1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // This file contains the functions that initialize SELinux during boot as well as helper functions
18 // for SELinux operation for init.
19 
20 // When the system boots, there is no SEPolicy present and init is running in the kernel domain.
21 // Init loads the SEPolicy from the file system, restores the context of /system/bin/init based on
22 // this SEPolicy, and finally exec()'s itself to run in the proper domain.
23 
24 // The SEPolicy on Android comes in two variants: monolithic and split.
25 
26 // The monolithic policy variant is for legacy non-treble devices that contain a single SEPolicy
27 // file located at /sepolicy and is directly loaded into the kernel SELinux subsystem.
28 
29 // The split policy is for supporting treble devices.  It splits the SEPolicy across files on
30 // /system/etc/selinux (the 'plat' portion of the policy) and /vendor/etc/selinux (the 'nonplat'
31 // portion of the policy).  This is necessary to allow the system image to be updated independently
32 // of the vendor image, while maintaining contributions from both partitions in the SEPolicy.  This
33 // is especially important for VTS testing, where the SEPolicy on the Google System Image may not be
34 // identical to the system image shipped on a vendor's device.
35 
36 // The split SEPolicy is loaded as described below:
37 // 1) There is a precompiled SEPolicy located at either /vendor/etc/selinux/precompiled_sepolicy or
38 //    /odm/etc/selinux/precompiled_sepolicy if odm parition is present.  Stored along with this file
39 //    are the sha256 hashes of the parts of the SEPolicy on /system, /system_ext and /product that
40 //    were used to compile this precompiled policy.  The system partition contains a similar sha256
41 //    of the parts of the SEPolicy that it currently contains.  Symmetrically, system_ext and
42 //    product paritition contain sha256 hashes of their SEPolicy.  The init loads this
43 //    precompiled_sepolicy directly if and only if the hashes along with the precompiled SEPolicy on
44 //    /vendor or /odm match the hashes for system, system_ext and product SEPolicy, respectively.
45 // 2) If these hashes do not match, then either /system or /system_ext or /product (or some of them)
46 //    have been updated out of sync with /vendor (or /odm if it is present) and the init needs to
47 //    compile the SEPolicy.  /system contains the SEPolicy compiler, secilc, and it is used by the
48 //    OpenSplitPolicy() function below to compile the SEPolicy to a temp directory and load it.
49 //    That function contains even more documentation with the specific implementation details of how
50 //    the SEPolicy is compiled if needed.
51 
52 #include "selinux.h"
53 
54 #include <android/api-level.h>
55 #include <fcntl.h>
56 #include <linux/audit.h>
57 #include <linux/netlink.h>
58 #include <stdlib.h>
59 #include <sys/wait.h>
60 #include <unistd.h>
61 
62 #include <android-base/chrono_utils.h>
63 #include <android-base/file.h>
64 #include <android-base/logging.h>
65 #include <android-base/parseint.h>
66 #include <android-base/result.h>
67 #include <android-base/strings.h>
68 #include <android-base/unique_fd.h>
69 #include <fs_avb/fs_avb.h>
70 #include <fs_mgr.h>
71 #include <libgsi/libgsi.h>
72 #include <libsnapshot/snapshot.h>
73 #include <selinux/android.h>
74 
75 #include "block_dev_initializer.h"
76 #include "debug_ramdisk.h"
77 #include "reboot_utils.h"
78 #include "snapuserd_transition.h"
79 #include "util.h"
80 
81 using namespace std::string_literals;
82 
83 using android::base::ParseInt;
84 using android::base::Timer;
85 using android::base::unique_fd;
86 using android::fs_mgr::AvbHandle;
87 using android::snapshot::SnapshotManager;
88 
89 namespace android {
90 namespace init {
91 
92 namespace {
93 
94 enum EnforcingStatus { SELINUX_PERMISSIVE, SELINUX_ENFORCING };
95 
StatusFromProperty()96 EnforcingStatus StatusFromProperty() {
97     EnforcingStatus status = SELINUX_ENFORCING;
98 
99     ImportKernelCmdline([&](const std::string& key, const std::string& value) {
100         if (key == "androidboot.selinux" && value == "permissive") {
101             status = SELINUX_PERMISSIVE;
102         }
103     });
104 
105     if (status == SELINUX_ENFORCING) {
106         ImportBootconfig([&](const std::string& key, const std::string& value) {
107             if (key == "androidboot.selinux" && value == "permissive") {
108                 status = SELINUX_PERMISSIVE;
109             }
110         });
111     }
112 
113     return status;
114 }
115 
IsEnforcing()116 bool IsEnforcing() {
117     if (ALLOW_PERMISSIVE_SELINUX) {
118         return StatusFromProperty() == SELINUX_ENFORCING;
119     }
120     return true;
121 }
122 
123 // Forks, executes the provided program in the child, and waits for the completion in the parent.
124 // Child's stderr is captured and logged using LOG(ERROR).
ForkExecveAndWaitForCompletion(const char * filename,char * const argv[])125 bool ForkExecveAndWaitForCompletion(const char* filename, char* const argv[]) {
126     // Create a pipe used for redirecting child process's output.
127     // * pipe_fds[0] is the FD the parent will use for reading.
128     // * pipe_fds[1] is the FD the child will use for writing.
129     int pipe_fds[2];
130     if (pipe(pipe_fds) == -1) {
131         PLOG(ERROR) << "Failed to create pipe";
132         return false;
133     }
134 
135     pid_t child_pid = fork();
136     if (child_pid == -1) {
137         PLOG(ERROR) << "Failed to fork for " << filename;
138         return false;
139     }
140 
141     if (child_pid == 0) {
142         // fork succeeded -- this is executing in the child process
143 
144         // Close the pipe FD not used by this process
145         close(pipe_fds[0]);
146 
147         // Redirect stderr to the pipe FD provided by the parent
148         if (TEMP_FAILURE_RETRY(dup2(pipe_fds[1], STDERR_FILENO)) == -1) {
149             PLOG(ERROR) << "Failed to redirect stderr of " << filename;
150             _exit(127);
151             return false;
152         }
153         close(pipe_fds[1]);
154 
155         if (execv(filename, argv) == -1) {
156             PLOG(ERROR) << "Failed to execve " << filename;
157             return false;
158         }
159         // Unreachable because execve will have succeeded and replaced this code
160         // with child process's code.
161         _exit(127);
162         return false;
163     } else {
164         // fork succeeded -- this is executing in the original/parent process
165 
166         // Close the pipe FD not used by this process
167         close(pipe_fds[1]);
168 
169         // Log the redirected output of the child process.
170         // It's unfortunate that there's no standard way to obtain an istream for a file descriptor.
171         // As a result, we're buffering all output and logging it in one go at the end of the
172         // invocation, instead of logging it as it comes in.
173         const int child_out_fd = pipe_fds[0];
174         std::string child_output;
175         if (!android::base::ReadFdToString(child_out_fd, &child_output)) {
176             PLOG(ERROR) << "Failed to capture full output of " << filename;
177         }
178         close(child_out_fd);
179         if (!child_output.empty()) {
180             // Log captured output, line by line, because LOG expects to be invoked for each line
181             std::istringstream in(child_output);
182             std::string line;
183             while (std::getline(in, line)) {
184                 LOG(ERROR) << filename << ": " << line;
185             }
186         }
187 
188         // Wait for child to terminate
189         int status;
190         if (TEMP_FAILURE_RETRY(waitpid(child_pid, &status, 0)) != child_pid) {
191             PLOG(ERROR) << "Failed to wait for " << filename;
192             return false;
193         }
194 
195         if (WIFEXITED(status)) {
196             int status_code = WEXITSTATUS(status);
197             if (status_code == 0) {
198                 return true;
199             } else {
200                 LOG(ERROR) << filename << " exited with status " << status_code;
201             }
202         } else if (WIFSIGNALED(status)) {
203             LOG(ERROR) << filename << " killed by signal " << WTERMSIG(status);
204         } else if (WIFSTOPPED(status)) {
205             LOG(ERROR) << filename << " stopped by signal " << WSTOPSIG(status);
206         } else {
207             LOG(ERROR) << "waitpid for " << filename << " returned unexpected status: " << status;
208         }
209 
210         return false;
211     }
212 }
213 
ReadFirstLine(const char * file,std::string * line)214 bool ReadFirstLine(const char* file, std::string* line) {
215     line->clear();
216 
217     std::string contents;
218     if (!android::base::ReadFileToString(file, &contents, true /* follow symlinks */)) {
219         return false;
220     }
221     std::istringstream in(contents);
222     std::getline(in, *line);
223     return true;
224 }
225 
FindPrecompiledSplitPolicy()226 Result<std::string> FindPrecompiledSplitPolicy() {
227     std::string precompiled_sepolicy;
228     // If there is an odm partition, precompiled_sepolicy will be in
229     // odm/etc/selinux. Otherwise it will be in vendor/etc/selinux.
230     static constexpr const char vendor_precompiled_sepolicy[] =
231         "/vendor/etc/selinux/precompiled_sepolicy";
232     static constexpr const char odm_precompiled_sepolicy[] =
233         "/odm/etc/selinux/precompiled_sepolicy";
234     if (access(odm_precompiled_sepolicy, R_OK) == 0) {
235         precompiled_sepolicy = odm_precompiled_sepolicy;
236     } else if (access(vendor_precompiled_sepolicy, R_OK) == 0) {
237         precompiled_sepolicy = vendor_precompiled_sepolicy;
238     } else {
239         return ErrnoError() << "No precompiled sepolicy at " << vendor_precompiled_sepolicy;
240     }
241 
242     // Use precompiled sepolicy only when all corresponding hashes are equal.
243     std::vector<std::pair<std::string, std::string>> sepolicy_hashes{
244             {"/system/etc/selinux/plat_sepolicy_and_mapping.sha256",
245              precompiled_sepolicy + ".plat_sepolicy_and_mapping.sha256"},
246             {"/system_ext/etc/selinux/system_ext_sepolicy_and_mapping.sha256",
247              precompiled_sepolicy + ".system_ext_sepolicy_and_mapping.sha256"},
248             {"/product/etc/selinux/product_sepolicy_and_mapping.sha256",
249              precompiled_sepolicy + ".product_sepolicy_and_mapping.sha256"},
250     };
251 
252     for (const auto& [actual_id_path, precompiled_id_path] : sepolicy_hashes) {
253         // Both of them should exist or both of them shouldn't exist.
254         if (access(actual_id_path.c_str(), R_OK) != 0) {
255             if (access(precompiled_id_path.c_str(), R_OK) == 0) {
256                 return Error() << precompiled_id_path << " exists but " << actual_id_path
257                                << " doesn't";
258             }
259             continue;
260         }
261 
262         std::string actual_id;
263         if (!ReadFirstLine(actual_id_path.c_str(), &actual_id)) {
264             return ErrnoError() << "Failed to read " << actual_id_path;
265         }
266 
267         std::string precompiled_id;
268         if (!ReadFirstLine(precompiled_id_path.c_str(), &precompiled_id)) {
269             return ErrnoError() << "Failed to read " << precompiled_id_path;
270         }
271 
272         if (actual_id.empty() || actual_id != precompiled_id) {
273             return Error() << actual_id_path << " and " << precompiled_id_path << " differ";
274         }
275     }
276 
277     return precompiled_sepolicy;
278 }
279 
GetVendorMappingVersion(std::string * plat_vers)280 bool GetVendorMappingVersion(std::string* plat_vers) {
281     if (!ReadFirstLine("/vendor/etc/selinux/plat_sepolicy_vers.txt", plat_vers)) {
282         PLOG(ERROR) << "Failed to read /vendor/etc/selinux/plat_sepolicy_vers.txt";
283         return false;
284     }
285     if (plat_vers->empty()) {
286         LOG(ERROR) << "No version present in plat_sepolicy_vers.txt";
287         return false;
288     }
289     return true;
290 }
291 
292 constexpr const char plat_policy_cil_file[] = "/system/etc/selinux/plat_sepolicy.cil";
293 
IsSplitPolicyDevice()294 bool IsSplitPolicyDevice() {
295     return access(plat_policy_cil_file, R_OK) != -1;
296 }
297 
GetUserdebugPlatformPolicyFile()298 std::optional<const char*> GetUserdebugPlatformPolicyFile() {
299     // See if we need to load userdebug_plat_sepolicy.cil instead of plat_sepolicy.cil.
300     const char* force_debuggable_env = getenv("INIT_FORCE_DEBUGGABLE");
301     if (force_debuggable_env && "true"s == force_debuggable_env && AvbHandle::IsDeviceUnlocked()) {
302         const std::vector<const char*> debug_policy_candidates = {
303 #if INSTALL_DEBUG_POLICY_TO_SYSTEM_EXT == 1
304             "/system_ext/etc/selinux/userdebug_plat_sepolicy.cil",
305 #endif
306             kDebugRamdiskSEPolicy,
307         };
308         for (const char* debug_policy : debug_policy_candidates) {
309             if (access(debug_policy, F_OK) == 0) {
310                 return debug_policy;
311             }
312         }
313     }
314     return std::nullopt;
315 }
316 
317 struct PolicyFile {
318     unique_fd fd;
319     std::string path;
320 };
321 
OpenSplitPolicy(PolicyFile * policy_file)322 bool OpenSplitPolicy(PolicyFile* policy_file) {
323     // IMPLEMENTATION NOTE: Split policy consists of three CIL files:
324     // * platform -- policy needed due to logic contained in the system image,
325     // * non-platform -- policy needed due to logic contained in the vendor image,
326     // * mapping -- mapping policy which helps preserve forward-compatibility of non-platform policy
327     //   with newer versions of platform policy.
328     //
329     // secilc is invoked to compile the above three policy files into a single monolithic policy
330     // file. This file is then loaded into the kernel.
331 
332     const auto userdebug_plat_sepolicy = GetUserdebugPlatformPolicyFile();
333     const bool use_userdebug_policy = userdebug_plat_sepolicy.has_value();
334     if (use_userdebug_policy) {
335         LOG(INFO) << "Using userdebug system sepolicy " << *userdebug_plat_sepolicy;
336     }
337 
338     // Load precompiled policy from vendor image, if a matching policy is found there. The policy
339     // must match the platform policy on the system image.
340     // use_userdebug_policy requires compiling sepolicy with userdebug_plat_sepolicy.cil.
341     // Thus it cannot use the precompiled policy from vendor image.
342     if (!use_userdebug_policy) {
343         if (auto res = FindPrecompiledSplitPolicy(); res.ok()) {
344             unique_fd fd(open(res->c_str(), O_RDONLY | O_CLOEXEC | O_BINARY));
345             if (fd != -1) {
346                 policy_file->fd = std::move(fd);
347                 policy_file->path = std::move(*res);
348                 return true;
349             }
350         } else {
351             LOG(INFO) << res.error();
352         }
353     }
354     // No suitable precompiled policy could be loaded
355 
356     LOG(INFO) << "Compiling SELinux policy";
357 
358     // We store the output of the compilation on /dev because this is the most convenient tmpfs
359     // storage mount available this early in the boot sequence.
360     char compiled_sepolicy[] = "/dev/sepolicy.XXXXXX";
361     unique_fd compiled_sepolicy_fd(mkostemp(compiled_sepolicy, O_CLOEXEC));
362     if (compiled_sepolicy_fd < 0) {
363         PLOG(ERROR) << "Failed to create temporary file " << compiled_sepolicy;
364         return false;
365     }
366 
367     // Determine which mapping file to include
368     std::string vend_plat_vers;
369     if (!GetVendorMappingVersion(&vend_plat_vers)) {
370         return false;
371     }
372     std::string plat_mapping_file("/system/etc/selinux/mapping/" + vend_plat_vers + ".cil");
373 
374     std::string plat_compat_cil_file("/system/etc/selinux/mapping/" + vend_plat_vers +
375                                      ".compat.cil");
376     if (access(plat_compat_cil_file.c_str(), F_OK) == -1) {
377         plat_compat_cil_file.clear();
378     }
379 
380     std::string system_ext_policy_cil_file("/system_ext/etc/selinux/system_ext_sepolicy.cil");
381     if (access(system_ext_policy_cil_file.c_str(), F_OK) == -1) {
382         system_ext_policy_cil_file.clear();
383     }
384 
385     std::string system_ext_mapping_file("/system_ext/etc/selinux/mapping/" + vend_plat_vers +
386                                         ".cil");
387     if (access(system_ext_mapping_file.c_str(), F_OK) == -1) {
388         system_ext_mapping_file.clear();
389     }
390 
391     std::string system_ext_compat_cil_file("/system_ext/etc/selinux/mapping/" + vend_plat_vers +
392                                            ".compat.cil");
393     if (access(system_ext_compat_cil_file.c_str(), F_OK) == -1) {
394         system_ext_compat_cil_file.clear();
395     }
396 
397     std::string product_policy_cil_file("/product/etc/selinux/product_sepolicy.cil");
398     if (access(product_policy_cil_file.c_str(), F_OK) == -1) {
399         product_policy_cil_file.clear();
400     }
401 
402     std::string product_mapping_file("/product/etc/selinux/mapping/" + vend_plat_vers + ".cil");
403     if (access(product_mapping_file.c_str(), F_OK) == -1) {
404         product_mapping_file.clear();
405     }
406 
407     // vendor_sepolicy.cil and plat_pub_versioned.cil are the new design to replace
408     // nonplat_sepolicy.cil.
409     std::string plat_pub_versioned_cil_file("/vendor/etc/selinux/plat_pub_versioned.cil");
410     std::string vendor_policy_cil_file("/vendor/etc/selinux/vendor_sepolicy.cil");
411 
412     if (access(vendor_policy_cil_file.c_str(), F_OK) == -1) {
413         // For backward compatibility.
414         // TODO: remove this after no device is using nonplat_sepolicy.cil.
415         vendor_policy_cil_file = "/vendor/etc/selinux/nonplat_sepolicy.cil";
416         plat_pub_versioned_cil_file.clear();
417     } else if (access(plat_pub_versioned_cil_file.c_str(), F_OK) == -1) {
418         LOG(ERROR) << "Missing " << plat_pub_versioned_cil_file;
419         return false;
420     }
421 
422     // odm_sepolicy.cil is default but optional.
423     std::string odm_policy_cil_file("/odm/etc/selinux/odm_sepolicy.cil");
424     if (access(odm_policy_cil_file.c_str(), F_OK) == -1) {
425         odm_policy_cil_file.clear();
426     }
427     const std::string version_as_string = std::to_string(SEPOLICY_VERSION);
428 
429     // clang-format off
430     std::vector<const char*> compile_args {
431         "/system/bin/secilc",
432         use_userdebug_policy ? *userdebug_plat_sepolicy : plat_policy_cil_file,
433         "-m", "-M", "true", "-G", "-N",
434         "-c", version_as_string.c_str(),
435         plat_mapping_file.c_str(),
436         "-o", compiled_sepolicy,
437         // We don't care about file_contexts output by the compiler
438         "-f", "/sys/fs/selinux/null",  // /dev/null is not yet available
439     };
440     // clang-format on
441 
442     if (!plat_compat_cil_file.empty()) {
443         compile_args.push_back(plat_compat_cil_file.c_str());
444     }
445     if (!system_ext_policy_cil_file.empty()) {
446         compile_args.push_back(system_ext_policy_cil_file.c_str());
447     }
448     if (!system_ext_mapping_file.empty()) {
449         compile_args.push_back(system_ext_mapping_file.c_str());
450     }
451     if (!system_ext_compat_cil_file.empty()) {
452         compile_args.push_back(system_ext_compat_cil_file.c_str());
453     }
454     if (!product_policy_cil_file.empty()) {
455         compile_args.push_back(product_policy_cil_file.c_str());
456     }
457     if (!product_mapping_file.empty()) {
458         compile_args.push_back(product_mapping_file.c_str());
459     }
460     if (!plat_pub_versioned_cil_file.empty()) {
461         compile_args.push_back(plat_pub_versioned_cil_file.c_str());
462     }
463     if (!vendor_policy_cil_file.empty()) {
464         compile_args.push_back(vendor_policy_cil_file.c_str());
465     }
466     if (!odm_policy_cil_file.empty()) {
467         compile_args.push_back(odm_policy_cil_file.c_str());
468     }
469     compile_args.push_back(nullptr);
470 
471     if (!ForkExecveAndWaitForCompletion(compile_args[0], (char**)compile_args.data())) {
472         unlink(compiled_sepolicy);
473         return false;
474     }
475     unlink(compiled_sepolicy);
476 
477     policy_file->fd = std::move(compiled_sepolicy_fd);
478     policy_file->path = compiled_sepolicy;
479     return true;
480 }
481 
OpenMonolithicPolicy(PolicyFile * policy_file)482 bool OpenMonolithicPolicy(PolicyFile* policy_file) {
483     static constexpr char kSepolicyFile[] = "/sepolicy";
484 
485     LOG(VERBOSE) << "Opening SELinux policy from monolithic file";
486     policy_file->fd.reset(open(kSepolicyFile, O_RDONLY | O_CLOEXEC | O_NOFOLLOW));
487     if (policy_file->fd < 0) {
488         PLOG(ERROR) << "Failed to open monolithic SELinux policy";
489         return false;
490     }
491     policy_file->path = kSepolicyFile;
492     return true;
493 }
494 
ReadPolicy(std::string * policy)495 void ReadPolicy(std::string* policy) {
496     PolicyFile policy_file;
497 
498     bool ok = IsSplitPolicyDevice() ? OpenSplitPolicy(&policy_file)
499                                     : OpenMonolithicPolicy(&policy_file);
500     if (!ok) {
501         LOG(FATAL) << "Unable to open SELinux policy";
502     }
503 
504     if (!android::base::ReadFdToString(policy_file.fd, policy)) {
505         PLOG(FATAL) << "Failed to read policy file: " << policy_file.path;
506     }
507 }
508 
SelinuxSetEnforcement()509 void SelinuxSetEnforcement() {
510     bool kernel_enforcing = (security_getenforce() == 1);
511     bool is_enforcing = IsEnforcing();
512     if (kernel_enforcing != is_enforcing) {
513         if (security_setenforce(is_enforcing)) {
514             PLOG(FATAL) << "security_setenforce(" << (is_enforcing ? "true" : "false")
515                         << ") failed";
516         }
517     }
518 
519     if (auto result = WriteFile("/sys/fs/selinux/checkreqprot", "0"); !result.ok()) {
520         LOG(FATAL) << "Unable to write to /sys/fs/selinux/checkreqprot: " << result.error();
521     }
522 }
523 
524 constexpr size_t kKlogMessageSize = 1024;
525 
SelinuxAvcLog(char * buf,size_t buf_len)526 void SelinuxAvcLog(char* buf, size_t buf_len) {
527     CHECK_GT(buf_len, 0u);
528 
529     size_t str_len = strnlen(buf, buf_len);
530     // trim newline at end of string
531     if (buf[str_len - 1] == '\n') {
532         buf[str_len - 1] = '\0';
533     }
534 
535     struct NetlinkMessage {
536         nlmsghdr hdr;
537         char buf[kKlogMessageSize];
538     } request = {};
539 
540     request.hdr.nlmsg_flags = NLM_F_REQUEST;
541     request.hdr.nlmsg_type = AUDIT_USER_AVC;
542     request.hdr.nlmsg_len = sizeof(request);
543     strlcpy(request.buf, buf, sizeof(request.buf));
544 
545     auto fd = unique_fd{socket(PF_NETLINK, SOCK_RAW | SOCK_CLOEXEC, NETLINK_AUDIT)};
546     if (!fd.ok()) {
547         return;
548     }
549 
550     TEMP_FAILURE_RETRY(send(fd, &request, sizeof(request), 0));
551 }
552 
553 }  // namespace
554 
SelinuxRestoreContext()555 void SelinuxRestoreContext() {
556     LOG(INFO) << "Running restorecon...";
557     selinux_android_restorecon("/dev", 0);
558     selinux_android_restorecon("/dev/kmsg", 0);
559     if constexpr (WORLD_WRITABLE_KMSG) {
560         selinux_android_restorecon("/dev/kmsg_debug", 0);
561     }
562     selinux_android_restorecon("/dev/null", 0);
563     selinux_android_restorecon("/dev/ptmx", 0);
564     selinux_android_restorecon("/dev/socket", 0);
565     selinux_android_restorecon("/dev/random", 0);
566     selinux_android_restorecon("/dev/urandom", 0);
567     selinux_android_restorecon("/dev/__properties__", 0);
568 
569     selinux_android_restorecon("/dev/block", SELINUX_ANDROID_RESTORECON_RECURSE);
570     selinux_android_restorecon("/dev/dm-user", SELINUX_ANDROID_RESTORECON_RECURSE);
571     selinux_android_restorecon("/dev/device-mapper", 0);
572 
573     selinux_android_restorecon("/apex", 0);
574 
575     selinux_android_restorecon("/linkerconfig", 0);
576 
577     // adb remount, snapshot-based updates, and DSUs all create files during
578     // first-stage init.
579     selinux_android_restorecon(SnapshotManager::GetGlobalRollbackIndicatorPath().c_str(), 0);
580     selinux_android_restorecon("/metadata/gsi", SELINUX_ANDROID_RESTORECON_RECURSE |
581                                                         SELINUX_ANDROID_RESTORECON_SKIP_SEHASH);
582 }
583 
SelinuxKlogCallback(int type,const char * fmt,...)584 int SelinuxKlogCallback(int type, const char* fmt, ...) {
585     android::base::LogSeverity severity = android::base::ERROR;
586     if (type == SELINUX_WARNING) {
587         severity = android::base::WARNING;
588     } else if (type == SELINUX_INFO) {
589         severity = android::base::INFO;
590     }
591     char buf[kKlogMessageSize];
592     va_list ap;
593     va_start(ap, fmt);
594     int length_written = vsnprintf(buf, sizeof(buf), fmt, ap);
595     va_end(ap);
596     if (length_written <= 0) {
597         return 0;
598     }
599     if (type == SELINUX_AVC) {
600         SelinuxAvcLog(buf, sizeof(buf));
601     } else {
602         android::base::KernelLogger(android::base::MAIN, severity, "selinux", nullptr, 0, buf);
603     }
604     return 0;
605 }
606 
SelinuxSetupKernelLogging()607 void SelinuxSetupKernelLogging() {
608     selinux_callback cb;
609     cb.func_log = SelinuxKlogCallback;
610     selinux_set_callback(SELINUX_CB_LOG, cb);
611 }
612 
SelinuxGetVendorAndroidVersion()613 int SelinuxGetVendorAndroidVersion() {
614     static int vendor_android_version = [] {
615         if (!IsSplitPolicyDevice()) {
616             // If this device does not split sepolicy files, it's not a Treble device and therefore,
617             // we assume it's always on the latest platform.
618             return __ANDROID_API_FUTURE__;
619         }
620 
621         std::string version;
622         if (!GetVendorMappingVersion(&version)) {
623             LOG(FATAL) << "Could not read vendor SELinux version";
624         }
625 
626         int major_version;
627         std::string major_version_str(version, 0, version.find('.'));
628         if (!ParseInt(major_version_str, &major_version)) {
629             PLOG(FATAL) << "Failed to parse the vendor sepolicy major version "
630                         << major_version_str;
631         }
632 
633         return major_version;
634     }();
635     return vendor_android_version;
636 }
637 
638 // This is for R system.img/system_ext.img to work on old vendor.img as system_ext.img
639 // is introduced in R. We mount system_ext in second stage init because the first-stage
640 // init in boot.img won't be updated in the system-only OTA scenario.
MountMissingSystemPartitions()641 void MountMissingSystemPartitions() {
642     android::fs_mgr::Fstab fstab;
643     if (!ReadDefaultFstab(&fstab)) {
644         LOG(ERROR) << "Could not read default fstab";
645     }
646 
647     android::fs_mgr::Fstab mounts;
648     if (!ReadFstabFromFile("/proc/mounts", &mounts)) {
649         LOG(ERROR) << "Could not read /proc/mounts";
650     }
651 
652     static const std::vector<std::string> kPartitionNames = {"system_ext", "product"};
653 
654     android::fs_mgr::Fstab extra_fstab;
655     for (const auto& name : kPartitionNames) {
656         if (GetEntryForMountPoint(&mounts, "/"s + name)) {
657             // The partition is already mounted.
658             continue;
659         }
660 
661         auto system_entry = GetEntryForMountPoint(&fstab, "/system");
662         if (!system_entry) {
663             LOG(ERROR) << "Could not find mount entry for /system";
664             break;
665         }
666         if (!system_entry->fs_mgr_flags.logical) {
667             LOG(INFO) << "Skipping mount of " << name << ", system is not dynamic.";
668             break;
669         }
670 
671         auto entry = *system_entry;
672         auto partition_name = name + fs_mgr_get_slot_suffix();
673         auto replace_name = "system"s + fs_mgr_get_slot_suffix();
674 
675         entry.mount_point = "/"s + name;
676         entry.blk_device =
677                 android::base::StringReplace(entry.blk_device, replace_name, partition_name, false);
678         if (!fs_mgr_update_logical_partition(&entry)) {
679             LOG(ERROR) << "Could not update logical partition";
680             continue;
681         }
682 
683         extra_fstab.emplace_back(std::move(entry));
684     }
685 
686     SkipMountingPartitions(&extra_fstab, true /* verbose */);
687     if (extra_fstab.empty()) {
688         return;
689     }
690 
691     BlockDevInitializer block_dev_init;
692     for (auto& entry : extra_fstab) {
693         if (access(entry.blk_device.c_str(), F_OK) != 0) {
694             auto block_dev = android::base::Basename(entry.blk_device);
695             if (!block_dev_init.InitDmDevice(block_dev)) {
696                 LOG(ERROR) << "Failed to find device-mapper node: " << block_dev;
697                 continue;
698             }
699         }
700         if (fs_mgr_do_mount_one(entry)) {
701             LOG(ERROR) << "Could not mount " << entry.mount_point;
702         }
703     }
704 }
705 
LoadSelinuxPolicy(std::string & policy)706 static void LoadSelinuxPolicy(std::string& policy) {
707     LOG(INFO) << "Loading SELinux policy";
708 
709     set_selinuxmnt("/sys/fs/selinux");
710     if (security_load_policy(policy.data(), policy.size()) < 0) {
711         PLOG(FATAL) << "SELinux:  Could not load policy";
712     }
713 }
714 
715 // The SELinux setup process is carefully orchestrated around snapuserd. Policy
716 // must be loaded off dynamic partitions, and during an OTA, those partitions
717 // cannot be read without snapuserd. But, with kernel-privileged snapuserd
718 // running, loading the policy will immediately trigger audits.
719 //
720 // We use a five-step process to address this:
721 //  (1) Read the policy into a string, with snapuserd running.
722 //  (2) Rewrite the snapshot device-mapper tables, to generate new dm-user
723 //      devices and to flush I/O.
724 //  (3) Kill snapuserd, which no longer has any dm-user devices to attach to.
725 //  (4) Load the sepolicy and issue critical restorecons in /dev, carefully
726 //      avoiding anything that would read from /system.
727 //  (5) Re-launch snapuserd and attach it to the dm-user devices from step (2).
728 //
729 // After this sequence, it is safe to enable enforcing mode and continue booting.
SetupSelinux(char ** argv)730 int SetupSelinux(char** argv) {
731     SetStdioToDevNull(argv);
732     InitKernelLogging(argv);
733 
734     if (REBOOT_BOOTLOADER_ON_PANIC) {
735         InstallRebootSignalHandlers();
736     }
737 
738     boot_clock::time_point start_time = boot_clock::now();
739 
740     MountMissingSystemPartitions();
741 
742     SelinuxSetupKernelLogging();
743 
744     LOG(INFO) << "Opening SELinux policy";
745 
746     // Read the policy before potentially killing snapuserd.
747     std::string policy;
748     ReadPolicy(&policy);
749 
750     auto snapuserd_helper = SnapuserdSelinuxHelper::CreateIfNeeded();
751     if (snapuserd_helper) {
752         // Kill the old snapused to avoid audit messages. After this we cannot
753         // read from /system (or other dynamic partitions) until we call
754         // FinishTransition().
755         snapuserd_helper->StartTransition();
756     }
757 
758     LoadSelinuxPolicy(policy);
759 
760     if (snapuserd_helper) {
761         // Before enforcing, finish the pending snapuserd transition.
762         snapuserd_helper->FinishTransition();
763         snapuserd_helper = nullptr;
764     }
765 
766     SelinuxSetEnforcement();
767 
768     // We're in the kernel domain and want to transition to the init domain.  File systems that
769     // store SELabels in their xattrs, such as ext4 do not need an explicit restorecon here,
770     // but other file systems do.  In particular, this is needed for ramdisks such as the
771     // recovery image for A/B devices.
772     if (selinux_android_restorecon("/system/bin/init", 0) == -1) {
773         PLOG(FATAL) << "restorecon failed of /system/bin/init failed";
774     }
775 
776     setenv(kEnvSelinuxStartedAt, std::to_string(start_time.time_since_epoch().count()).c_str(), 1);
777 
778     const char* path = "/system/bin/init";
779     const char* args[] = {path, "second_stage", nullptr};
780     execv(path, const_cast<char**>(args));
781 
782     // execv() only returns if an error happened, in which case we
783     // panic and never return from this function.
784     PLOG(FATAL) << "execv(\"" << path << "\") failed";
785 
786     return 1;
787 }
788 
789 }  // namespace init
790 }  // namespace android
791