1 /*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "Operations"
18
19 #include <vector>
20
21 #include "OperationResolver.h"
22 #include "Tracing.h"
23
24 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
25 #include <tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h>
26 #include <tensorflow/lite/kernels/internal/reference/reference_ops.h>
27
28 #include "CpuOperationUtils.h"
29 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
30
31 namespace android {
32 namespace nn {
33 namespace transpose {
34
35 constexpr char kOperationName[] = "TRANSPOSE";
36
37 constexpr uint32_t kNumInputs = 2;
38 constexpr uint32_t kInputTensor = 0;
39 constexpr uint32_t kPermTensor = 1;
40
41 constexpr uint32_t kNumOutputs = 1;
42 constexpr uint32_t kOutputTensor = 0;
43
44 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
45 namespace {
46
47 template <typename T>
transposeGeneric(const T * inputData,const Shape & inputShape,const int32_t * perm,const Shape & permShape,T * outputData,const Shape & outputShape)48 bool transposeGeneric(const T* inputData, const Shape& inputShape, const int32_t* perm,
49 const Shape& permShape, T* outputData, const Shape& outputShape) {
50 NNTRACE_TRANS("transposeGeneric");
51 // Reverse the permuted axes and convert to 4D due to the way Dims are
52 // constructed.
53 const int32_t kOutputDimensionNum = 4;
54
55 // permData can be NO_VALUE representing a regular 2D matrix transpose
56 int32_t permSize = perm == nullptr ? 2 : static_cast<int32_t>(getSizeOfDimension(permShape, 0));
57 int32_t perm_tmp[2] = {1, 0};
58 if (perm == nullptr) {
59 perm = perm_tmp;
60 }
61 int32_t reversed_perm[kOutputDimensionNum];
62 for (int32_t output_k = 0, input_k = permSize - 1; output_k < permSize; ++output_k, --input_k) {
63 reversed_perm[output_k] = permSize - perm[input_k] - 1;
64 }
65 for (int32_t k = permSize; k < kOutputDimensionNum; ++k) {
66 reversed_perm[k] = k;
67 }
68 NNTRACE_COMP_SWITCH("reference_ops::Transpose");
69 tflite::reference_ops::Transpose(inputData, convertShapeToDims(inputShape), outputData,
70 convertShapeToDims(outputShape), reversed_perm);
71 return true;
72 }
73
74 } // namespace
75 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
76
validate(const IOperationValidationContext * context)77 Result<Version> validate(const IOperationValidationContext* context) {
78 NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
79 NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
80
81 const OperandType inputType = context->getInputType(kInputTensor);
82 auto minSupportedVersion = Version::ANDROID_OC_MR1;
83 if (inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM) {
84 minSupportedVersion = Version::ANDROID_P;
85 } else if (inputType == OperandType::TENSOR_FLOAT16) {
86 minSupportedVersion = Version::ANDROID_Q;
87 } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
88 minSupportedVersion = Version::ANDROID_R;
89 } else {
90 NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
91 }
92 const Shape& input = context->getInputShape(kInputTensor);
93 if (hasKnownRank(input)) {
94 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4);
95 }
96 NN_RET_CHECK(validateInputTypes(context, {inputType, OperandType::TENSOR_INT32}));
97 NN_RET_CHECK(validateOutputTypes(context, {inputType}));
98 return minSupportedVersion;
99 }
100
101 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
prepare(IOperationExecutionContext * context)102 bool prepare(IOperationExecutionContext* context) {
103 // Only the permutation tensor can be omitted.
104 NN_RET_CHECK(!context->isOmittedInput(kInputTensor));
105 NN_RET_CHECK(!context->isOmittedOutput(kOutputTensor));
106
107 const Shape& input = context->getInputShape(kInputTensor);
108 uint32_t numInputDims = getNumberOfDimensions(input);
109 Shape output = context->getOutputShape(kOutputTensor);
110 output.type = input.type;
111 output.offset = input.offset;
112 output.scale = input.scale;
113
114 // permData can be NO_VALUE representing a regular 2D matrix transpose
115 if (context->isOmittedInput(kPermTensor)) {
116 NN_RET_CHECK_EQ(numInputDims, 2);
117 output.dimensions = {getSizeOfDimension(input, 1), getSizeOfDimension(input, 0)};
118 } else {
119 const Shape& permShape = context->getInputShape(kPermTensor);
120 const int32_t* permData = context->getInputBuffer<int32_t>(kPermTensor);
121
122 // Transpose op only supports 1D-4D input arrays.
123 NN_RET_CHECK_LE(numInputDims, 4);
124
125 // perm need to be provided as a 1-D int32 tensor.
126 NN_RET_CHECK(permShape.type == OperandType::TENSOR_INT32);
127 NN_RET_CHECK_EQ(getNumberOfDimensions(permShape), 1);
128 NN_RET_CHECK_EQ(numInputDims, getSizeOfDimension(permShape, 0));
129
130 std::vector<uint32_t> outDims(numInputDims);
131 for (int32_t idx = 0; idx < static_cast<int32_t>(numInputDims); ++idx) {
132 NN_RET_CHECK(permData[idx] >= 0 && permData[idx] < static_cast<int32_t>(numInputDims));
133 outDims[idx] = getSizeOfDimension(input, permData[idx]);
134 }
135 output.dimensions = outDims;
136 }
137 return context->setOutputShape(kOutputTensor, output);
138 }
139
execute(IOperationExecutionContext * context)140 bool execute(IOperationExecutionContext* context) {
141 // Bypass execution in the case of zero-sized input.
142 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
143
144 switch (context->getInputType(kInputTensor)) {
145 case OperandType::TENSOR_FLOAT32:
146 return transposeGeneric(context->getInputBuffer<float>(kInputTensor),
147 context->getInputShape(kInputTensor),
148 context->getInputBuffer<int32_t>(kPermTensor),
149 context->getInputShape(kPermTensor),
150 context->getOutputBuffer<float>(kOutputTensor),
151 context->getOutputShape(kOutputTensor));
152 case OperandType::TENSOR_FLOAT16:
153 return transposeGeneric(context->getInputBuffer<_Float16>(kInputTensor),
154 context->getInputShape(kInputTensor),
155 context->getInputBuffer<int32_t>(kPermTensor),
156 context->getInputShape(kPermTensor),
157 context->getOutputBuffer<_Float16>(kOutputTensor),
158 context->getOutputShape(kOutputTensor));
159 case OperandType::TENSOR_QUANT8_ASYMM:
160 return transposeGeneric(context->getInputBuffer<uint8_t>(kInputTensor),
161 context->getInputShape(kInputTensor),
162 context->getInputBuffer<int32_t>(kPermTensor),
163 context->getInputShape(kPermTensor),
164 context->getOutputBuffer<uint8_t>(kOutputTensor),
165 context->getOutputShape(kOutputTensor));
166 case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
167 return transposeGeneric(context->getInputBuffer<int8_t>(kInputTensor),
168 context->getInputShape(kInputTensor),
169 context->getInputBuffer<int32_t>(kPermTensor),
170 context->getInputShape(kPermTensor),
171 context->getOutputBuffer<int8_t>(kOutputTensor),
172 context->getOutputShape(kOutputTensor));
173 default:
174 NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
175 }
176 }
177 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
178
179 } // namespace transpose
180
181 NN_REGISTER_OPERATION(TRANSPOSE, transpose::kOperationName, transpose::validate, transpose::prepare,
182 transpose::execute, .allowOmittedOperand = true, .allowZeroSizedInput = true);
183
184 } // namespace nn
185 } // namespace android
186