1 /*
2 * Copyright 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #undef LOG_TAG
18 #define LOG_TAG "Scheduler"
19 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
20
21 #include "Scheduler.h"
22
23 #include <android-base/properties.h>
24 #include <android-base/stringprintf.h>
25 #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
26 #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
27 #include <configstore/Utils.h>
28 #include <gui/WindowInfo.h>
29 #include <system/window.h>
30 #include <ui/DisplayStatInfo.h>
31 #include <utils/Timers.h>
32 #include <utils/Trace.h>
33
34 #include <FrameTimeline/FrameTimeline.h>
35 #include <algorithm>
36 #include <cinttypes>
37 #include <cstdint>
38 #include <functional>
39 #include <memory>
40 #include <numeric>
41
42 #include "../Layer.h"
43 #include "DispSyncSource.h"
44 #include "EventThread.h"
45 #include "InjectVSyncSource.h"
46 #include "OneShotTimer.h"
47 #include "SchedulerUtils.h"
48 #include "SurfaceFlingerProperties.h"
49 #include "Timer.h"
50 #include "VSyncDispatchTimerQueue.h"
51 #include "VSyncPredictor.h"
52 #include "VSyncReactor.h"
53 #include "VsyncController.h"
54
55 #define RETURN_IF_INVALID_HANDLE(handle, ...) \
56 do { \
57 if (mConnections.count(handle) == 0) { \
58 ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \
59 return __VA_ARGS__; \
60 } \
61 } while (false)
62
63 using namespace std::string_literals;
64
65 namespace android {
66
67 using gui::WindowInfo;
68
69 namespace {
70
createVSyncTracker()71 std::unique_ptr<scheduler::VSyncTracker> createVSyncTracker() {
72 // TODO(b/144707443): Tune constants.
73 constexpr int kDefaultRate = 60;
74 constexpr auto initialPeriod = std::chrono::duration<nsecs_t, std::ratio<1, kDefaultRate>>(1);
75 constexpr nsecs_t idealPeriod =
76 std::chrono::duration_cast<std::chrono::nanoseconds>(initialPeriod).count();
77 constexpr size_t vsyncTimestampHistorySize = 20;
78 constexpr size_t minimumSamplesForPrediction = 6;
79 constexpr uint32_t discardOutlierPercent = 20;
80 return std::make_unique<scheduler::VSyncPredictor>(idealPeriod, vsyncTimestampHistorySize,
81 minimumSamplesForPrediction,
82 discardOutlierPercent);
83 }
84
createVSyncDispatch(scheduler::VSyncTracker & tracker)85 std::unique_ptr<scheduler::VSyncDispatch> createVSyncDispatch(scheduler::VSyncTracker& tracker) {
86 // TODO(b/144707443): Tune constants.
87 constexpr std::chrono::nanoseconds vsyncMoveThreshold = 3ms;
88 constexpr std::chrono::nanoseconds timerSlack = 500us;
89 return std::make_unique<
90 scheduler::VSyncDispatchTimerQueue>(std::make_unique<scheduler::Timer>(), tracker,
91 timerSlack.count(), vsyncMoveThreshold.count());
92 }
93
toContentDetectionString(bool useContentDetection)94 const char* toContentDetectionString(bool useContentDetection) {
95 return useContentDetection ? "on" : "off";
96 }
97
98 } // namespace
99
100 class PredictedVsyncTracer {
101 public:
PredictedVsyncTracer(scheduler::VSyncDispatch & dispatch)102 PredictedVsyncTracer(scheduler::VSyncDispatch& dispatch)
103 : mRegistration(dispatch, std::bind(&PredictedVsyncTracer::callback, this),
104 "PredictedVsyncTracer") {
105 scheduleRegistration();
106 }
107
108 private:
109 TracedOrdinal<bool> mParity = {"VSYNC-predicted", 0};
110 scheduler::VSyncCallbackRegistration mRegistration;
111
scheduleRegistration()112 void scheduleRegistration() { mRegistration.schedule({0, 0, 0}); }
113
callback()114 void callback() {
115 mParity = !mParity;
116 scheduleRegistration();
117 }
118 };
119
Scheduler(const std::shared_ptr<scheduler::RefreshRateConfigs> & configs,ISchedulerCallback & callback)120 Scheduler::Scheduler(const std::shared_ptr<scheduler::RefreshRateConfigs>& configs,
121 ISchedulerCallback& callback)
122 : Scheduler(configs, callback,
123 {.useContentDetection = sysprop::use_content_detection_for_refresh_rate(false)}) {
124 }
125
Scheduler(const std::shared_ptr<scheduler::RefreshRateConfigs> & configs,ISchedulerCallback & callback,Options options)126 Scheduler::Scheduler(const std::shared_ptr<scheduler::RefreshRateConfigs>& configs,
127 ISchedulerCallback& callback, Options options)
128 : Scheduler(createVsyncSchedule(configs->supportsKernelIdleTimer()), configs, callback,
129 createLayerHistory(), options) {
130 using namespace sysprop;
131
132 if (const int64_t millis = set_touch_timer_ms(0); millis > 0) {
133 // Touch events are coming to SF every 100ms, so the timer needs to be higher than that
134 mTouchTimer.emplace(
135 "TouchTimer", std::chrono::milliseconds(millis),
136 [this] { touchTimerCallback(TimerState::Reset); },
137 [this] { touchTimerCallback(TimerState::Expired); });
138 mTouchTimer->start();
139 }
140
141 if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) {
142 mDisplayPowerTimer.emplace(
143 "DisplayPowerTimer", std::chrono::milliseconds(millis),
144 [this] { displayPowerTimerCallback(TimerState::Reset); },
145 [this] { displayPowerTimerCallback(TimerState::Expired); });
146 mDisplayPowerTimer->start();
147 }
148 }
149
Scheduler(VsyncSchedule schedule,const std::shared_ptr<scheduler::RefreshRateConfigs> & configs,ISchedulerCallback & schedulerCallback,std::unique_ptr<LayerHistory> layerHistory,Options options)150 Scheduler::Scheduler(VsyncSchedule schedule,
151 const std::shared_ptr<scheduler::RefreshRateConfigs>& configs,
152 ISchedulerCallback& schedulerCallback,
153 std::unique_ptr<LayerHistory> layerHistory, Options options)
154 : mOptions(options),
155 mVsyncSchedule(std::move(schedule)),
156 mLayerHistory(std::move(layerHistory)),
157 mSchedulerCallback(schedulerCallback),
158 mPredictedVsyncTracer(
159 base::GetBoolProperty("debug.sf.show_predicted_vsync", false)
160 ? std::make_unique<PredictedVsyncTracer>(*mVsyncSchedule.dispatch)
161 : nullptr) {
162 setRefreshRateConfigs(configs);
163 mSchedulerCallback.setVsyncEnabled(false);
164 }
165
~Scheduler()166 Scheduler::~Scheduler() {
167 // Ensure the OneShotTimer threads are joined before we start destroying state.
168 mDisplayPowerTimer.reset();
169 mTouchTimer.reset();
170 mRefreshRateConfigs.reset();
171 }
172
createVsyncSchedule(bool supportKernelTimer)173 Scheduler::VsyncSchedule Scheduler::createVsyncSchedule(bool supportKernelTimer) {
174 auto clock = std::make_unique<scheduler::SystemClock>();
175 auto tracker = createVSyncTracker();
176 auto dispatch = createVSyncDispatch(*tracker);
177
178 // TODO(b/144707443): Tune constants.
179 constexpr size_t pendingFenceLimit = 20;
180 auto controller =
181 std::make_unique<scheduler::VSyncReactor>(std::move(clock), *tracker, pendingFenceLimit,
182 supportKernelTimer);
183 return {std::move(controller), std::move(tracker), std::move(dispatch)};
184 }
185
createLayerHistory()186 std::unique_ptr<LayerHistory> Scheduler::createLayerHistory() {
187 return std::make_unique<scheduler::LayerHistory>();
188 }
189
makePrimaryDispSyncSource(const char * name,std::chrono::nanoseconds workDuration,std::chrono::nanoseconds readyDuration,bool traceVsync)190 std::unique_ptr<VSyncSource> Scheduler::makePrimaryDispSyncSource(
191 const char* name, std::chrono::nanoseconds workDuration,
192 std::chrono::nanoseconds readyDuration, bool traceVsync) {
193 return std::make_unique<scheduler::DispSyncSource>(*mVsyncSchedule.dispatch, workDuration,
194 readyDuration, traceVsync, name);
195 }
196
getFrameRateOverride(uid_t uid) const197 std::optional<Fps> Scheduler::getFrameRateOverride(uid_t uid) const {
198 {
199 std::scoped_lock lock(mRefreshRateConfigsLock);
200 if (!mRefreshRateConfigs->supportsFrameRateOverride()) {
201 return std::nullopt;
202 }
203 }
204
205 std::lock_guard lock(mFrameRateOverridesLock);
206 {
207 const auto iter = mFrameRateOverridesFromBackdoor.find(uid);
208 if (iter != mFrameRateOverridesFromBackdoor.end()) {
209 return std::make_optional<Fps>(iter->second);
210 }
211 }
212
213 {
214 const auto iter = mFrameRateOverridesByContent.find(uid);
215 if (iter != mFrameRateOverridesByContent.end()) {
216 return std::make_optional<Fps>(iter->second);
217 }
218 }
219
220 return std::nullopt;
221 }
222
isVsyncValid(nsecs_t expectedVsyncTimestamp,uid_t uid) const223 bool Scheduler::isVsyncValid(nsecs_t expectedVsyncTimestamp, uid_t uid) const {
224 const auto frameRate = getFrameRateOverride(uid);
225 if (!frameRate.has_value()) {
226 return true;
227 }
228
229 return mVsyncSchedule.tracker->isVSyncInPhase(expectedVsyncTimestamp, *frameRate);
230 }
231
makeThrottleVsyncCallback() const232 impl::EventThread::ThrottleVsyncCallback Scheduler::makeThrottleVsyncCallback() const {
233 std::scoped_lock lock(mRefreshRateConfigsLock);
234 if (!mRefreshRateConfigs->supportsFrameRateOverride()) {
235 return {};
236 }
237
238 return [this](nsecs_t expectedVsyncTimestamp, uid_t uid) {
239 return !isVsyncValid(expectedVsyncTimestamp, uid);
240 };
241 }
242
makeGetVsyncPeriodFunction() const243 impl::EventThread::GetVsyncPeriodFunction Scheduler::makeGetVsyncPeriodFunction() const {
244 return [this](uid_t uid) {
245 const auto refreshRateConfigs = holdRefreshRateConfigs();
246 nsecs_t basePeriod = refreshRateConfigs->getCurrentRefreshRate().getVsyncPeriod();
247 const auto frameRate = getFrameRateOverride(uid);
248 if (!frameRate.has_value()) {
249 return basePeriod;
250 }
251
252 const auto divider =
253 scheduler::RefreshRateConfigs::getFrameRateDivider(refreshRateConfigs
254 ->getCurrentRefreshRate()
255 .getFps(),
256 *frameRate);
257 if (divider <= 1) {
258 return basePeriod;
259 }
260 return basePeriod * divider;
261 };
262 }
263
createConnection(const char * connectionName,frametimeline::TokenManager * tokenManager,std::chrono::nanoseconds workDuration,std::chrono::nanoseconds readyDuration,impl::EventThread::InterceptVSyncsCallback interceptCallback)264 Scheduler::ConnectionHandle Scheduler::createConnection(
265 const char* connectionName, frametimeline::TokenManager* tokenManager,
266 std::chrono::nanoseconds workDuration, std::chrono::nanoseconds readyDuration,
267 impl::EventThread::InterceptVSyncsCallback interceptCallback) {
268 auto vsyncSource = makePrimaryDispSyncSource(connectionName, workDuration, readyDuration);
269 auto throttleVsync = makeThrottleVsyncCallback();
270 auto getVsyncPeriod = makeGetVsyncPeriodFunction();
271 auto eventThread = std::make_unique<impl::EventThread>(std::move(vsyncSource), tokenManager,
272 std::move(interceptCallback),
273 std::move(throttleVsync),
274 std::move(getVsyncPeriod));
275 return createConnection(std::move(eventThread));
276 }
277
createConnection(std::unique_ptr<EventThread> eventThread)278 Scheduler::ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) {
279 const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++};
280 ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id);
281
282 auto connection = createConnectionInternal(eventThread.get());
283
284 std::lock_guard<std::mutex> lock(mConnectionsLock);
285 mConnections.emplace(handle, Connection{connection, std::move(eventThread)});
286 return handle;
287 }
288
createConnectionInternal(EventThread * eventThread,ISurfaceComposer::EventRegistrationFlags eventRegistration)289 sp<EventThreadConnection> Scheduler::createConnectionInternal(
290 EventThread* eventThread, ISurfaceComposer::EventRegistrationFlags eventRegistration) {
291 return eventThread->createEventConnection([&] { resync(); }, eventRegistration);
292 }
293
createDisplayEventConnection(ConnectionHandle handle,ISurfaceComposer::EventRegistrationFlags eventRegistration)294 sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection(
295 ConnectionHandle handle, ISurfaceComposer::EventRegistrationFlags eventRegistration) {
296 std::lock_guard<std::mutex> lock(mConnectionsLock);
297 RETURN_IF_INVALID_HANDLE(handle, nullptr);
298 return createConnectionInternal(mConnections[handle].thread.get(), eventRegistration);
299 }
300
getEventConnection(ConnectionHandle handle)301 sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) {
302 std::lock_guard<std::mutex> lock(mConnectionsLock);
303 RETURN_IF_INVALID_HANDLE(handle, nullptr);
304 return mConnections[handle].connection;
305 }
306
onHotplugReceived(ConnectionHandle handle,PhysicalDisplayId displayId,bool connected)307 void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId,
308 bool connected) {
309 android::EventThread* thread;
310 {
311 std::lock_guard<std::mutex> lock(mConnectionsLock);
312 RETURN_IF_INVALID_HANDLE(handle);
313 thread = mConnections[handle].thread.get();
314 }
315
316 thread->onHotplugReceived(displayId, connected);
317 }
318
onScreenAcquired(ConnectionHandle handle)319 void Scheduler::onScreenAcquired(ConnectionHandle handle) {
320 android::EventThread* thread;
321 {
322 std::lock_guard<std::mutex> lock(mConnectionsLock);
323 RETURN_IF_INVALID_HANDLE(handle);
324 thread = mConnections[handle].thread.get();
325 }
326 thread->onScreenAcquired();
327 mScreenAcquired = true;
328 }
329
onScreenReleased(ConnectionHandle handle)330 void Scheduler::onScreenReleased(ConnectionHandle handle) {
331 android::EventThread* thread;
332 {
333 std::lock_guard<std::mutex> lock(mConnectionsLock);
334 RETURN_IF_INVALID_HANDLE(handle);
335 thread = mConnections[handle].thread.get();
336 }
337 thread->onScreenReleased();
338 mScreenAcquired = false;
339 }
340
onFrameRateOverridesChanged(ConnectionHandle handle,PhysicalDisplayId displayId)341 void Scheduler::onFrameRateOverridesChanged(ConnectionHandle handle, PhysicalDisplayId displayId) {
342 std::vector<FrameRateOverride> overrides;
343 {
344 std::lock_guard lock(mFrameRateOverridesLock);
345 for (const auto& [uid, frameRate] : mFrameRateOverridesFromBackdoor) {
346 overrides.emplace_back(FrameRateOverride{uid, frameRate.getValue()});
347 }
348 for (const auto& [uid, frameRate] : mFrameRateOverridesByContent) {
349 if (mFrameRateOverridesFromBackdoor.count(uid) == 0) {
350 overrides.emplace_back(FrameRateOverride{uid, frameRate.getValue()});
351 }
352 }
353 }
354 android::EventThread* thread;
355 {
356 std::lock_guard lock(mConnectionsLock);
357 RETURN_IF_INVALID_HANDLE(handle);
358 thread = mConnections[handle].thread.get();
359 }
360 thread->onFrameRateOverridesChanged(displayId, std::move(overrides));
361 }
362
onPrimaryDisplayModeChanged(ConnectionHandle handle,DisplayModePtr mode)363 void Scheduler::onPrimaryDisplayModeChanged(ConnectionHandle handle, DisplayModePtr mode) {
364 {
365 std::lock_guard<std::mutex> lock(mFeatureStateLock);
366 // Cache the last reported modes for primary display.
367 mFeatures.cachedModeChangedParams = {handle, mode};
368
369 // Invalidate content based refresh rate selection so it could be calculated
370 // again for the new refresh rate.
371 mFeatures.contentRequirements.clear();
372 }
373 onNonPrimaryDisplayModeChanged(handle, mode);
374 }
375
dispatchCachedReportedMode()376 void Scheduler::dispatchCachedReportedMode() {
377 // Check optional fields first.
378 if (!mFeatures.mode) {
379 ALOGW("No mode ID found, not dispatching cached mode.");
380 return;
381 }
382 if (!mFeatures.cachedModeChangedParams.has_value()) {
383 ALOGW("No mode changed params found, not dispatching cached mode.");
384 return;
385 }
386
387 // If the mode is not the current mode, this means that a
388 // mode change is in progress. In that case we shouldn't dispatch an event
389 // as it will be dispatched when the current mode changes.
390 if (std::scoped_lock lock(mRefreshRateConfigsLock);
391 mRefreshRateConfigs->getCurrentRefreshRate().getMode() != mFeatures.mode) {
392 return;
393 }
394
395 // If there is no change from cached mode, there is no need to dispatch an event
396 if (mFeatures.mode == mFeatures.cachedModeChangedParams->mode) {
397 return;
398 }
399
400 mFeatures.cachedModeChangedParams->mode = mFeatures.mode;
401 onNonPrimaryDisplayModeChanged(mFeatures.cachedModeChangedParams->handle,
402 mFeatures.cachedModeChangedParams->mode);
403 }
404
onNonPrimaryDisplayModeChanged(ConnectionHandle handle,DisplayModePtr mode)405 void Scheduler::onNonPrimaryDisplayModeChanged(ConnectionHandle handle, DisplayModePtr mode) {
406 android::EventThread* thread;
407 {
408 std::lock_guard<std::mutex> lock(mConnectionsLock);
409 RETURN_IF_INVALID_HANDLE(handle);
410 thread = mConnections[handle].thread.get();
411 }
412 thread->onModeChanged(mode);
413 }
414
getEventThreadConnectionCount(ConnectionHandle handle)415 size_t Scheduler::getEventThreadConnectionCount(ConnectionHandle handle) {
416 std::lock_guard<std::mutex> lock(mConnectionsLock);
417 RETURN_IF_INVALID_HANDLE(handle, 0);
418 return mConnections[handle].thread->getEventThreadConnectionCount();
419 }
420
dump(ConnectionHandle handle,std::string & result) const421 void Scheduler::dump(ConnectionHandle handle, std::string& result) const {
422 android::EventThread* thread;
423 {
424 std::lock_guard<std::mutex> lock(mConnectionsLock);
425 RETURN_IF_INVALID_HANDLE(handle);
426 thread = mConnections.at(handle).thread.get();
427 }
428 thread->dump(result);
429 }
430
setDuration(ConnectionHandle handle,std::chrono::nanoseconds workDuration,std::chrono::nanoseconds readyDuration)431 void Scheduler::setDuration(ConnectionHandle handle, std::chrono::nanoseconds workDuration,
432 std::chrono::nanoseconds readyDuration) {
433 android::EventThread* thread;
434 {
435 std::lock_guard<std::mutex> lock(mConnectionsLock);
436 RETURN_IF_INVALID_HANDLE(handle);
437 thread = mConnections[handle].thread.get();
438 }
439 thread->setDuration(workDuration, readyDuration);
440 }
441
getDisplayStatInfo(nsecs_t now)442 DisplayStatInfo Scheduler::getDisplayStatInfo(nsecs_t now) {
443 const auto vsyncTime = mVsyncSchedule.tracker->nextAnticipatedVSyncTimeFrom(now);
444 const auto vsyncPeriod = mVsyncSchedule.tracker->currentPeriod();
445 return DisplayStatInfo{.vsyncTime = vsyncTime, .vsyncPeriod = vsyncPeriod};
446 }
447
enableVSyncInjection(bool enable)448 Scheduler::ConnectionHandle Scheduler::enableVSyncInjection(bool enable) {
449 if (mInjectVSyncs == enable) {
450 return {};
451 }
452
453 ALOGV("%s VSYNC injection", enable ? "Enabling" : "Disabling");
454
455 if (!mInjectorConnectionHandle) {
456 auto vsyncSource = std::make_unique<InjectVSyncSource>();
457 mVSyncInjector = vsyncSource.get();
458
459 auto eventThread =
460 std::make_unique<impl::EventThread>(std::move(vsyncSource),
461 /*tokenManager=*/nullptr,
462 impl::EventThread::InterceptVSyncsCallback(),
463 impl::EventThread::ThrottleVsyncCallback(),
464 impl::EventThread::GetVsyncPeriodFunction());
465
466 // EventThread does not dispatch VSYNC unless the display is connected and powered on.
467 eventThread->onHotplugReceived(PhysicalDisplayId::fromPort(0), true);
468 eventThread->onScreenAcquired();
469
470 mInjectorConnectionHandle = createConnection(std::move(eventThread));
471 }
472
473 mInjectVSyncs = enable;
474 return mInjectorConnectionHandle;
475 }
476
injectVSync(nsecs_t when,nsecs_t expectedVSyncTime,nsecs_t deadlineTimestamp)477 bool Scheduler::injectVSync(nsecs_t when, nsecs_t expectedVSyncTime, nsecs_t deadlineTimestamp) {
478 if (!mInjectVSyncs || !mVSyncInjector) {
479 return false;
480 }
481
482 mVSyncInjector->onInjectSyncEvent(when, expectedVSyncTime, deadlineTimestamp);
483 return true;
484 }
485
enableHardwareVsync()486 void Scheduler::enableHardwareVsync() {
487 std::lock_guard<std::mutex> lock(mHWVsyncLock);
488 if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) {
489 mVsyncSchedule.tracker->resetModel();
490 mSchedulerCallback.setVsyncEnabled(true);
491 mPrimaryHWVsyncEnabled = true;
492 }
493 }
494
disableHardwareVsync(bool makeUnavailable)495 void Scheduler::disableHardwareVsync(bool makeUnavailable) {
496 std::lock_guard<std::mutex> lock(mHWVsyncLock);
497 if (mPrimaryHWVsyncEnabled) {
498 mSchedulerCallback.setVsyncEnabled(false);
499 mPrimaryHWVsyncEnabled = false;
500 }
501 if (makeUnavailable) {
502 mHWVsyncAvailable = false;
503 }
504 }
505
resyncToHardwareVsync(bool makeAvailable,nsecs_t period)506 void Scheduler::resyncToHardwareVsync(bool makeAvailable, nsecs_t period) {
507 {
508 std::lock_guard<std::mutex> lock(mHWVsyncLock);
509 if (makeAvailable) {
510 mHWVsyncAvailable = makeAvailable;
511 } else if (!mHWVsyncAvailable) {
512 // Hardware vsync is not currently available, so abort the resync
513 // attempt for now
514 return;
515 }
516 }
517
518 if (period <= 0) {
519 return;
520 }
521
522 setVsyncPeriod(period);
523 }
524
resync()525 void Scheduler::resync() {
526 static constexpr nsecs_t kIgnoreDelay = ms2ns(750);
527
528 const nsecs_t now = systemTime();
529 const nsecs_t last = mLastResyncTime.exchange(now);
530
531 if (now - last > kIgnoreDelay) {
532 const auto vsyncPeriod = [&] {
533 std::scoped_lock lock(mRefreshRateConfigsLock);
534 return mRefreshRateConfigs->getCurrentRefreshRate().getVsyncPeriod();
535 }();
536 resyncToHardwareVsync(false, vsyncPeriod);
537 }
538 }
539
setVsyncPeriod(nsecs_t period)540 void Scheduler::setVsyncPeriod(nsecs_t period) {
541 std::lock_guard<std::mutex> lock(mHWVsyncLock);
542 mVsyncSchedule.controller->startPeriodTransition(period);
543
544 if (!mPrimaryHWVsyncEnabled) {
545 mVsyncSchedule.tracker->resetModel();
546 mSchedulerCallback.setVsyncEnabled(true);
547 mPrimaryHWVsyncEnabled = true;
548 }
549 }
550
addResyncSample(nsecs_t timestamp,std::optional<nsecs_t> hwcVsyncPeriod,bool * periodFlushed)551 void Scheduler::addResyncSample(nsecs_t timestamp, std::optional<nsecs_t> hwcVsyncPeriod,
552 bool* periodFlushed) {
553 bool needsHwVsync = false;
554 *periodFlushed = false;
555 { // Scope for the lock
556 std::lock_guard<std::mutex> lock(mHWVsyncLock);
557 if (mPrimaryHWVsyncEnabled) {
558 needsHwVsync = mVsyncSchedule.controller->addHwVsyncTimestamp(timestamp, hwcVsyncPeriod,
559 periodFlushed);
560 }
561 }
562
563 if (needsHwVsync) {
564 enableHardwareVsync();
565 } else {
566 disableHardwareVsync(false);
567 }
568 }
569
addPresentFence(const std::shared_ptr<FenceTime> & fenceTime)570 void Scheduler::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) {
571 if (mVsyncSchedule.controller->addPresentFence(fenceTime)) {
572 enableHardwareVsync();
573 } else {
574 disableHardwareVsync(false);
575 }
576 }
577
setIgnorePresentFences(bool ignore)578 void Scheduler::setIgnorePresentFences(bool ignore) {
579 mVsyncSchedule.controller->setIgnorePresentFences(ignore);
580 }
581
registerLayer(Layer * layer)582 void Scheduler::registerLayer(Layer* layer) {
583 scheduler::LayerHistory::LayerVoteType voteType;
584
585 if (!mOptions.useContentDetection || layer->getWindowType() == WindowInfo::Type::STATUS_BAR) {
586 voteType = scheduler::LayerHistory::LayerVoteType::NoVote;
587 } else if (layer->getWindowType() == WindowInfo::Type::WALLPAPER) {
588 // Running Wallpaper at Min is considered as part of content detection.
589 voteType = scheduler::LayerHistory::LayerVoteType::Min;
590 } else {
591 voteType = scheduler::LayerHistory::LayerVoteType::Heuristic;
592 }
593
594 // If the content detection feature is off, we still keep the layer history,
595 // since we use it for other features (like Frame Rate API), so layers
596 // still need to be registered.
597 mLayerHistory->registerLayer(layer, voteType);
598 }
599
deregisterLayer(Layer * layer)600 void Scheduler::deregisterLayer(Layer* layer) {
601 mLayerHistory->deregisterLayer(layer);
602 }
603
recordLayerHistory(Layer * layer,nsecs_t presentTime,LayerHistory::LayerUpdateType updateType)604 void Scheduler::recordLayerHistory(Layer* layer, nsecs_t presentTime,
605 LayerHistory::LayerUpdateType updateType) {
606 {
607 std::scoped_lock lock(mRefreshRateConfigsLock);
608 if (!mRefreshRateConfigs->canSwitch()) return;
609 }
610
611 mLayerHistory->record(layer, presentTime, systemTime(), updateType);
612 }
613
setModeChangePending(bool pending)614 void Scheduler::setModeChangePending(bool pending) {
615 mLayerHistory->setModeChangePending(pending);
616 }
617
chooseRefreshRateForContent()618 void Scheduler::chooseRefreshRateForContent() {
619 {
620 std::scoped_lock lock(mRefreshRateConfigsLock);
621 if (!mRefreshRateConfigs->canSwitch()) return;
622 }
623
624 ATRACE_CALL();
625
626 const auto refreshRateConfigs = holdRefreshRateConfigs();
627 scheduler::LayerHistory::Summary summary =
628 mLayerHistory->summarize(*refreshRateConfigs, systemTime());
629 scheduler::RefreshRateConfigs::GlobalSignals consideredSignals;
630 DisplayModePtr newMode;
631 bool frameRateChanged;
632 bool frameRateOverridesChanged;
633 {
634 std::lock_guard<std::mutex> lock(mFeatureStateLock);
635 mFeatures.contentRequirements = summary;
636
637 newMode = calculateRefreshRateModeId(&consideredSignals);
638 frameRateOverridesChanged = updateFrameRateOverrides(consideredSignals, newMode->getFps());
639
640 if (mFeatures.mode == newMode) {
641 // We don't need to change the display mode, but we might need to send an event
642 // about a mode change, since it was suppressed due to a previous idleConsidered
643 if (!consideredSignals.idle) {
644 dispatchCachedReportedMode();
645 }
646 frameRateChanged = false;
647 } else {
648 mFeatures.mode = newMode;
649 frameRateChanged = true;
650 }
651 }
652 if (frameRateChanged) {
653 auto newRefreshRate = refreshRateConfigs->getRefreshRateFromModeId(newMode->getId());
654 mSchedulerCallback.changeRefreshRate(newRefreshRate,
655 consideredSignals.idle ? ModeEvent::None
656 : ModeEvent::Changed);
657 }
658 if (frameRateOverridesChanged) {
659 mSchedulerCallback.triggerOnFrameRateOverridesChanged();
660 }
661 }
662
resetIdleTimer()663 void Scheduler::resetIdleTimer() {
664 std::scoped_lock lock(mRefreshRateConfigsLock);
665 mRefreshRateConfigs->resetIdleTimer(/*kernelOnly*/ false);
666 }
667
notifyTouchEvent()668 void Scheduler::notifyTouchEvent() {
669 if (mTouchTimer) {
670 mTouchTimer->reset();
671
672 std::scoped_lock lock(mRefreshRateConfigsLock);
673 mRefreshRateConfigs->resetIdleTimer(/*kernelOnly*/ true);
674 }
675 }
676
setDisplayPowerState(bool normal)677 void Scheduler::setDisplayPowerState(bool normal) {
678 {
679 std::lock_guard<std::mutex> lock(mFeatureStateLock);
680 mFeatures.isDisplayPowerStateNormal = normal;
681 }
682
683 if (mDisplayPowerTimer) {
684 mDisplayPowerTimer->reset();
685 }
686
687 // Display Power event will boost the refresh rate to performance.
688 // Clear Layer History to get fresh FPS detection
689 mLayerHistory->clear();
690 }
691
kernelIdleTimerCallback(TimerState state)692 void Scheduler::kernelIdleTimerCallback(TimerState state) {
693 ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state));
694
695 // TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate
696 // magic number
697 const auto refreshRate = [&] {
698 std::scoped_lock lock(mRefreshRateConfigsLock);
699 return mRefreshRateConfigs->getCurrentRefreshRate();
700 }();
701
702 constexpr Fps FPS_THRESHOLD_FOR_KERNEL_TIMER{65.0f};
703 if (state == TimerState::Reset &&
704 refreshRate.getFps().greaterThanWithMargin(FPS_THRESHOLD_FOR_KERNEL_TIMER)) {
705 // If we're not in performance mode then the kernel timer shouldn't do
706 // anything, as the refresh rate during DPU power collapse will be the
707 // same.
708 resyncToHardwareVsync(true /* makeAvailable */, refreshRate.getVsyncPeriod());
709 } else if (state == TimerState::Expired &&
710 refreshRate.getFps().lessThanOrEqualWithMargin(FPS_THRESHOLD_FOR_KERNEL_TIMER)) {
711 // Disable HW VSYNC if the timer expired, as we don't need it enabled if
712 // we're not pushing frames, and if we're in PERFORMANCE mode then we'll
713 // need to update the VsyncController model anyway.
714 disableHardwareVsync(false /* makeUnavailable */);
715 }
716
717 mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired);
718 }
719
idleTimerCallback(TimerState state)720 void Scheduler::idleTimerCallback(TimerState state) {
721 handleTimerStateChanged(&mFeatures.idleTimer, state);
722 ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state));
723 }
724
touchTimerCallback(TimerState state)725 void Scheduler::touchTimerCallback(TimerState state) {
726 const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive;
727 // Touch event will boost the refresh rate to performance.
728 // Clear layer history to get fresh FPS detection.
729 // NOTE: Instead of checking all the layers, we should be checking the layer
730 // that is currently on top. b/142507166 will give us this capability.
731 if (handleTimerStateChanged(&mFeatures.touch, touch)) {
732 mLayerHistory->clear();
733 }
734 ATRACE_INT("TouchState", static_cast<int>(touch));
735 }
736
displayPowerTimerCallback(TimerState state)737 void Scheduler::displayPowerTimerCallback(TimerState state) {
738 handleTimerStateChanged(&mFeatures.displayPowerTimer, state);
739 ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state));
740 }
741
dump(std::string & result) const742 void Scheduler::dump(std::string& result) const {
743 using base::StringAppendF;
744
745 StringAppendF(&result, "+ Touch timer: %s\n",
746 mTouchTimer ? mTouchTimer->dump().c_str() : "off");
747 StringAppendF(&result, "+ Content detection: %s %s\n\n",
748 toContentDetectionString(mOptions.useContentDetection),
749 mLayerHistory ? mLayerHistory->dump().c_str() : "(no layer history)");
750
751 {
752 std::lock_guard lock(mFrameRateOverridesLock);
753 StringAppendF(&result, "Frame Rate Overrides (backdoor): {");
754 for (const auto& [uid, frameRate] : mFrameRateOverridesFromBackdoor) {
755 StringAppendF(&result, "[uid: %d frameRate: %s], ", uid, to_string(frameRate).c_str());
756 }
757 StringAppendF(&result, "}\n");
758
759 StringAppendF(&result, "Frame Rate Overrides (setFrameRate): {");
760 for (const auto& [uid, frameRate] : mFrameRateOverridesByContent) {
761 StringAppendF(&result, "[uid: %d frameRate: %s], ", uid, to_string(frameRate).c_str());
762 }
763 StringAppendF(&result, "}\n");
764 }
765
766 {
767 std::lock_guard lock(mHWVsyncLock);
768 StringAppendF(&result,
769 "mScreenAcquired=%d mPrimaryHWVsyncEnabled=%d mHWVsyncAvailable=%d\n",
770 mScreenAcquired.load(), mPrimaryHWVsyncEnabled, mHWVsyncAvailable);
771 }
772 }
773
dumpVsync(std::string & s) const774 void Scheduler::dumpVsync(std::string& s) const {
775 using base::StringAppendF;
776
777 StringAppendF(&s, "VSyncReactor:\n");
778 mVsyncSchedule.controller->dump(s);
779 StringAppendF(&s, "VSyncDispatch:\n");
780 mVsyncSchedule.dispatch->dump(s);
781 }
782
updateFrameRateOverrides(scheduler::RefreshRateConfigs::GlobalSignals consideredSignals,Fps displayRefreshRate)783 bool Scheduler::updateFrameRateOverrides(
784 scheduler::RefreshRateConfigs::GlobalSignals consideredSignals, Fps displayRefreshRate) {
785 const auto refreshRateConfigs = holdRefreshRateConfigs();
786 if (!refreshRateConfigs->supportsFrameRateOverride()) {
787 return false;
788 }
789
790 if (!consideredSignals.idle) {
791 const auto frameRateOverrides =
792 refreshRateConfigs->getFrameRateOverrides(mFeatures.contentRequirements,
793 displayRefreshRate,
794 consideredSignals.touch);
795 std::lock_guard lock(mFrameRateOverridesLock);
796 if (!std::equal(mFrameRateOverridesByContent.begin(), mFrameRateOverridesByContent.end(),
797 frameRateOverrides.begin(), frameRateOverrides.end(),
798 [](const std::pair<uid_t, Fps>& a, const std::pair<uid_t, Fps>& b) {
799 return a.first == b.first && a.second.equalsWithMargin(b.second);
800 })) {
801 mFrameRateOverridesByContent = frameRateOverrides;
802 return true;
803 }
804 }
805 return false;
806 }
807
808 template <class T>
handleTimerStateChanged(T * currentState,T newState)809 bool Scheduler::handleTimerStateChanged(T* currentState, T newState) {
810 DisplayModePtr newMode;
811 bool refreshRateChanged = false;
812 bool frameRateOverridesChanged;
813 scheduler::RefreshRateConfigs::GlobalSignals consideredSignals;
814 const auto refreshRateConfigs = holdRefreshRateConfigs();
815 {
816 std::lock_guard<std::mutex> lock(mFeatureStateLock);
817 if (*currentState == newState) {
818 return false;
819 }
820 *currentState = newState;
821 newMode = calculateRefreshRateModeId(&consideredSignals);
822 frameRateOverridesChanged = updateFrameRateOverrides(consideredSignals, newMode->getFps());
823 if (mFeatures.mode == newMode) {
824 // We don't need to change the display mode, but we might need to send an event
825 // about a mode change, since it was suppressed due to a previous idleConsidered
826 if (!consideredSignals.idle) {
827 dispatchCachedReportedMode();
828 }
829 } else {
830 mFeatures.mode = newMode;
831 refreshRateChanged = true;
832 }
833 }
834 if (refreshRateChanged) {
835 const RefreshRate& newRefreshRate =
836 refreshRateConfigs->getRefreshRateFromModeId(newMode->getId());
837
838 mSchedulerCallback.changeRefreshRate(newRefreshRate,
839 consideredSignals.idle ? ModeEvent::None
840 : ModeEvent::Changed);
841 }
842 if (frameRateOverridesChanged) {
843 mSchedulerCallback.triggerOnFrameRateOverridesChanged();
844 }
845 return consideredSignals.touch;
846 }
847
calculateRefreshRateModeId(scheduler::RefreshRateConfigs::GlobalSignals * consideredSignals)848 DisplayModePtr Scheduler::calculateRefreshRateModeId(
849 scheduler::RefreshRateConfigs::GlobalSignals* consideredSignals) {
850 ATRACE_CALL();
851 if (consideredSignals) *consideredSignals = {};
852
853 const auto refreshRateConfigs = holdRefreshRateConfigs();
854 // If Display Power is not in normal operation we want to be in performance mode. When coming
855 // back to normal mode, a grace period is given with DisplayPowerTimer.
856 if (mDisplayPowerTimer &&
857 (!mFeatures.isDisplayPowerStateNormal ||
858 mFeatures.displayPowerTimer == TimerState::Reset)) {
859 return refreshRateConfigs->getMaxRefreshRateByPolicy().getMode();
860 }
861
862 const bool touchActive = mTouchTimer && mFeatures.touch == TouchState::Active;
863 const bool idle = mFeatures.idleTimer == TimerState::Expired;
864
865 return refreshRateConfigs
866 ->getBestRefreshRate(mFeatures.contentRequirements,
867 {.touch = touchActive, .idle = idle}, consideredSignals)
868 .getMode();
869 }
870
getPreferredDisplayMode()871 DisplayModePtr Scheduler::getPreferredDisplayMode() {
872 std::lock_guard<std::mutex> lock(mFeatureStateLock);
873 // Make sure that the default mode ID is first updated, before returned.
874 if (mFeatures.mode) {
875 mFeatures.mode = calculateRefreshRateModeId();
876 }
877 return mFeatures.mode;
878 }
879
onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline & timeline)880 void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) {
881 if (timeline.refreshRequired) {
882 mSchedulerCallback.repaintEverythingForHWC();
883 }
884
885 std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
886 mLastVsyncPeriodChangeTimeline = std::make_optional(timeline);
887
888 const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count();
889 if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) {
890 mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime;
891 }
892 }
893
onDisplayRefreshed(nsecs_t timestamp)894 void Scheduler::onDisplayRefreshed(nsecs_t timestamp) {
895 bool callRepaint = false;
896 {
897 std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
898 if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) {
899 if (mLastVsyncPeriodChangeTimeline->refreshTimeNanos < timestamp) {
900 mLastVsyncPeriodChangeTimeline->refreshRequired = false;
901 } else {
902 // We need to send another refresh as refreshTimeNanos is still in the future
903 callRepaint = true;
904 }
905 }
906 }
907
908 if (callRepaint) {
909 mSchedulerCallback.repaintEverythingForHWC();
910 }
911 }
912
onActiveDisplayAreaChanged(uint32_t displayArea)913 void Scheduler::onActiveDisplayAreaChanged(uint32_t displayArea) {
914 mLayerHistory->setDisplayArea(displayArea);
915 }
916
setPreferredRefreshRateForUid(FrameRateOverride frameRateOverride)917 void Scheduler::setPreferredRefreshRateForUid(FrameRateOverride frameRateOverride) {
918 if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) {
919 return;
920 }
921
922 std::lock_guard lock(mFrameRateOverridesLock);
923 if (frameRateOverride.frameRateHz != 0.f) {
924 mFrameRateOverridesFromBackdoor[frameRateOverride.uid] = Fps(frameRateOverride.frameRateHz);
925 } else {
926 mFrameRateOverridesFromBackdoor.erase(frameRateOverride.uid);
927 }
928 }
929
getPreviousVsyncFrom(nsecs_t expectedPresentTime) const930 std::chrono::steady_clock::time_point Scheduler::getPreviousVsyncFrom(
931 nsecs_t expectedPresentTime) const {
932 const auto presentTime = std::chrono::nanoseconds(expectedPresentTime);
933 const auto vsyncPeriod = std::chrono::nanoseconds(mVsyncSchedule.tracker->currentPeriod());
934 return std::chrono::steady_clock::time_point(presentTime - vsyncPeriod);
935 }
936
937 } // namespace android
938