1 /*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "Operations"
18
19 #include <algorithm>
20 #include <cfloat>
21 #include <cmath>
22 #include <vector>
23
24 #include "OperationResolver.h"
25 #include "OperationsUtils.h"
26 #include "Tracing.h"
27
28 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
29 #include "CpuOperationUtils.h"
30 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
31
32 namespace android {
33 namespace nn {
34 namespace heatmap_max_keypoint {
35
36 constexpr char kOperationName[] = "HEATMAP_MAX_KEYPOINT";
37
38 constexpr uint32_t kNumInputs = 3;
39 constexpr uint32_t kHeatmapTensor = 0;
40 constexpr uint32_t kBoxesTensor = 1;
41 constexpr uint32_t kLayoutScalar = 2;
42
43 constexpr uint32_t kNumOutputs = 2;
44 constexpr uint32_t kOutputScoreTensor = 0;
45 constexpr uint32_t kOutputKeypointTensor = 1;
46
47 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
48 namespace {
49
50 // This function uses Taylor expansion up to the quatratic term to approximate bicubic
51 // upscaling result.
52 // 2nd order Taylor expansion: D(x) = D - b'x + 1/2 * x'Ax
53 // where D = grid[1][1], Taylor expansion center, the original score,
54 // x = delta, the correction on max keypoint position,
55 // D(x) = deltaScore, the accuracy score after correction
solveForDelta(const float grid[3][3],float * delta,float * deltaScore,float fpAtol=1e-5f,float fpRtol=1e-5f)56 static void solveForDelta(const float grid[3][3], float* delta, float* deltaScore,
57 float fpAtol = 1e-5f, float fpRtol = 1e-5f) {
58 // b: negative 1st order derivative at center
59 // A: Hessian matrix at center (2nd order derivative)
60 float A[2][2], b[2];
61 b[0] = -(grid[1][2] - grid[1][0]) / 2.0f;
62 b[1] = -(grid[2][1] - grid[0][1]) / 2.0f;
63 A[0][0] = grid[1][0] - 2.0f * grid[1][1] + grid[1][2];
64 A[0][1] = (grid[2][2] - grid[2][0] - grid[0][2] + grid[0][0]) / 4.0f;
65 A[1][0] = A[0][1];
66 A[1][1] = grid[0][1] - 2.0f * grid[1][1] + grid[2][1];
67
68 // solve Ax=b, where x=delta -> delta = inv(A) * b
69 float crossProd1 = A[0][0] * A[1][1], crossProd2 = A[0][1] * A[1][0];
70 float detA = crossProd1 - crossProd2;
71 // check if A is invertible
72 if (std::abs(detA) < (fpAtol + fpRtol * crossProd1)) return;
73 delta[0] = (A[1][1] * b[0] - A[0][1] * b[1]) / detA;
74 delta[1] = (A[0][0] * b[1] - A[1][0] * b[0]) / detA;
75
76 // clip out of range delta, i.e. delta > 3/2
77 if (std::abs(delta[0]) > 1.5f || std::abs(delta[1]) > 1.5f) {
78 float scale = 1.5f / std::max(std::abs(delta[0]), std::abs(delta[1]));
79 delta[0] *= scale;
80 delta[1] *= scale;
81 }
82
83 *deltaScore = grid[1][1] - b[0] * delta[0] - b[1] * delta[1] +
84 ((A[0][0] * delta[0] + A[0][1] * delta[1]) * delta[0] +
85 (A[1][0] * delta[0] + A[1][1] * delta[1]) * delta[1]) /
86 2.0f;
87 }
88
heatmapMaxKeypointFloat32Nhwc(const float * heatmap,const Shape & heatmapShape,const float * boxes,const Shape & boxesShape,float * outputScoreData,const Shape & outputScoreShape,float * outputKeypointData,const Shape & outputKeypointShape,float fpAtol,float fpRtol)89 inline bool heatmapMaxKeypointFloat32Nhwc(const float* heatmap, const Shape& heatmapShape,
90 const float* boxes, const Shape& boxesShape,
91 float* outputScoreData, const Shape& outputScoreShape,
92 float* outputKeypointData,
93 const Shape& outputKeypointShape, float fpAtol,
94 float fpRtol) {
95 NNTRACE_TRANS("HeatmapMaxKeypoint");
96
97 uint32_t numBoxes = getSizeOfDimension(heatmapShape, 0);
98 uint32_t heatmapSize = getSizeOfDimension(heatmapShape, 1);
99 uint32_t numKeypoints = getSizeOfDimension(heatmapShape, 3);
100 uint32_t boxInfoLength = getSizeOfDimension(boxesShape, 1);
101
102 const float* heatmapBase = heatmap;
103 const float* boxInfoBase = boxes;
104 float* outputScoreBase = outputScoreData;
105 float* outputKeypointBase = outputKeypointData;
106 for (uint32_t i = 0; i < numBoxes; i++) {
107 NN_RET_CHECK_LE(boxInfoBase[0], boxInfoBase[2]);
108 NN_RET_CHECK_LE(boxInfoBase[1], boxInfoBase[3]);
109 for (uint32_t j = 0; j < numKeypoints; j++) {
110 // find max score and its index
111 uint32_t maxIndex = 0;
112 float maxScore = -FLT_MAX;
113 for (uint32_t k = 0; k < heatmapSize * heatmapSize; k++) {
114 float val = heatmapBase[k * numKeypoints + j];
115 if (maxScore < val) {
116 maxScore = val;
117 maxIndex = k;
118 }
119 }
120
121 uint32_t maxIndexWidth = maxIndex % heatmapSize;
122 uint32_t maxIndexHeight = maxIndex / heatmapSize;
123
124 // get local 3x3 grid
125 float localGrid[3][3];
126 for (int32_t dh = -1; dh <= 1; dh++) {
127 for (int32_t dw = -1; dw <= 1; dw++) {
128 // cast uint32_t to int32_t
129 int32_t h = static_cast<int32_t>(maxIndexHeight) + dh;
130 int32_t w = static_cast<int32_t>(maxIndexWidth) + dw;
131
132 // use mirroring for out of bound indexing
133 // need to ensure heatmapSize >= 2
134 h = h < 0 ? 1 : (h >= heatmapSize ? heatmapSize - 2 : h);
135 w = w < 0 ? 1 : (w >= heatmapSize ? heatmapSize - 2 : w);
136
137 uint32_t heatmapIndex = static_cast<uint32_t>(h) * heatmapSize * numKeypoints +
138 static_cast<uint32_t>(w) * numKeypoints + j;
139 localGrid[dh + 1][dw + 1] = heatmapBase[heatmapIndex];
140 }
141 }
142
143 float delta[2] = {0.0f, 0.0f}, deltaScore = maxScore;
144 solveForDelta(localGrid, delta, &deltaScore, fpAtol, fpRtol);
145
146 float wRoiStart = boxInfoBase[0];
147 float hRoiStart = boxInfoBase[1];
148 float wRoiEnd = boxInfoBase[2];
149 float hRoiEnd = boxInfoBase[3];
150 float roiWidth = wRoiEnd - wRoiStart;
151 float roiHeight = hRoiEnd - hRoiStart;
152 float wRelativePos = (static_cast<float>(maxIndexWidth) + delta[0] + 0.5f) /
153 static_cast<float>(heatmapSize);
154 float hRelativePos = (static_cast<float>(maxIndexHeight) + delta[1] + 0.5f) /
155 static_cast<float>(heatmapSize);
156 *outputScoreBase++ = deltaScore;
157 outputKeypointBase[0] = wRelativePos * roiWidth + wRoiStart;
158 outputKeypointBase[1] = hRelativePos * roiHeight + hRoiStart;
159 outputKeypointBase += 2;
160 }
161 boxInfoBase += boxInfoLength;
162 heatmapBase += heatmapSize * heatmapSize * numKeypoints;
163 }
164
165 return true;
166 }
167
heatmapMaxKeypointFloat32(const float * heatmap,const Shape & heatmapShape,const float * boxes,const Shape & boxesShape,bool layout,float * outputScoreData,const Shape & outputScoreShape,float * outputKeypointData,const Shape & outputKeypointShape,float fpAtol,float fpRtol)168 inline bool heatmapMaxKeypointFloat32(const float* heatmap, const Shape& heatmapShape,
169 const float* boxes, const Shape& boxesShape, bool layout,
170 float* outputScoreData, const Shape& outputScoreShape,
171 float* outputKeypointData, const Shape& outputKeypointShape,
172 float fpAtol, float fpRtol) {
173 std::vector<float> heatmap_nhwc;
174 Shape heatmapShape_nhwc;
175 if (layout) {
176 NN_RET_CHECK(convertNchwToNhwc(heatmap, heatmapShape, &heatmap_nhwc, &heatmapShape_nhwc));
177 }
178 const float* heatmap_tmp = layout ? heatmap_nhwc.data() : heatmap;
179 const Shape& heatmapShape_tmp = layout ? heatmapShape_nhwc : heatmapShape;
180 return heatmapMaxKeypointFloat32Nhwc(heatmap_tmp, heatmapShape_tmp, boxes, boxesShape,
181 outputScoreData, outputScoreShape, outputKeypointData,
182 outputKeypointShape, fpAtol, fpRtol);
183 }
184
heatmapMaxKeypointQuant(const uint8_t * heatmap,const Shape & heatmapShape,const uint16_t * boxes,const Shape & boxesShape,bool layout,uint8_t * outputScoreData,const Shape & outputScoreShape,uint16_t * outputKeypointData,const Shape & outputKeypointShape,float fpAtol,float fpRtol)185 inline bool heatmapMaxKeypointQuant(const uint8_t* heatmap, const Shape& heatmapShape,
186 const uint16_t* boxes, const Shape& boxesShape, bool layout,
187 uint8_t* outputScoreData, const Shape& outputScoreShape,
188 uint16_t* outputKeypointData, const Shape& outputKeypointShape,
189 float fpAtol, float fpRtol) {
190 std::vector<float> heatmap_float32(getNumberOfElements(heatmapShape));
191 convertQuantToFloat32(heatmap, heatmapShape.scale, heatmapShape.offset, &heatmap_float32);
192 std::vector<float> boxes_float32(getNumberOfElements(boxesShape));
193 convertQuantToFloat32(boxes, boxesShape.scale, boxesShape.offset, &boxes_float32);
194 std::vector<float> outputScore_float32(getNumberOfElements(outputScoreShape));
195 std::vector<float> outputKeypoint_float32(getNumberOfElements(outputKeypointShape));
196 NN_RET_CHECK(heatmapMaxKeypointFloat32(
197 heatmap_float32.data(), heatmapShape, boxes_float32.data(), boxesShape, layout,
198 outputScore_float32.data(), outputScoreShape, outputKeypoint_float32.data(),
199 outputKeypointShape, fpAtol, fpRtol));
200 convertFloat32ToQuant(outputScore_float32, outputScoreShape.scale, outputScoreShape.offset,
201 outputScoreData);
202 convertFloat32ToQuant(outputKeypoint_float32, outputKeypointShape.scale,
203 outputKeypointShape.offset, outputKeypointData);
204 return true;
205 }
206
heatmapMaxKeypointQuant(const int8_t * heatmap,const Shape & heatmapShape,const uint16_t * boxes,const Shape & boxesShape,bool layout,int8_t * outputScoreData,const Shape & outputScoreShape,uint16_t * outputKeypointData,const Shape & outputKeypointShape,float fpAtol,float fpRtol)207 inline bool heatmapMaxKeypointQuant(const int8_t* heatmap, const Shape& heatmapShape,
208 const uint16_t* boxes, const Shape& boxesShape, bool layout,
209 int8_t* outputScoreData, const Shape& outputScoreShape,
210 uint16_t* outputKeypointData, const Shape& outputKeypointShape,
211 float fpAtol, float fpRtol) {
212 std::vector<float> heatmap_float32(getNumberOfElements(heatmapShape));
213 convertQuantToFloat32(heatmap, heatmapShape.scale, heatmapShape.offset, &heatmap_float32);
214 std::vector<float> boxes_float32(getNumberOfElements(boxesShape));
215 convertQuantToFloat32(boxes, boxesShape.scale, boxesShape.offset, &boxes_float32);
216 std::vector<float> outputScore_float32(getNumberOfElements(outputScoreShape));
217 std::vector<float> outputKeypoint_float32(getNumberOfElements(outputKeypointShape));
218 NN_RET_CHECK(heatmapMaxKeypointFloat32(
219 heatmap_float32.data(), heatmapShape, boxes_float32.data(), boxesShape, layout,
220 outputScore_float32.data(), outputScoreShape, outputKeypoint_float32.data(),
221 outputKeypointShape, fpAtol, fpRtol));
222 convertFloat32ToQuant(outputScore_float32, outputScoreShape.scale, outputScoreShape.offset,
223 outputScoreData);
224 convertFloat32ToQuant(outputKeypoint_float32, outputKeypointShape.scale,
225 outputKeypointShape.offset, outputKeypointData);
226 return true;
227 }
228
229 } // namespace
230 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
231
validate(const IOperationValidationContext * context)232 Result<Version> validate(const IOperationValidationContext* context) {
233 NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
234 NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
235 std::vector<OperandType> inExpectedTypes;
236 std::vector<OperandType> outExpectedTypes;
237 auto inputType = context->getInputType(kHeatmapTensor);
238 auto minSupportedVersion = Version::ANDROID_Q;
239 if (inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_FLOAT16) {
240 inExpectedTypes = {inputType, inputType, OperandType::BOOL};
241 outExpectedTypes = {inputType, inputType};
242 } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
243 inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT16_ASYMM,
244 OperandType::BOOL};
245 outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT16_ASYMM};
246 } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
247 inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED,
248 OperandType::TENSOR_QUANT16_ASYMM, OperandType::BOOL};
249 outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED,
250 OperandType::TENSOR_QUANT16_ASYMM};
251 minSupportedVersion = Version::ANDROID_R;
252 } else {
253 return NN_ERROR() << "Unsupported input tensor type for operation " << kOperationName;
254 }
255 NN_RET_CHECK(validateInputTypes(context, inExpectedTypes));
256 NN_RET_CHECK(validateOutputTypes(context, outExpectedTypes));
257 return minSupportedVersion;
258 }
259
260 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
prepare(IOperationExecutionContext * context)261 bool prepare(IOperationExecutionContext* context) {
262 bool layout = context->getInputValue<bool>(kLayoutScalar);
263 Shape heatmapShape = context->getInputShape(kHeatmapTensor);
264 Shape boxesShape = context->getInputShape(kBoxesTensor);
265 NN_RET_CHECK_EQ(getNumberOfDimensions(heatmapShape), 4);
266 NN_RET_CHECK_EQ(getNumberOfDimensions(boxesShape), 2);
267
268 uint32_t numBoxes = getSizeOfDimension(heatmapShape, 0);
269 uint32_t heatmapSize = getSizeOfDimension(heatmapShape, 2);
270 uint32_t numKeypoints = getSizeOfDimension(heatmapShape, layout ? 1 : 3);
271 uint32_t boxInfoLength = getSizeOfDimension(boxesShape, 1);
272 NN_RET_CHECK_EQ(getSizeOfDimension(heatmapShape, layout ? 3 : 1), heatmapSize);
273 NN_RET_CHECK_GE(heatmapSize, 2);
274 NN_RET_CHECK_EQ(getSizeOfDimension(boxesShape, 0), numBoxes);
275 NN_RET_CHECK_EQ(boxInfoLength, 4);
276
277 if (heatmapShape.type == OperandType::TENSOR_QUANT8_ASYMM ||
278 heatmapShape.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
279 NN_RET_CHECK_EQ(boxesShape.scale, 0.125f);
280 NN_RET_CHECK_EQ(boxesShape.offset, 0);
281 }
282
283 Shape outputScore = context->getOutputShape(kOutputScoreTensor);
284 outputScore.type = heatmapShape.type;
285 outputScore.dimensions = {numBoxes, numKeypoints};
286 NN_RET_CHECK(context->setOutputShape(kOutputScoreTensor, outputScore));
287
288 Shape outputKeypoint = context->getOutputShape(kOutputKeypointTensor);
289 outputKeypoint.type = boxesShape.type;
290 outputKeypoint.dimensions = {numBoxes, numKeypoints, 2};
291 outputKeypoint.offset = 0;
292 outputKeypoint.scale = 0.f;
293 if (heatmapShape.type == OperandType::TENSOR_QUANT8_ASYMM ||
294 heatmapShape.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
295 outputKeypoint.scale = 0.125f;
296 }
297 NN_RET_CHECK(context->setOutputShape(kOutputKeypointTensor, outputKeypoint));
298 return true;
299 }
300
execute(IOperationExecutionContext * context)301 bool execute(IOperationExecutionContext* context) {
302 bool layout = context->getInputValue<bool>(kLayoutScalar);
303 switch (context->getInputType(kHeatmapTensor)) {
304 case OperandType::TENSOR_FLOAT16: {
305 const auto heatmap = context->getInputBuffer<_Float16>(kHeatmapTensor);
306 const auto heatmapShape = context->getInputShape(kHeatmapTensor);
307 const auto boxes = context->getInputBuffer<_Float16>(kBoxesTensor);
308 const auto boxesShape = context->getInputShape(kBoxesTensor);
309 auto outputScoreData = context->getOutputBuffer<_Float16>(kOutputScoreTensor);
310 const auto outputScoreShape = context->getOutputShape(kOutputScoreTensor);
311 auto outputKeypointData = context->getOutputBuffer<_Float16>(kOutputKeypointTensor);
312 const auto outputKeypointShape = context->getOutputShape(kOutputKeypointTensor);
313 std::vector<float> heatmap_float32(getNumberOfElements(heatmapShape));
314 convertFloat16ToFloat32(heatmap, &heatmap_float32);
315 std::vector<float> boxes_float32(getNumberOfElements(boxesShape));
316 convertFloat16ToFloat32(boxes, &boxes_float32);
317 std::vector<float> outputScore_float32(getNumberOfElements(outputScoreShape));
318 std::vector<float> outputKeypoint_float32(getNumberOfElements(outputKeypointShape));
319 NN_RET_CHECK(heatmapMaxKeypointFloat32(
320 heatmap_float32.data(), heatmapShape, boxes_float32.data(), boxesShape, layout,
321 outputScore_float32.data(), outputScoreShape, outputKeypoint_float32.data(),
322 outputKeypointShape, 1e-3f, 1e-3f));
323 convertFloat32ToFloat16(outputScore_float32, outputScoreData);
324 convertFloat32ToFloat16(outputKeypoint_float32, outputKeypointData);
325 return true;
326 }
327 case OperandType::TENSOR_FLOAT32: {
328 return heatmapMaxKeypointFloat32(context->getInputBuffer<float>(kHeatmapTensor),
329 context->getInputShape(kHeatmapTensor),
330 context->getInputBuffer<float>(kBoxesTensor),
331 context->getInputShape(kBoxesTensor), layout,
332 context->getOutputBuffer<float>(kOutputScoreTensor),
333 context->getOutputShape(kOutputScoreTensor),
334 context->getOutputBuffer<float>(kOutputKeypointTensor),
335 context->getOutputShape(kOutputKeypointTensor), 1e-5f,
336 1e-5f);
337 }
338 case OperandType::TENSOR_QUANT8_ASYMM: {
339 return heatmapMaxKeypointQuant(
340 context->getInputBuffer<uint8_t>(kHeatmapTensor),
341 context->getInputShape(kHeatmapTensor),
342 context->getInputBuffer<uint16_t>(kBoxesTensor),
343 context->getInputShape(kBoxesTensor), layout,
344 context->getOutputBuffer<uint8_t>(kOutputScoreTensor),
345 context->getOutputShape(kOutputScoreTensor),
346 context->getOutputBuffer<uint16_t>(kOutputKeypointTensor),
347 context->getOutputShape(kOutputKeypointTensor), 1e-5f, 1e-5f);
348 }
349 case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: {
350 return heatmapMaxKeypointQuant(
351 context->getInputBuffer<int8_t>(kHeatmapTensor),
352 context->getInputShape(kHeatmapTensor),
353 context->getInputBuffer<uint16_t>(kBoxesTensor),
354 context->getInputShape(kBoxesTensor), layout,
355 context->getOutputBuffer<int8_t>(kOutputScoreTensor),
356 context->getOutputShape(kOutputScoreTensor),
357 context->getOutputBuffer<uint16_t>(kOutputKeypointTensor),
358 context->getOutputShape(kOutputKeypointTensor), 1e-5f, 1e-5f);
359 }
360 default:
361 NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
362 }
363 }
364 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
365
366 } // namespace heatmap_max_keypoint
367
368 NN_REGISTER_OPERATION(HEATMAP_MAX_KEYPOINT, heatmap_max_keypoint::kOperationName,
369 heatmap_max_keypoint::validate, heatmap_max_keypoint::prepare,
370 heatmap_max_keypoint::execute);
371
372 } // namespace nn
373 } // namespace android
374