type);
717       return "";  // not reached
718   }
719 }
720 
AidlConstantReference(const AidlLocation & location,const std::string & value)721 AidlConstantReference::AidlConstantReference(const AidlLocation& location, const std::string& value)
722     : AidlConstantValue(location, Type::REF, value) {
723   const auto pos = value.find_last_of('.');
724   if (pos == string::npos) {
725     field_name_ = value;
726   } else {
727     ref_type_ = std::make_unique<AidlTypeSpecifier>(location, value.substr(0, pos), false, nullptr,
728                                                     Comments{});
729     field_name_ = value.substr(pos + 1);
730   }
731 }
732 
Resolve(const AidlDefinedType * scope) const733 const AidlConstantValue* AidlConstantReference::Resolve(const AidlDefinedType* scope) const {
734   if (resolved_) return resolved_;
735 
736   const AidlDefinedType* defined_type;
737   if (ref_type_) {
738     defined_type = ref_type_->GetDefinedType();
739   } else {
740     defined_type = scope;
741   }
742 
743   if (!defined_type) {
744     // This can happen when "const reference" is used in an unsupported way,
745     // but missed in checks there. It works as a safety net.
746     AIDL_ERROR(*this) << "Can't resolve the reference (" << value_ << ")";
747     return nullptr;
748   }
749 
750   if (auto enum_decl = defined_type->AsEnumDeclaration(); enum_decl) {
751     for (const auto& e : enum_decl->GetEnumerators()) {
752       if (e->GetName() == field_name_) {
753         return resolved_ = e->GetValue();
754       }
755     }
756   } else {
757     for (const auto& c : defined_type->GetConstantDeclarations()) {
758       if (c->GetName() == field_name_) {
759         return resolved_ = &c->GetValue();
760       }
761     }
762   }
763   AIDL_ERROR(*this) << "Can't find " << field_name_ << " in " << defined_type->GetName();
764   return nullptr;
765 }
766 
CheckValid() const767 bool AidlConstantReference::CheckValid() const {
768   if (is_evaluated_) return is_valid_;
769   AIDL_FATAL_IF(!resolved_, this) << "Should be resolved first: " << value_;
770   is_valid_ = resolved_->CheckValid();
771   return is_valid_;
772 }
773 
evaluate() const774 bool AidlConstantReference::evaluate() const {
775   if (is_evaluated_) return is_valid_;
776   AIDL_FATAL_IF(!resolved_, this) << "Should be resolved first: " << value_;
777   is_evaluated_ = true;
778 
779   resolved_->evaluate();
780   is_valid_ = resolved_->is_valid_;
781   final_type_ = resolved_->final_type_;
782   if (is_valid_) {
783     if (final_type_ == Type::STRING) {
784       final_string_value_ = resolved_->final_string_value_;
785     } else {
786       final_value_ = resolved_->final_value_;
787     }
788   }
789   return is_valid_;
790 }
791 
CheckValid() const792 bool AidlUnaryConstExpression::CheckValid() const {
793   if (is_evaluated_) return is_valid_;
794   AIDL_FATAL_IF(unary_ == nullptr, this);
795 
796   is_valid_ = unary_->CheckValid();
797   if (!is_valid_) {
798     final_type_ = Type::ERROR;
799     return false;
800   }
801 
802   return AidlConstantValue::CheckValid();
803 }
804 
evaluate() const805 bool AidlUnaryConstExpression::evaluate() const {
806   if (is_evaluated_) {
807     return is_valid_;
808   }
809   is_evaluated_ = true;
810 
811   // Recursively evaluate the expression tree
812   if (!unary_->is_evaluated_) {
813     // TODO(b/142722772) CheckValid() should be called before ValueString()
814     bool success = CheckValid();
815     success &= unary_->evaluate();
816     if (!success) {
817       is_valid_ = false;
818       return false;
819     }
820   }
821   if (!IsCompatibleType(unary_->final_type_, op_)) {
822     AIDL_ERROR(unary_) << "'" << op_ << "'"
823                        << " is not compatible with " << ToString(unary_->final_type_)
824                        << ": " + value_;
825     is_valid_ = false;
826     return false;
827   }
828   if (!unary_->is_valid_) {
829     AIDL_ERROR(unary_) << "Invalid constant unary expression: " + value_;
830     is_valid_ = false;
831     return false;
832   }
833   final_type_ = unary_->final_type_;
834 
835   if (final_type_ == Type::FLOATING) {
836     // don't do anything here. ValueString() will handle everything.
837     is_valid_ = true;
838     return true;
839   }
840 
841 #define CASE_UNARY(__type__) \
842   return is_valid_ =         \
843              handleUnary(*this, op_, static_cast<__type__>(unary_->final_value_), &final_value_);
844 
845   SWITCH_KIND(final_type_, CASE_UNARY, SHOULD_NOT_REACH(); final_type_ = Type::ERROR;
846               is_valid_ = false; return false;)
847 }
848 
CheckValid() const849 bool AidlBinaryConstExpression::CheckValid() const {
850   bool success = false;
851   if (is_evaluated_) return is_valid_;
852   AIDL_FATAL_IF(left_val_ == nullptr, this);
853   AIDL_FATAL_IF(right_val_ == nullptr, this);
854 
855   success = left_val_->CheckValid();
856   if (!success) {
857     final_type_ = Type::ERROR;
858     AIDL_ERROR(this) << "Invalid left operand in binary expression: " + value_;
859   }
860 
861   success = right_val_->CheckValid();
862   if (!success) {
863     AIDL_ERROR(this) << "Invalid right operand in binary expression: " + value_;
864     final_type_ = Type::ERROR;
865   }
866 
867   if (final_type_ == Type::ERROR) {
868     is_valid_ = false;
869     return false;
870   }
871 
872   is_valid_ = true;
873   return AidlConstantValue::CheckValid();
874 }
875 
evaluate() const876 bool AidlBinaryConstExpression::evaluate() const {
877   if (is_evaluated_) {
878     return is_valid_;
879   }
880   is_evaluated_ = true;
881   AIDL_FATAL_IF(left_val_ == nullptr, this);
882   AIDL_FATAL_IF(right_val_ == nullptr, this);
883 
884   // Recursively evaluate the binary expression tree
885   if (!left_val_->is_evaluated_ || !right_val_->is_evaluated_) {
886     // TODO(b/142722772) CheckValid() should be called before ValueString()
887     bool success = CheckValid();
888     success &= left_val_->evaluate();
889     success &= right_val_->evaluate();
890     if (!success) {
891       is_valid_ = false;
892       return false;
893     }
894   }
895   if (!left_val_->is_valid_ || !right_val_->is_valid_) {
896     is_valid_ = false;
897     return false;
898   }
899   is_valid_ = AreCompatibleTypes(left_val_->final_type_, right_val_->final_type_);
900   if (!is_valid_) {
901     AIDL_ERROR(this) << "Cannot perform operation '" << op_ << "' on "
902                      << ToString(right_val_->GetType()) << " and " << ToString(left_val_->GetType())
903                      << ".";
904     return false;
905   }
906 
907   bool isArithmeticOrBitflip = OP_IS_BIN_ARITHMETIC || OP_IS_BIN_BITFLIP;
908 
909   // Handle String case first
910   if (left_val_->final_type_ == Type::STRING) {
911     AIDL_FATAL_IF(right_val_->final_type_ != Type::STRING, this);
912     if (!OPEQ("+")) {
913       AIDL_ERROR(this) << "Only '+' is supported for strings, not '" << op_ << "'.";
914       final_type_ = Type::ERROR;
915       is_valid_ = false;
916       return false;
917     }
918 
919     // Remove trailing " from lhs
920     const string& lhs = left_val_->final_string_value_;
921     if (lhs.back() != '"') {
922       AIDL_ERROR(this) << "'" << lhs << "' is missing a trailing quote.";
923       final_type_ = Type::ERROR;
924       is_valid_ = false;
925       return false;
926     }
927     const string& rhs = right_val_->final_string_value_;
928     // Remove starting " from rhs
929     if (rhs.front() != '"') {
930       AIDL_ERROR(this) << "'" << rhs << "' is missing a leading quote.";
931       final_type_ = Type::ERROR;
932       is_valid_ = false;
933       return false;
934     }
935 
936     final_string_value_ = string(lhs.begin(), lhs.end() - 1).append(rhs.begin() + 1, rhs.end());
937     final_type_ = Type::STRING;
938     return true;
939   }
940 
941   // CASE: + - *  / % | ^ & < > <= >= == !=
942   if (isArithmeticOrBitflip || OP_IS_BIN_COMP) {
943     // promoted kind for both operands.
944     Type promoted = UsualArithmeticConversion(IntegralPromotion(left_val_->final_type_),
945                                               IntegralPromotion(right_val_->final_type_));
946     // result kind.
947     final_type_ = isArithmeticOrBitflip
948                       ? promoted        // arithmetic or bitflip operators generates promoted type
949                       : Type::BOOLEAN;  // comparison operators generates bool
950 
951 #define CASE_BINARY_COMMON(__type__)                                                        \
952   return is_valid_ =                                                                        \
953              handleBinaryCommon(*this, static_cast<__type__>(left_val_->final_value_), op_, \
954                                 static_cast<__type__>(right_val_->final_value_), &final_value_);
955 
956     SWITCH_KIND(promoted, CASE_BINARY_COMMON, SHOULD_NOT_REACH(); final_type_ = Type::ERROR;
957                 is_valid_ = false; return false;)
958   }
959 
960   // CASE: << >>
961   string newOp = op_;
962   if (OP_IS_BIN_SHIFT) {
963     // promoted kind for both operands.
964     final_type_ = UsualArithmeticConversion(IntegralPromotion(left_val_->final_type_),
965                                             IntegralPromotion(right_val_->final_type_));
966     auto numBits = right_val_->final_value_;
967     if (numBits < 0) {
968       // shifting with negative number of bits is undefined in C. In AIDL it
969       // is defined as shifting into the other direction.
970       newOp = OPEQ("<<") ? ">>" : "<<";
971       numBits = -numBits;
972     }
973 
974 #define CASE_SHIFT(__type__)                                                                   \
975   return is_valid_ = handleShift(*this, static_cast<__type__>(left_val_->final_value_), newOp, \
976                                  static_cast<__type__>(numBits), &final_value_);
977 
978     SWITCH_KIND(final_type_, CASE_SHIFT, SHOULD_NOT_REACH(); final_type_ = Type::ERROR;
979                 is_valid_ = false; return false;)
980   }
981 
982   // CASE: && ||
983   if (OP_IS_BIN_LOGICAL) {
984     final_type_ = Type::BOOLEAN;
985     // easy; everything is bool.
986     return handleLogical(*this, left_val_->final_value_, op_, right_val_->final_value_,
987                          &final_value_);
988   }
989 
990   SHOULD_NOT_REACH();
991   is_valid_ = false;
992   return false;
993 }
994 
995 // Constructor for integer(byte, int, long)
996 // Keep parsed integer & literal
AidlConstantValue(const AidlLocation & location,Type parsed_type,int64_t parsed_value,const string & checked_value)997 AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type parsed_type,
998                                      int64_t parsed_value, const string& checked_value)
999     : AidlNode(location),
1000       type_(parsed_type),
1001       value_(checked_value),
1002       final_type_(parsed_type),
1003       final_value_(parsed_value) {
1004   AIDL_FATAL_IF(value_.empty() && type_ != Type::ERROR, location);
1005   AIDL_FATAL_IF(type_ != Type::INT8 && type_ != Type::INT32 && type_ != Type::INT64, location);
1006 }
1007 
1008 // Constructor for non-integer(String, char, boolean, float, double)
1009 // Keep literal as it is. (e.g. String literal has double quotes at both ends)
AidlConstantValue(const AidlLocation & location,Type type,const string & checked_value)1010 AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type type,
1011                                      const string& checked_value)
1012     : AidlNode(location),
1013       type_(type),
1014       value_(checked_value),
1015       final_type_(type) {
1016   AIDL_FATAL_IF(value_.empty() && type_ != Type::ERROR, location);
1017   switch (type_) {
1018     case Type::INT8:
1019     case Type::INT32:
1020     case Type::INT64:
1021     case Type::ARRAY:
1022       AIDL_FATAL(this) << "Invalid type: " << ToString(type_);
1023       break;
1024     default:
1025       break;
1026   }
1027 }
1028 
1029 // Constructor for array
AidlConstantValue(const AidlLocation & location,Type type,std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values,const std::string & value)1030 AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type type,
1031                                      std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values,
1032                                      const std::string& value)
1033     : AidlNode(location),
1034       type_(type),
1035       values_(std::move(*values)),
1036       value_(value),
1037       is_valid_(false),
1038       is_evaluated_(false),
1039       final_type_(type) {
1040   AIDL_FATAL_IF(type_ != Type::ARRAY, location);
1041 }
1042 
AidlUnaryConstExpression(const AidlLocation & location,const string & op,std::unique_ptr<AidlConstantValue> rval)1043 AidlUnaryConstExpression::AidlUnaryConstExpression(const AidlLocation& location, const string& op,
1044                                                    std::unique_ptr<AidlConstantValue> rval)
1045     : AidlConstantValue(location, Type::UNARY, op + rval->value_),
1046       unary_(std::move(rval)),
1047       op_(op) {
1048   final_type_ = Type::UNARY;
1049 }
1050 
AidlBinaryConstExpression(const AidlLocation & location,std::unique_ptr<AidlConstantValue> lval,const string & op,std::unique_ptr<AidlConstantValue> rval)1051 AidlBinaryConstExpression::AidlBinaryConstExpression(const AidlLocation& location,
1052                                                      std::unique_ptr<AidlConstantValue> lval,
1053                                                      const string& op,
1054                                                      std::unique_ptr<AidlConstantValue> rval)
1055     : AidlConstantValue(location, Type::BINARY, lval->value_ + op + rval->value_),
1056       left_val_(std::move(lval)),
1057       right_val_(std::move(rval)),
1058       op_(op) {
1059   final_type_ = Type::BINARY;
1060 }
1061