1 /*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "ExecutionBurstServer"
18
19 #include "ExecutionBurstServer.h"
20
21 #include <android-base/logging.h>
22
23 #include <algorithm>
24 #include <cstring>
25 #include <limits>
26 #include <map>
27 #include <memory>
28 #include <thread>
29 #include <tuple>
30 #include <utility>
31 #include <vector>
32
33 #include "HalInterfaces.h"
34 #include "Tracing.h"
35 #include "Utils.h"
36
37 namespace android::nn {
38 namespace {
39
40 using hardware::MQDescriptorSync;
41 using V1_2::FmqRequestDatum;
42 using V1_2::FmqResultDatum;
43 using V1_2::IBurstCallback;
44 using V1_2::IBurstContext;
45
46 constexpr V1_2::Timing kNoTiming = {std::numeric_limits<uint64_t>::max(),
47 std::numeric_limits<uint64_t>::max()};
48
49 // DefaultBurstExecutorWithCache adapts an IPreparedModel so that it can be
50 // used as an IBurstExecutorWithCache. Specifically, the cache simply stores the
51 // hidl_memory object, and the execution forwards calls to the provided
52 // IPreparedModel's "executeSynchronously" method. With this class, hidl_memory
53 // must be mapped and unmapped for each execution.
54 class DefaultBurstExecutorWithCache : public ExecutionBurstServer::IBurstExecutorWithCache {
55 public:
DefaultBurstExecutorWithCache(V1_2::IPreparedModel * preparedModel)56 DefaultBurstExecutorWithCache(V1_2::IPreparedModel* preparedModel)
57 : mpPreparedModel(preparedModel) {}
58
isCacheEntryPresent(int32_t slot) const59 bool isCacheEntryPresent(int32_t slot) const override {
60 const auto it = mMemoryCache.find(slot);
61 return (it != mMemoryCache.end()) && it->second.valid();
62 }
63
addCacheEntry(const hardware::hidl_memory & memory,int32_t slot)64 void addCacheEntry(const hardware::hidl_memory& memory, int32_t slot) override {
65 mMemoryCache[slot] = memory;
66 }
67
removeCacheEntry(int32_t slot)68 void removeCacheEntry(int32_t slot) override { mMemoryCache.erase(slot); }
69
execute(const V1_0::Request & request,const std::vector<int32_t> & slots,V1_2::MeasureTiming measure)70 std::tuple<V1_0::ErrorStatus, hardware::hidl_vec<V1_2::OutputShape>, V1_2::Timing> execute(
71 const V1_0::Request& request, const std::vector<int32_t>& slots,
72 V1_2::MeasureTiming measure) override {
73 // convert slots to pools
74 hardware::hidl_vec<hardware::hidl_memory> pools(slots.size());
75 std::transform(slots.begin(), slots.end(), pools.begin(),
76 [this](int32_t slot) { return mMemoryCache[slot]; });
77
78 // create full request
79 V1_0::Request fullRequest = request;
80 fullRequest.pools = std::move(pools);
81
82 // setup execution
83 V1_0::ErrorStatus returnedStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
84 hardware::hidl_vec<V1_2::OutputShape> returnedOutputShapes;
85 V1_2::Timing returnedTiming;
86 auto cb = [&returnedStatus, &returnedOutputShapes, &returnedTiming](
87 V1_0::ErrorStatus status,
88 const hardware::hidl_vec<V1_2::OutputShape>& outputShapes,
89 const V1_2::Timing& timing) {
90 returnedStatus = status;
91 returnedOutputShapes = outputShapes;
92 returnedTiming = timing;
93 };
94
95 // execute
96 const hardware::Return<void> ret =
97 mpPreparedModel->executeSynchronously(fullRequest, measure, cb);
98 if (!ret.isOk() || returnedStatus != V1_0::ErrorStatus::NONE) {
99 LOG(ERROR) << "IPreparedModelAdapter::execute -- Error executing";
100 return {returnedStatus, std::move(returnedOutputShapes), kNoTiming};
101 }
102
103 return std::make_tuple(returnedStatus, std::move(returnedOutputShapes), returnedTiming);
104 }
105
106 private:
107 V1_2::IPreparedModel* const mpPreparedModel;
108 std::map<int32_t, hardware::hidl_memory> mMemoryCache;
109 };
110
111 } // anonymous namespace
112
113 // serialize result
serialize(V1_0::ErrorStatus errorStatus,const std::vector<V1_2::OutputShape> & outputShapes,V1_2::Timing timing)114 std::vector<FmqResultDatum> serialize(V1_0::ErrorStatus errorStatus,
115 const std::vector<V1_2::OutputShape>& outputShapes,
116 V1_2::Timing timing) {
117 // count how many elements need to be sent for a request
118 size_t count = 2 + outputShapes.size();
119 for (const auto& outputShape : outputShapes) {
120 count += outputShape.dimensions.size();
121 }
122
123 // create buffer to temporarily store elements
124 std::vector<FmqResultDatum> data;
125 data.reserve(count);
126
127 // package packetInfo
128 {
129 FmqResultDatum datum;
130 datum.packetInformation({/*.packetSize=*/static_cast<uint32_t>(count),
131 /*.errorStatus=*/errorStatus,
132 /*.numberOfOperands=*/static_cast<uint32_t>(outputShapes.size())});
133 data.push_back(datum);
134 }
135
136 // package output shape data
137 for (const auto& operand : outputShapes) {
138 // package operand information
139 FmqResultDatum::OperandInformation info{};
140 info.isSufficient = operand.isSufficient;
141 info.numberOfDimensions = static_cast<uint32_t>(operand.dimensions.size());
142
143 FmqResultDatum datum;
144 datum.operandInformation(info);
145 data.push_back(datum);
146
147 // package operand dimensions
148 for (uint32_t dimension : operand.dimensions) {
149 FmqResultDatum datum;
150 datum.operandDimensionValue(dimension);
151 data.push_back(datum);
152 }
153 }
154
155 // package executionTiming
156 {
157 FmqResultDatum datum;
158 datum.executionTiming(timing);
159 data.push_back(datum);
160 }
161
162 // return result
163 return data;
164 }
165
166 // deserialize request
deserialize(const std::vector<FmqRequestDatum> & data)167 std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>> deserialize(
168 const std::vector<FmqRequestDatum>& data) {
169 using discriminator = FmqRequestDatum::hidl_discriminator;
170
171 size_t index = 0;
172
173 // validate packet information
174 if (data.size() == 0 || data[index].getDiscriminator() != discriminator::packetInformation) {
175 LOG(ERROR) << "FMQ Request packet ill-formed";
176 return std::nullopt;
177 }
178
179 // unpackage packet information
180 const FmqRequestDatum::PacketInformation& packetInfo = data[index].packetInformation();
181 index++;
182 const uint32_t packetSize = packetInfo.packetSize;
183 const uint32_t numberOfInputOperands = packetInfo.numberOfInputOperands;
184 const uint32_t numberOfOutputOperands = packetInfo.numberOfOutputOperands;
185 const uint32_t numberOfPools = packetInfo.numberOfPools;
186
187 // verify packet size
188 if (data.size() != packetSize) {
189 LOG(ERROR) << "FMQ Request packet ill-formed";
190 return std::nullopt;
191 }
192
193 // unpackage input operands
194 std::vector<V1_0::RequestArgument> inputs;
195 inputs.reserve(numberOfInputOperands);
196 for (size_t operand = 0; operand < numberOfInputOperands; ++operand) {
197 // validate input operand information
198 if (data[index].getDiscriminator() != discriminator::inputOperandInformation) {
199 LOG(ERROR) << "FMQ Request packet ill-formed";
200 return std::nullopt;
201 }
202
203 // unpackage operand information
204 const FmqRequestDatum::OperandInformation& operandInfo =
205 data[index].inputOperandInformation();
206 index++;
207 const bool hasNoValue = operandInfo.hasNoValue;
208 const V1_0::DataLocation location = operandInfo.location;
209 const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
210
211 // unpackage operand dimensions
212 std::vector<uint32_t> dimensions;
213 dimensions.reserve(numberOfDimensions);
214 for (size_t i = 0; i < numberOfDimensions; ++i) {
215 // validate dimension
216 if (data[index].getDiscriminator() != discriminator::inputOperandDimensionValue) {
217 LOG(ERROR) << "FMQ Request packet ill-formed";
218 return std::nullopt;
219 }
220
221 // unpackage dimension
222 const uint32_t dimension = data[index].inputOperandDimensionValue();
223 index++;
224
225 // store result
226 dimensions.push_back(dimension);
227 }
228
229 // store result
230 inputs.push_back(
231 {/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
232 }
233
234 // unpackage output operands
235 std::vector<V1_0::RequestArgument> outputs;
236 outputs.reserve(numberOfOutputOperands);
237 for (size_t operand = 0; operand < numberOfOutputOperands; ++operand) {
238 // validate output operand information
239 if (data[index].getDiscriminator() != discriminator::outputOperandInformation) {
240 LOG(ERROR) << "FMQ Request packet ill-formed";
241 return std::nullopt;
242 }
243
244 // unpackage operand information
245 const FmqRequestDatum::OperandInformation& operandInfo =
246 data[index].outputOperandInformation();
247 index++;
248 const bool hasNoValue = operandInfo.hasNoValue;
249 const V1_0::DataLocation location = operandInfo.location;
250 const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
251
252 // unpackage operand dimensions
253 std::vector<uint32_t> dimensions;
254 dimensions.reserve(numberOfDimensions);
255 for (size_t i = 0; i < numberOfDimensions; ++i) {
256 // validate dimension
257 if (data[index].getDiscriminator() != discriminator::outputOperandDimensionValue) {
258 LOG(ERROR) << "FMQ Request packet ill-formed";
259 return std::nullopt;
260 }
261
262 // unpackage dimension
263 const uint32_t dimension = data[index].outputOperandDimensionValue();
264 index++;
265
266 // store result
267 dimensions.push_back(dimension);
268 }
269
270 // store result
271 outputs.push_back(
272 {/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
273 }
274
275 // unpackage pools
276 std::vector<int32_t> slots;
277 slots.reserve(numberOfPools);
278 for (size_t pool = 0; pool < numberOfPools; ++pool) {
279 // validate input operand information
280 if (data[index].getDiscriminator() != discriminator::poolIdentifier) {
281 LOG(ERROR) << "FMQ Request packet ill-formed";
282 return std::nullopt;
283 }
284
285 // unpackage operand information
286 const int32_t poolId = data[index].poolIdentifier();
287 index++;
288
289 // store result
290 slots.push_back(poolId);
291 }
292
293 // validate measureTiming
294 if (data[index].getDiscriminator() != discriminator::measureTiming) {
295 LOG(ERROR) << "FMQ Request packet ill-formed";
296 return std::nullopt;
297 }
298
299 // unpackage measureTiming
300 const V1_2::MeasureTiming measure = data[index].measureTiming();
301 index++;
302
303 // validate packet information
304 if (index != packetSize) {
305 LOG(ERROR) << "FMQ Result packet ill-formed";
306 return std::nullopt;
307 }
308
309 // return request
310 V1_0::Request request = {/*.inputs=*/inputs, /*.outputs=*/outputs, /*.pools=*/{}};
311 return std::make_tuple(std::move(request), std::move(slots), measure);
312 }
313
314 // RequestChannelReceiver methods
315
create(const FmqRequestDescriptor & requestChannel,std::chrono::microseconds pollingTimeWindow)316 std::unique_ptr<RequestChannelReceiver> RequestChannelReceiver::create(
317 const FmqRequestDescriptor& requestChannel, std::chrono::microseconds pollingTimeWindow) {
318 std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
319 std::make_unique<FmqRequestChannel>(requestChannel);
320
321 if (!fmqRequestChannel->isValid()) {
322 LOG(ERROR) << "Unable to create RequestChannelReceiver";
323 return nullptr;
324 }
325 if (fmqRequestChannel->getEventFlagWord() == nullptr) {
326 LOG(ERROR)
327 << "RequestChannelReceiver::create was passed an MQDescriptor without an EventFlag";
328 return nullptr;
329 }
330
331 return std::make_unique<RequestChannelReceiver>(std::move(fmqRequestChannel),
332 pollingTimeWindow);
333 }
334
RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel,std::chrono::microseconds pollingTimeWindow)335 RequestChannelReceiver::RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel,
336 std::chrono::microseconds pollingTimeWindow)
337 : mFmqRequestChannel(std::move(fmqRequestChannel)), kPollingTimeWindow(pollingTimeWindow) {}
338
339 std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>>
getBlocking()340 RequestChannelReceiver::getBlocking() {
341 const auto packet = getPacketBlocking();
342 if (!packet) {
343 return std::nullopt;
344 }
345
346 return deserialize(*packet);
347 }
348
invalidate()349 void RequestChannelReceiver::invalidate() {
350 mTeardown = true;
351
352 // force unblock
353 // ExecutionBurstServer is by default waiting on a request packet. If the
354 // client process destroys its burst object, the server may still be waiting
355 // on the futex. This force unblock wakes up any thread waiting on the
356 // futex.
357 // TODO: look for a different/better way to signal/notify the futex to wake
358 // up any thread waiting on it
359 FmqRequestDatum datum;
360 datum.packetInformation({/*.packetSize=*/0, /*.numberOfInputOperands=*/0,
361 /*.numberOfOutputOperands=*/0, /*.numberOfPools=*/0});
362 mFmqRequestChannel->writeBlocking(&datum, 1);
363 }
364
getPacketBlocking()365 std::optional<std::vector<FmqRequestDatum>> RequestChannelReceiver::getPacketBlocking() {
366
367 if (mTeardown) {
368 return std::nullopt;
369 }
370
371 // First spend time polling if results are available in FMQ instead of
372 // waiting on the futex. Polling is more responsive (yielding lower
373 // latencies), but can take up more power, so only poll for a limited period
374 // of time.
375
376 auto& getCurrentTime = std::chrono::high_resolution_clock::now;
377 const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow;
378
379 while (getCurrentTime() < timeToStopPolling) {
380 // if class is being torn down, immediately return
381 if (mTeardown.load(std::memory_order_relaxed)) {
382 return std::nullopt;
383 }
384
385 // Check if data is available. If it is, immediately retrieve it and
386 // return.
387 const size_t available = mFmqRequestChannel->availableToRead();
388 if (available > 0) {
389 // This is the first point when we know an execution is occurring,
390 // so begin to collect systraces. Note that a similar systrace does
391 // not exist at the corresponding point in
392 // ResultChannelReceiver::getPacketBlocking because the execution is
393 // already in flight.
394 NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
395 "ExecutionBurstServer getting packet");
396 std::vector<FmqRequestDatum> packet(available);
397 const bool success = mFmqRequestChannel->read(packet.data(), available);
398 if (!success) {
399 LOG(ERROR) << "Error receiving packet";
400 return std::nullopt;
401 }
402 return std::make_optional(std::move(packet));
403 }
404
405 std::this_thread::yield();
406 }
407
408 // If we get to this point, we either stopped polling because it was taking
409 // too long or polling was not allowed. Instead, perform a blocking call
410 // which uses a futex to save power.
411
412 // wait for request packet and read first element of request packet
413 FmqRequestDatum datum;
414 bool success = mFmqRequestChannel->readBlocking(&datum, 1);
415
416 // This is the first point when we know an execution is occurring, so begin
417 // to collect systraces. Note that a similar systrace does not exist at the
418 // corresponding point in ResultChannelReceiver::getPacketBlocking because
419 // the execution is already in flight.
420 NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstServer getting packet");
421
422 // retrieve remaining elements
423 // NOTE: all of the data is already available at this point, so there's no
424 // need to do a blocking wait to wait for more data. This is known because
425 // in FMQ, all writes are published (made available) atomically. Currently,
426 // the producer always publishes the entire packet in one function call, so
427 // if the first element of the packet is available, the remaining elements
428 // are also available.
429 const size_t count = mFmqRequestChannel->availableToRead();
430 std::vector<FmqRequestDatum> packet(count + 1);
431 std::memcpy(&packet.front(), &datum, sizeof(datum));
432 success &= mFmqRequestChannel->read(packet.data() + 1, count);
433
434 // terminate loop
435 if (mTeardown) {
436 return std::nullopt;
437 }
438
439 // ensure packet was successfully received
440 if (!success) {
441 LOG(ERROR) << "Error receiving packet";
442 return std::nullopt;
443 }
444
445 return std::make_optional(std::move(packet));
446 }
447
448 // ResultChannelSender methods
449
create(const FmqResultDescriptor & resultChannel)450 std::unique_ptr<ResultChannelSender> ResultChannelSender::create(
451 const FmqResultDescriptor& resultChannel) {
452 std::unique_ptr<FmqResultChannel> fmqResultChannel =
453 std::make_unique<FmqResultChannel>(resultChannel);
454
455 if (!fmqResultChannel->isValid()) {
456 LOG(ERROR) << "Unable to create RequestChannelSender";
457 return nullptr;
458 }
459 if (fmqResultChannel->getEventFlagWord() == nullptr) {
460 LOG(ERROR) << "ResultChannelSender::create was passed an MQDescriptor without an EventFlag";
461 return nullptr;
462 }
463
464 return std::make_unique<ResultChannelSender>(std::move(fmqResultChannel));
465 }
466
ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel)467 ResultChannelSender::ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel)
468 : mFmqResultChannel(std::move(fmqResultChannel)) {}
469
send(V1_0::ErrorStatus errorStatus,const std::vector<V1_2::OutputShape> & outputShapes,V1_2::Timing timing)470 bool ResultChannelSender::send(V1_0::ErrorStatus errorStatus,
471 const std::vector<V1_2::OutputShape>& outputShapes,
472 V1_2::Timing timing) {
473 const std::vector<FmqResultDatum> serialized = serialize(errorStatus, outputShapes, timing);
474 return sendPacket(serialized);
475 }
476
sendPacket(const std::vector<FmqResultDatum> & packet)477 bool ResultChannelSender::sendPacket(const std::vector<FmqResultDatum>& packet) {
478 if (packet.size() > mFmqResultChannel->availableToWrite()) {
479 LOG(ERROR)
480 << "ResultChannelSender::sendPacket -- packet size exceeds size available in FMQ";
481 const std::vector<FmqResultDatum> errorPacket =
482 serialize(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
483
484 // Always send the packet with "blocking" because this signals the futex
485 // and unblocks the consumer if it is waiting on the futex.
486 return mFmqResultChannel->writeBlocking(errorPacket.data(), errorPacket.size());
487 }
488
489 // Always send the packet with "blocking" because this signals the futex and
490 // unblocks the consumer if it is waiting on the futex.
491 return mFmqResultChannel->writeBlocking(packet.data(), packet.size());
492 }
493
494 // ExecutionBurstServer methods
495
create(const sp<IBurstCallback> & callback,const MQDescriptorSync<FmqRequestDatum> & requestChannel,const MQDescriptorSync<FmqResultDatum> & resultChannel,std::shared_ptr<IBurstExecutorWithCache> executorWithCache,std::chrono::microseconds pollingTimeWindow)496 sp<ExecutionBurstServer> ExecutionBurstServer::create(
497 const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
498 const MQDescriptorSync<FmqResultDatum>& resultChannel,
499 std::shared_ptr<IBurstExecutorWithCache> executorWithCache,
500 std::chrono::microseconds pollingTimeWindow) {
501 // check inputs
502 if (callback == nullptr || executorWithCache == nullptr) {
503 LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
504 return nullptr;
505 }
506
507 // create FMQ objects
508 std::unique_ptr<RequestChannelReceiver> requestChannelReceiver =
509 RequestChannelReceiver::create(requestChannel, pollingTimeWindow);
510 std::unique_ptr<ResultChannelSender> resultChannelSender =
511 ResultChannelSender::create(resultChannel);
512
513 // check FMQ objects
514 if (!requestChannelReceiver || !resultChannelSender) {
515 LOG(ERROR) << "ExecutionBurstServer::create failed to create FastMessageQueue";
516 return nullptr;
517 }
518
519 // make and return context
520 return new ExecutionBurstServer(callback, std::move(requestChannelReceiver),
521 std::move(resultChannelSender), std::move(executorWithCache));
522 }
523
create(const sp<IBurstCallback> & callback,const MQDescriptorSync<FmqRequestDatum> & requestChannel,const MQDescriptorSync<FmqResultDatum> & resultChannel,V1_2::IPreparedModel * preparedModel,std::chrono::microseconds pollingTimeWindow)524 sp<ExecutionBurstServer> ExecutionBurstServer::create(
525 const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
526 const MQDescriptorSync<FmqResultDatum>& resultChannel, V1_2::IPreparedModel* preparedModel,
527 std::chrono::microseconds pollingTimeWindow) {
528 // check relevant input
529 if (preparedModel == nullptr) {
530 LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
531 return nullptr;
532 }
533
534 // adapt IPreparedModel to have caching
535 const std::shared_ptr<DefaultBurstExecutorWithCache> preparedModelAdapter =
536 std::make_shared<DefaultBurstExecutorWithCache>(preparedModel);
537
538 // make and return context
539 return ExecutionBurstServer::create(callback, requestChannel, resultChannel,
540 preparedModelAdapter, pollingTimeWindow);
541 }
542
ExecutionBurstServer(const sp<IBurstCallback> & callback,std::unique_ptr<RequestChannelReceiver> requestChannel,std::unique_ptr<ResultChannelSender> resultChannel,std::shared_ptr<IBurstExecutorWithCache> executorWithCache)543 ExecutionBurstServer::ExecutionBurstServer(
544 const sp<IBurstCallback>& callback, std::unique_ptr<RequestChannelReceiver> requestChannel,
545 std::unique_ptr<ResultChannelSender> resultChannel,
546 std::shared_ptr<IBurstExecutorWithCache> executorWithCache)
547 : mCallback(callback),
548 mRequestChannelReceiver(std::move(requestChannel)),
549 mResultChannelSender(std::move(resultChannel)),
550 mExecutorWithCache(std::move(executorWithCache)) {
551 // TODO: highly document the threading behavior of this class
552 mWorker = std::thread([this] { task(); });
553 }
554
~ExecutionBurstServer()555 ExecutionBurstServer::~ExecutionBurstServer() {
556 // set teardown flag
557 mTeardown = true;
558 mRequestChannelReceiver->invalidate();
559
560 // wait for task thread to end
561 mWorker.join();
562 }
563
freeMemory(int32_t slot)564 hardware::Return<void> ExecutionBurstServer::freeMemory(int32_t slot) {
565 std::lock_guard<std::mutex> hold(mMutex);
566 mExecutorWithCache->removeCacheEntry(slot);
567 return hardware::Void();
568 }
569
ensureCacheEntriesArePresentLocked(const std::vector<int32_t> & slots)570 void ExecutionBurstServer::ensureCacheEntriesArePresentLocked(const std::vector<int32_t>& slots) {
571 const auto slotIsKnown = [this](int32_t slot) {
572 return mExecutorWithCache->isCacheEntryPresent(slot);
573 };
574
575 // find unique unknown slots
576 std::vector<int32_t> unknownSlots = slots;
577 auto unknownSlotsEnd = unknownSlots.end();
578 std::sort(unknownSlots.begin(), unknownSlotsEnd);
579 unknownSlotsEnd = std::unique(unknownSlots.begin(), unknownSlotsEnd);
580 unknownSlotsEnd = std::remove_if(unknownSlots.begin(), unknownSlotsEnd, slotIsKnown);
581 unknownSlots.erase(unknownSlotsEnd, unknownSlots.end());
582
583 // quick-exit if all slots are known
584 if (unknownSlots.empty()) {
585 return;
586 }
587
588 V1_0::ErrorStatus errorStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
589 std::vector<hardware::hidl_memory> returnedMemories;
590 auto cb = [&errorStatus, &returnedMemories](
591 V1_0::ErrorStatus status,
592 const hardware::hidl_vec<hardware::hidl_memory>& memories) {
593 errorStatus = status;
594 returnedMemories = memories;
595 };
596
597 const hardware::Return<void> ret = mCallback->getMemories(unknownSlots, cb);
598
599 if (!ret.isOk() || errorStatus != V1_0::ErrorStatus::NONE ||
600 returnedMemories.size() != unknownSlots.size()) {
601 LOG(ERROR) << "Error retrieving memories";
602 return;
603 }
604
605 // add memories to unknown slots
606 for (size_t i = 0; i < unknownSlots.size(); ++i) {
607 mExecutorWithCache->addCacheEntry(returnedMemories[i], unknownSlots[i]);
608 }
609 }
610
task()611 void ExecutionBurstServer::task() {
612 // loop until the burst object is being destroyed
613 while (!mTeardown) {
614 // receive request
615 auto arguments = mRequestChannelReceiver->getBlocking();
616
617 // if the request packet was not properly received, return a generic
618 // error and skip the execution
619 //
620 // if the burst is being torn down, skip the execution exection so the
621 // "task" function can end
622 if (!arguments) {
623 if (!mTeardown) {
624 mResultChannelSender->send(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
625 }
626 continue;
627 }
628
629 // otherwise begin tracing execution
630 NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
631 "ExecutionBurstServer getting memory, executing, and returning results");
632
633 // unpack the arguments; types are Request, std::vector<int32_t>, and
634 // MeasureTiming, respectively
635 const auto [requestWithoutPools, slotsOfPools, measure] = std::move(*arguments);
636
637 // ensure executor with cache has required memory
638 std::lock_guard<std::mutex> hold(mMutex);
639 ensureCacheEntriesArePresentLocked(slotsOfPools);
640
641 // perform computation; types are ErrorStatus, hidl_vec<OutputShape>,
642 // and Timing, respectively
643 const auto [errorStatus, outputShapes, returnedTiming] =
644 mExecutorWithCache->execute(requestWithoutPools, slotsOfPools, measure);
645
646 // return result
647 mResultChannelSender->send(errorStatus, outputShapes, returnedTiming);
648 }
649 }
650
651 } // namespace android::nn
652