1 /*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // #define LOG_NDEBUG 0
18 #define LOG_TAG "libutils.threads"
19
20 #include <assert.h>
21 #include <utils/AndroidThreads.h>
22 #include <utils/Thread.h>
23
24 #if !defined(_WIN32)
25 # include <sys/resource.h>
26 #else
27 # include <windows.h>
28 # include <stdint.h>
29 # include <process.h>
30 # define HAVE_CREATETHREAD // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
31 #endif
32
33 #if defined(__linux__)
34 #include <sys/prctl.h>
35 #endif
36
37 #include <utils/Log.h>
38
39 #if defined(__ANDROID__)
40 #include <processgroup/processgroup.h>
41 #include <processgroup/sched_policy.h>
42 #endif
43
44 #if defined(__ANDROID__)
45 # define __android_unused
46 #else
47 # define __android_unused __attribute__((__unused__))
48 #endif
49
50 /*
51 * ===========================================================================
52 * Thread wrappers
53 * ===========================================================================
54 */
55
56 using namespace android;
57
58 // ----------------------------------------------------------------------------
59 #if !defined(_WIN32)
60 // ----------------------------------------------------------------------------
61
62 /*
63 * Create and run a new thread.
64 *
65 * We create it "detached", so it cleans up after itself.
66 */
67
68 typedef void* (*android_pthread_entry)(void*);
69
70 #if defined(__ANDROID__)
71 struct thread_data_t {
72 thread_func_t entryFunction;
73 void* userData;
74 int priority;
75 char * threadName;
76
77 // we use this trampoline when we need to set the priority with
78 // nice/setpriority, and name with prctl.
trampolinethread_data_t79 static int trampoline(const thread_data_t* t) {
80 thread_func_t f = t->entryFunction;
81 void* u = t->userData;
82 int prio = t->priority;
83 char * name = t->threadName;
84 delete t;
85 setpriority(PRIO_PROCESS, 0, prio);
86
87 // A new thread will be in its parent's sched group by default,
88 // so we just need to handle the background case.
89 // currently set to system_background group which is different
90 // from background group for app.
91 if (prio >= ANDROID_PRIORITY_BACKGROUND) {
92 SetTaskProfiles(0, {"SCHED_SP_SYSTEM"}, true);
93 }
94
95 if (name) {
96 androidSetThreadName(name);
97 free(name);
98 }
99 return f(u);
100 }
101 };
102 #endif
103
androidSetThreadName(const char * name)104 void androidSetThreadName(const char* name) {
105 #if defined(__linux__)
106 // Mac OS doesn't have this, and we build libutil for the host too
107 int hasAt = 0;
108 int hasDot = 0;
109 const char *s = name;
110 while (*s) {
111 if (*s == '.') hasDot = 1;
112 else if (*s == '@') hasAt = 1;
113 s++;
114 }
115 int len = s - name;
116 if (len < 15 || hasAt || !hasDot) {
117 s = name;
118 } else {
119 s = name + len - 15;
120 }
121 prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
122 #endif
123 }
124
androidCreateRawThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName __android_unused,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)125 int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
126 void *userData,
127 const char* threadName __android_unused,
128 int32_t threadPriority,
129 size_t threadStackSize,
130 android_thread_id_t *threadId)
131 {
132 pthread_attr_t attr;
133 pthread_attr_init(&attr);
134 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
135
136 #if defined(__ANDROID__) /* valgrind is rejecting RT-priority create reqs */
137 if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
138 // Now that the pthread_t has a method to find the associated
139 // android_thread_id_t (pid) from pthread_t, it would be possible to avoid
140 // this trampoline in some cases as the parent could set the properties
141 // for the child. However, there would be a race condition because the
142 // child becomes ready immediately, and it doesn't work for the name.
143 // prctl(PR_SET_NAME) only works for self; prctl(PR_SET_THREAD_NAME) was
144 // proposed but not yet accepted.
145 thread_data_t* t = new thread_data_t;
146 t->priority = threadPriority;
147 t->threadName = threadName ? strdup(threadName) : NULL;
148 t->entryFunction = entryFunction;
149 t->userData = userData;
150 entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
151 userData = t;
152 }
153 #endif
154
155 if (threadStackSize) {
156 pthread_attr_setstacksize(&attr, threadStackSize);
157 }
158
159 errno = 0;
160 pthread_t thread;
161 int result = pthread_create(&thread, &attr,
162 (android_pthread_entry)entryFunction, userData);
163 pthread_attr_destroy(&attr);
164 if (result != 0) {
165 ALOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, %s)\n"
166 "(android threadPriority=%d)",
167 entryFunction, result, strerror(errno), threadPriority);
168 return 0;
169 }
170
171 // Note that *threadID is directly available to the parent only, as it is
172 // assigned after the child starts. Use memory barrier / lock if the child
173 // or other threads also need access.
174 if (threadId != nullptr) {
175 *threadId = (android_thread_id_t)thread; // XXX: this is not portable
176 }
177 return 1;
178 }
179
180 #if defined(__ANDROID__)
android_thread_id_t_to_pthread(android_thread_id_t thread)181 static pthread_t android_thread_id_t_to_pthread(android_thread_id_t thread)
182 {
183 return (pthread_t) thread;
184 }
185 #endif
186
androidGetThreadId()187 android_thread_id_t androidGetThreadId()
188 {
189 return (android_thread_id_t)pthread_self();
190 }
191
192 // ----------------------------------------------------------------------------
193 #else // !defined(_WIN32)
194 // ----------------------------------------------------------------------------
195
196 /*
197 * Trampoline to make us __stdcall-compliant.
198 *
199 * We're expected to delete "vDetails" when we're done.
200 */
201 struct threadDetails {
202 int (*func)(void*);
203 void* arg;
204 };
threadIntermediary(void * vDetails)205 static __stdcall unsigned int threadIntermediary(void* vDetails)
206 {
207 struct threadDetails* pDetails = (struct threadDetails*) vDetails;
208 int result;
209
210 result = (*(pDetails->func))(pDetails->arg);
211
212 delete pDetails;
213
214 ALOG(LOG_VERBOSE, "thread", "thread exiting\n");
215 return (unsigned int) result;
216 }
217
218 /*
219 * Create and run a new thread.
220 */
doCreateThread(android_thread_func_t fn,void * arg,android_thread_id_t * id)221 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
222 {
223 HANDLE hThread;
224 struct threadDetails* pDetails = new threadDetails; // must be on heap
225 unsigned int thrdaddr;
226
227 pDetails->func = fn;
228 pDetails->arg = arg;
229
230 #if defined(HAVE__BEGINTHREADEX)
231 hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
232 &thrdaddr);
233 if (hThread == 0)
234 #elif defined(HAVE_CREATETHREAD)
235 hThread = CreateThread(NULL, 0,
236 (LPTHREAD_START_ROUTINE) threadIntermediary,
237 (void*) pDetails, 0, (DWORD*) &thrdaddr);
238 if (hThread == NULL)
239 #endif
240 {
241 ALOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
242 return false;
243 }
244
245 #if defined(HAVE_CREATETHREAD)
246 /* close the management handle */
247 CloseHandle(hThread);
248 #endif
249
250 if (id != NULL) {
251 *id = (android_thread_id_t)thrdaddr;
252 }
253
254 return true;
255 }
256
androidCreateRawThreadEtc(android_thread_func_t fn,void * userData,const char *,int32_t,size_t,android_thread_id_t * threadId)257 int androidCreateRawThreadEtc(android_thread_func_t fn,
258 void *userData,
259 const char* /*threadName*/,
260 int32_t /*threadPriority*/,
261 size_t /*threadStackSize*/,
262 android_thread_id_t *threadId)
263 {
264 return doCreateThread( fn, userData, threadId);
265 }
266
androidGetThreadId()267 android_thread_id_t androidGetThreadId()
268 {
269 return (android_thread_id_t)GetCurrentThreadId();
270 }
271
272 // ----------------------------------------------------------------------------
273 #endif // !defined(_WIN32)
274
275 // ----------------------------------------------------------------------------
276
androidCreateThread(android_thread_func_t fn,void * arg)277 int androidCreateThread(android_thread_func_t fn, void* arg)
278 {
279 return createThreadEtc(fn, arg);
280 }
281
androidCreateThreadGetID(android_thread_func_t fn,void * arg,android_thread_id_t * id)282 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
283 {
284 return createThreadEtc(fn, arg, "android:unnamed_thread",
285 PRIORITY_DEFAULT, 0, id);
286 }
287
288 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
289
androidCreateThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)290 int androidCreateThreadEtc(android_thread_func_t entryFunction,
291 void *userData,
292 const char* threadName,
293 int32_t threadPriority,
294 size_t threadStackSize,
295 android_thread_id_t *threadId)
296 {
297 return gCreateThreadFn(entryFunction, userData, threadName,
298 threadPriority, threadStackSize, threadId);
299 }
300
androidSetCreateThreadFunc(android_create_thread_fn func)301 void androidSetCreateThreadFunc(android_create_thread_fn func)
302 {
303 gCreateThreadFn = func;
304 }
305
306 #if defined(__ANDROID__)
androidSetThreadPriority(pid_t tid,int pri)307 int androidSetThreadPriority(pid_t tid, int pri)
308 {
309 int rc = 0;
310 int lasterr = 0;
311 int curr_pri = getpriority(PRIO_PROCESS, tid);
312
313 if (curr_pri == pri) {
314 return rc;
315 }
316
317 if (pri >= ANDROID_PRIORITY_BACKGROUND) {
318 rc = SetTaskProfiles(tid, {"SCHED_SP_SYSTEM"}, true) ? 0 : -1;
319 } else if (curr_pri >= ANDROID_PRIORITY_BACKGROUND) {
320 rc = SetTaskProfiles(tid, {"SCHED_SP_FOREGROUND"}, true) ? 0 : -1;
321 }
322
323 if (rc) {
324 lasterr = errno;
325 }
326
327 if (setpriority(PRIO_PROCESS, tid, pri) < 0) {
328 rc = INVALID_OPERATION;
329 } else {
330 errno = lasterr;
331 }
332
333 return rc;
334 }
335
androidGetThreadPriority(pid_t tid)336 int androidGetThreadPriority(pid_t tid) {
337 return getpriority(PRIO_PROCESS, tid);
338 }
339
340 #endif
341
342 namespace android {
343
344 /*
345 * ===========================================================================
346 * Mutex class
347 * ===========================================================================
348 */
349
350 #if !defined(_WIN32)
351 // implemented as inlines in threads.h
352 #else
353
354 Mutex::Mutex()
355 {
356 HANDLE hMutex;
357
358 assert(sizeof(hMutex) == sizeof(mState));
359
360 hMutex = CreateMutex(NULL, FALSE, NULL);
361 mState = (void*) hMutex;
362 }
363
364 Mutex::Mutex(const char* /*name*/)
365 {
366 // XXX: name not used for now
367 HANDLE hMutex;
368
369 assert(sizeof(hMutex) == sizeof(mState));
370
371 hMutex = CreateMutex(NULL, FALSE, NULL);
372 mState = (void*) hMutex;
373 }
374
375 Mutex::Mutex(int /*type*/, const char* /*name*/)
376 {
377 // XXX: type and name not used for now
378 HANDLE hMutex;
379
380 assert(sizeof(hMutex) == sizeof(mState));
381
382 hMutex = CreateMutex(NULL, FALSE, NULL);
383 mState = (void*) hMutex;
384 }
385
386 Mutex::~Mutex()
387 {
388 CloseHandle((HANDLE) mState);
389 }
390
391 status_t Mutex::lock()
392 {
393 DWORD dwWaitResult;
394 dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
395 return dwWaitResult != WAIT_OBJECT_0 ? -1 : OK;
396 }
397
398 void Mutex::unlock()
399 {
400 if (!ReleaseMutex((HANDLE) mState))
401 ALOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
402 }
403
404 status_t Mutex::tryLock()
405 {
406 DWORD dwWaitResult;
407
408 dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
409 if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
410 ALOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
411 return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
412 }
413
414 #endif // !defined(_WIN32)
415
416
417 /*
418 * ===========================================================================
419 * Condition class
420 * ===========================================================================
421 */
422
423 #if !defined(_WIN32)
424 // implemented as inlines in threads.h
425 #else
426
427 /*
428 * Windows doesn't have a condition variable solution. It's possible
429 * to create one, but it's easy to get it wrong. For a discussion, and
430 * the origin of this implementation, see:
431 *
432 * http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
433 *
434 * The implementation shown on the page does NOT follow POSIX semantics.
435 * As an optimization they require acquiring the external mutex before
436 * calling signal() and broadcast(), whereas POSIX only requires grabbing
437 * it before calling wait(). The implementation here has been un-optimized
438 * to have the correct behavior.
439 */
440 typedef struct WinCondition {
441 // Number of waiting threads.
442 int waitersCount;
443
444 // Serialize access to waitersCount.
445 CRITICAL_SECTION waitersCountLock;
446
447 // Semaphore used to queue up threads waiting for the condition to
448 // become signaled.
449 HANDLE sema;
450
451 // An auto-reset event used by the broadcast/signal thread to wait
452 // for all the waiting thread(s) to wake up and be released from
453 // the semaphore.
454 HANDLE waitersDone;
455
456 // This mutex wouldn't be necessary if we required that the caller
457 // lock the external mutex before calling signal() and broadcast().
458 // I'm trying to mimic pthread semantics though.
459 HANDLE internalMutex;
460
461 // Keeps track of whether we were broadcasting or signaling. This
462 // allows us to optimize the code if we're just signaling.
463 bool wasBroadcast;
464
465 status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
466 {
467 // Increment the wait count, avoiding race conditions.
468 EnterCriticalSection(&condState->waitersCountLock);
469 condState->waitersCount++;
470 //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
471 // condState->waitersCount, getThreadId());
472 LeaveCriticalSection(&condState->waitersCountLock);
473
474 DWORD timeout = INFINITE;
475 if (abstime) {
476 nsecs_t reltime = *abstime - systemTime();
477 if (reltime < 0)
478 reltime = 0;
479 timeout = reltime/1000000;
480 }
481
482 // Atomically release the external mutex and wait on the semaphore.
483 DWORD res =
484 SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
485
486 //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
487
488 // Reacquire lock to avoid race conditions.
489 EnterCriticalSection(&condState->waitersCountLock);
490
491 // No longer waiting.
492 condState->waitersCount--;
493
494 // Check to see if we're the last waiter after a broadcast.
495 bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
496
497 //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
498 // lastWaiter, condState->wasBroadcast, condState->waitersCount);
499
500 LeaveCriticalSection(&condState->waitersCountLock);
501
502 // If we're the last waiter thread during this particular broadcast
503 // then signal broadcast() that we're all awake. It'll drop the
504 // internal mutex.
505 if (lastWaiter) {
506 // Atomically signal the "waitersDone" event and wait until we
507 // can acquire the internal mutex. We want to do this in one step
508 // because it ensures that everybody is in the mutex FIFO before
509 // any thread has a chance to run. Without it, another thread
510 // could wake up, do work, and hop back in ahead of us.
511 SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
512 INFINITE, FALSE);
513 } else {
514 // Grab the internal mutex.
515 WaitForSingleObject(condState->internalMutex, INFINITE);
516 }
517
518 // Release the internal and grab the external.
519 ReleaseMutex(condState->internalMutex);
520 WaitForSingleObject(hMutex, INFINITE);
521
522 return res == WAIT_OBJECT_0 ? OK : -1;
523 }
524 } WinCondition;
525
526 /*
527 * Constructor. Set up the WinCondition stuff.
528 */
529 Condition::Condition()
530 {
531 WinCondition* condState = new WinCondition;
532
533 condState->waitersCount = 0;
534 condState->wasBroadcast = false;
535 // semaphore: no security, initial value of 0
536 condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
537 InitializeCriticalSection(&condState->waitersCountLock);
538 // auto-reset event, not signaled initially
539 condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
540 // used so we don't have to lock external mutex on signal/broadcast
541 condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
542
543 mState = condState;
544 }
545
546 /*
547 * Destructor. Free Windows resources as well as our allocated storage.
548 */
549 Condition::~Condition()
550 {
551 WinCondition* condState = (WinCondition*) mState;
552 if (condState != NULL) {
553 CloseHandle(condState->sema);
554 CloseHandle(condState->waitersDone);
555 delete condState;
556 }
557 }
558
559
560 status_t Condition::wait(Mutex& mutex)
561 {
562 WinCondition* condState = (WinCondition*) mState;
563 HANDLE hMutex = (HANDLE) mutex.mState;
564
565 return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
566 }
567
568 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
569 {
570 WinCondition* condState = (WinCondition*) mState;
571 HANDLE hMutex = (HANDLE) mutex.mState;
572 nsecs_t absTime = systemTime()+reltime;
573
574 return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
575 }
576
577 /*
578 * Signal the condition variable, allowing one thread to continue.
579 */
580 void Condition::signal()
581 {
582 WinCondition* condState = (WinCondition*) mState;
583
584 // Lock the internal mutex. This ensures that we don't clash with
585 // broadcast().
586 WaitForSingleObject(condState->internalMutex, INFINITE);
587
588 EnterCriticalSection(&condState->waitersCountLock);
589 bool haveWaiters = (condState->waitersCount > 0);
590 LeaveCriticalSection(&condState->waitersCountLock);
591
592 // If no waiters, then this is a no-op. Otherwise, knock the semaphore
593 // down a notch.
594 if (haveWaiters)
595 ReleaseSemaphore(condState->sema, 1, 0);
596
597 // Release internal mutex.
598 ReleaseMutex(condState->internalMutex);
599 }
600
601 /*
602 * Signal the condition variable, allowing all threads to continue.
603 *
604 * First we have to wake up all threads waiting on the semaphore, then
605 * we wait until all of the threads have actually been woken before
606 * releasing the internal mutex. This ensures that all threads are woken.
607 */
608 void Condition::broadcast()
609 {
610 WinCondition* condState = (WinCondition*) mState;
611
612 // Lock the internal mutex. This keeps the guys we're waking up
613 // from getting too far.
614 WaitForSingleObject(condState->internalMutex, INFINITE);
615
616 EnterCriticalSection(&condState->waitersCountLock);
617 bool haveWaiters = false;
618
619 if (condState->waitersCount > 0) {
620 haveWaiters = true;
621 condState->wasBroadcast = true;
622 }
623
624 if (haveWaiters) {
625 // Wake up all the waiters.
626 ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
627
628 LeaveCriticalSection(&condState->waitersCountLock);
629
630 // Wait for all awakened threads to acquire the counting semaphore.
631 // The last guy who was waiting sets this.
632 WaitForSingleObject(condState->waitersDone, INFINITE);
633
634 // Reset wasBroadcast. (No crit section needed because nobody
635 // else can wake up to poke at it.)
636 condState->wasBroadcast = 0;
637 } else {
638 // nothing to do
639 LeaveCriticalSection(&condState->waitersCountLock);
640 }
641
642 // Release internal mutex.
643 ReleaseMutex(condState->internalMutex);
644 }
645
646 #endif // !defined(_WIN32)
647
648 // ----------------------------------------------------------------------------
649
650 /*
651 * This is our thread object!
652 */
653
Thread(bool canCallJava)654 Thread::Thread(bool canCallJava)
655 : mCanCallJava(canCallJava),
656 mThread(thread_id_t(-1)),
657 mLock("Thread::mLock"),
658 mStatus(OK),
659 mExitPending(false),
660 mRunning(false)
661 #if defined(__ANDROID__)
662 ,
663 mTid(-1)
664 #endif
665 {
666 }
667
~Thread()668 Thread::~Thread()
669 {
670 }
671
readyToRun()672 status_t Thread::readyToRun()
673 {
674 return OK;
675 }
676
run(const char * name,int32_t priority,size_t stack)677 status_t Thread::run(const char* name, int32_t priority, size_t stack)
678 {
679 LOG_ALWAYS_FATAL_IF(name == nullptr, "thread name not provided to Thread::run");
680
681 Mutex::Autolock _l(mLock);
682
683 if (mRunning) {
684 // thread already started
685 return INVALID_OPERATION;
686 }
687
688 // reset status and exitPending to their default value, so we can
689 // try again after an error happened (either below, or in readyToRun())
690 mStatus = OK;
691 mExitPending = false;
692 mThread = thread_id_t(-1);
693
694 // hold a strong reference on ourself
695 mHoldSelf = this;
696
697 mRunning = true;
698
699 bool res;
700 if (mCanCallJava) {
701 res = createThreadEtc(_threadLoop,
702 this, name, priority, stack, &mThread);
703 } else {
704 res = androidCreateRawThreadEtc(_threadLoop,
705 this, name, priority, stack, &mThread);
706 }
707
708 if (res == false) {
709 mStatus = UNKNOWN_ERROR; // something happened!
710 mRunning = false;
711 mThread = thread_id_t(-1);
712 mHoldSelf.clear(); // "this" may have gone away after this.
713
714 return UNKNOWN_ERROR;
715 }
716
717 // Do not refer to mStatus here: The thread is already running (may, in fact
718 // already have exited with a valid mStatus result). The OK indication
719 // here merely indicates successfully starting the thread and does not
720 // imply successful termination/execution.
721 return OK;
722
723 // Exiting scope of mLock is a memory barrier and allows new thread to run
724 }
725
_threadLoop(void * user)726 int Thread::_threadLoop(void* user)
727 {
728 Thread* const self = static_cast<Thread*>(user);
729
730 sp<Thread> strong(self->mHoldSelf);
731 wp<Thread> weak(strong);
732 self->mHoldSelf.clear();
733
734 #if defined(__ANDROID__)
735 // this is very useful for debugging with gdb
736 self->mTid = gettid();
737 #endif
738
739 bool first = true;
740
741 do {
742 bool result;
743 if (first) {
744 first = false;
745 self->mStatus = self->readyToRun();
746 result = (self->mStatus == OK);
747
748 if (result && !self->exitPending()) {
749 // Binder threads (and maybe others) rely on threadLoop
750 // running at least once after a successful ::readyToRun()
751 // (unless, of course, the thread has already been asked to exit
752 // at that point).
753 // This is because threads are essentially used like this:
754 // (new ThreadSubclass())->run();
755 // The caller therefore does not retain a strong reference to
756 // the thread and the thread would simply disappear after the
757 // successful ::readyToRun() call instead of entering the
758 // threadLoop at least once.
759 result = self->threadLoop();
760 }
761 } else {
762 result = self->threadLoop();
763 }
764
765 // establish a scope for mLock
766 {
767 Mutex::Autolock _l(self->mLock);
768 if (result == false || self->mExitPending) {
769 self->mExitPending = true;
770 self->mRunning = false;
771 // clear thread ID so that requestExitAndWait() does not exit if
772 // called by a new thread using the same thread ID as this one.
773 self->mThread = thread_id_t(-1);
774 // note that interested observers blocked in requestExitAndWait are
775 // awoken by broadcast, but blocked on mLock until break exits scope
776 self->mThreadExitedCondition.broadcast();
777 break;
778 }
779 }
780
781 // Release our strong reference, to let a chance to the thread
782 // to die a peaceful death.
783 strong.clear();
784 // And immediately, re-acquire a strong reference for the next loop
785 strong = weak.promote();
786 } while(strong != nullptr);
787
788 return 0;
789 }
790
requestExit()791 void Thread::requestExit()
792 {
793 Mutex::Autolock _l(mLock);
794 mExitPending = true;
795 }
796
requestExitAndWait()797 status_t Thread::requestExitAndWait()
798 {
799 Mutex::Autolock _l(mLock);
800 if (mThread == getThreadId()) {
801 ALOGW(
802 "Thread (this=%p): don't call waitForExit() from this "
803 "Thread object's thread. It's a guaranteed deadlock!",
804 this);
805
806 return WOULD_BLOCK;
807 }
808
809 mExitPending = true;
810
811 while (mRunning == true) {
812 mThreadExitedCondition.wait(mLock);
813 }
814 // This next line is probably not needed any more, but is being left for
815 // historical reference. Note that each interested party will clear flag.
816 mExitPending = false;
817
818 return mStatus;
819 }
820
join()821 status_t Thread::join()
822 {
823 Mutex::Autolock _l(mLock);
824 if (mThread == getThreadId()) {
825 ALOGW(
826 "Thread (this=%p): don't call join() from this "
827 "Thread object's thread. It's a guaranteed deadlock!",
828 this);
829
830 return WOULD_BLOCK;
831 }
832
833 while (mRunning == true) {
834 mThreadExitedCondition.wait(mLock);
835 }
836
837 return mStatus;
838 }
839
isRunning() const840 bool Thread::isRunning() const {
841 Mutex::Autolock _l(mLock);
842 return mRunning;
843 }
844
845 #if defined(__ANDROID__)
getTid() const846 pid_t Thread::getTid() const
847 {
848 // mTid is not defined until the child initializes it, and the caller may need it earlier
849 Mutex::Autolock _l(mLock);
850 pid_t tid;
851 if (mRunning) {
852 pthread_t pthread = android_thread_id_t_to_pthread(mThread);
853 tid = pthread_gettid_np(pthread);
854 } else {
855 ALOGW("Thread (this=%p): getTid() is undefined before run()", this);
856 tid = -1;
857 }
858 return tid;
859 }
860 #endif
861
exitPending() const862 bool Thread::exitPending() const
863 {
864 Mutex::Autolock _l(mLock);
865 return mExitPending;
866 }
867
868
869
870 }; // namespace android
871