1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // TODO(b/129481165): remove the #pragma below and fix conversion issues
18 #pragma clang diagnostic push
19 #pragma clang diagnostic ignored "-Wconversion"
20
21 //#define LOG_NDEBUG 0
22 #undef LOG_TAG
23 #define LOG_TAG "BufferLayer"
24 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
25
26 #include "BufferLayer.h"
27
28 #include <compositionengine/CompositionEngine.h>
29 #include <compositionengine/LayerFECompositionState.h>
30 #include <compositionengine/OutputLayer.h>
31 #include <compositionengine/impl/OutputLayerCompositionState.h>
32 #include <cutils/compiler.h>
33 #include <cutils/native_handle.h>
34 #include <cutils/properties.h>
35 #include <gui/BufferItem.h>
36 #include <gui/BufferQueue.h>
37 #include <gui/GLConsumer.h>
38 #include <gui/LayerDebugInfo.h>
39 #include <gui/Surface.h>
40 #include <renderengine/RenderEngine.h>
41 #include <ui/DebugUtils.h>
42 #include <utils/Errors.h>
43 #include <utils/Log.h>
44 #include <utils/NativeHandle.h>
45 #include <utils/StopWatch.h>
46 #include <utils/Trace.h>
47
48 #include <cmath>
49 #include <cstdlib>
50 #include <mutex>
51 #include <sstream>
52
53 #include "Colorizer.h"
54 #include "DisplayDevice.h"
55 #include "FrameTracer/FrameTracer.h"
56 #include "LayerRejecter.h"
57 #include "TimeStats/TimeStats.h"
58
59 namespace android {
60
61 using gui::WindowInfo;
62
63 static constexpr float defaultMaxLuminance = 1000.0;
64
BufferLayer(const LayerCreationArgs & args)65 BufferLayer::BufferLayer(const LayerCreationArgs& args)
66 : Layer(args),
67 mTextureName(args.textureName),
68 mCompositionState{mFlinger->getCompositionEngine().createLayerFECompositionState()} {
69 ALOGV("Creating Layer %s", getDebugName());
70
71 mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied);
72
73 mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow;
74 mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp;
75 }
76
~BufferLayer()77 BufferLayer::~BufferLayer() {
78 if (!isClone()) {
79 // The original layer and the clone layer share the same texture. Therefore, only one of
80 // the layers, in this case the original layer, needs to handle the deletion. The original
81 // layer and the clone should be removed at the same time so there shouldn't be any issue
82 // with the clone layer trying to use the deleted texture.
83 mFlinger->deleteTextureAsync(mTextureName);
84 }
85 const int32_t layerId = getSequence();
86 mFlinger->mTimeStats->onDestroy(layerId);
87 mFlinger->mFrameTracer->onDestroy(layerId);
88 }
89
useSurfaceDamage()90 void BufferLayer::useSurfaceDamage() {
91 if (mFlinger->mForceFullDamage) {
92 surfaceDamageRegion = Region::INVALID_REGION;
93 } else {
94 surfaceDamageRegion = mBufferInfo.mSurfaceDamage;
95 }
96 }
97
useEmptyDamage()98 void BufferLayer::useEmptyDamage() {
99 surfaceDamageRegion.clear();
100 }
101
isOpaque(const Layer::State & s) const102 bool BufferLayer::isOpaque(const Layer::State& s) const {
103 // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
104 // layer's opaque flag.
105 if ((mSidebandStream == nullptr) && (mBufferInfo.mBuffer == nullptr)) {
106 return false;
107 }
108
109 // if the layer has the opaque flag, then we're always opaque,
110 // otherwise we use the current buffer's format.
111 return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat());
112 }
113
isVisible() const114 bool BufferLayer::isVisible() const {
115 return !isHiddenByPolicy() && getAlpha() > 0.0f &&
116 (mBufferInfo.mBuffer != nullptr || mSidebandStream != nullptr);
117 }
118
isFixedSize() const119 bool BufferLayer::isFixedSize() const {
120 return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
121 }
122
usesSourceCrop() const123 bool BufferLayer::usesSourceCrop() const {
124 return true;
125 }
126
inverseOrientation(uint32_t transform)127 static constexpr mat4 inverseOrientation(uint32_t transform) {
128 const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
129 const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
130 const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
131 mat4 tr;
132
133 if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
134 tr = tr * rot90;
135 }
136 if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
137 tr = tr * flipH;
138 }
139 if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
140 tr = tr * flipV;
141 }
142 return inverse(tr);
143 }
144
prepareClientComposition(compositionengine::LayerFE::ClientCompositionTargetSettings & targetSettings)145 std::optional<compositionengine::LayerFE::LayerSettings> BufferLayer::prepareClientComposition(
146 compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) {
147 ATRACE_CALL();
148
149 std::optional<compositionengine::LayerFE::LayerSettings> result =
150 Layer::prepareClientComposition(targetSettings);
151 if (!result) {
152 return result;
153 }
154
155 if (CC_UNLIKELY(mBufferInfo.mBuffer == 0)) {
156 // the texture has not been created yet, this Layer has
157 // in fact never been drawn into. This happens frequently with
158 // SurfaceView because the WindowManager can't know when the client
159 // has drawn the first time.
160
161 // If there is nothing under us, we paint the screen in black, otherwise
162 // we just skip this update.
163
164 // figure out if there is something below us
165 Region under;
166 bool finished = false;
167 mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) {
168 if (finished || layer == static_cast<BufferLayer const*>(this)) {
169 finished = true;
170 return;
171 }
172
173 under.orSelf(layer->getScreenBounds());
174 });
175 // if not everything below us is covered, we plug the holes!
176 Region holes(targetSettings.clip.subtract(under));
177 if (!holes.isEmpty()) {
178 targetSettings.clearRegion.orSelf(holes);
179 }
180
181 if (mSidebandStream != nullptr) {
182 // For surfaceview of tv sideband, there is no activeBuffer
183 // in bufferqueue, we need return LayerSettings.
184 return result;
185 } else {
186 return std::nullopt;
187 }
188 }
189 const bool blackOutLayer = (isProtected() && !targetSettings.supportsProtectedContent) ||
190 ((isSecure() || isProtected()) && !targetSettings.isSecure);
191 const bool bufferCanBeUsedAsHwTexture =
192 mBufferInfo.mBuffer->getBuffer()->getUsage() & GraphicBuffer::USAGE_HW_TEXTURE;
193 compositionengine::LayerFE::LayerSettings& layer = *result;
194 if (blackOutLayer || !bufferCanBeUsedAsHwTexture) {
195 ALOGE_IF(!bufferCanBeUsedAsHwTexture, "%s is blacked out as buffer is not gpu readable",
196 mName.c_str());
197 prepareClearClientComposition(layer, true /* blackout */);
198 return layer;
199 }
200
201 const State& s(getDrawingState());
202 layer.source.buffer.buffer = mBufferInfo.mBuffer;
203 layer.source.buffer.isOpaque = isOpaque(s);
204 layer.source.buffer.fence = mBufferInfo.mFence;
205 layer.source.buffer.textureName = mTextureName;
206 layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha();
207 layer.source.buffer.isY410BT2020 = isHdrY410();
208 bool hasSmpte2086 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::SMPTE2086;
209 bool hasCta861_3 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::CTA861_3;
210 float maxLuminance = 0.f;
211 if (hasSmpte2086 && hasCta861_3) {
212 maxLuminance = std::min(mBufferInfo.mHdrMetadata.smpte2086.maxLuminance,
213 mBufferInfo.mHdrMetadata.cta8613.maxContentLightLevel);
214 } else if (hasSmpte2086) {
215 maxLuminance = mBufferInfo.mHdrMetadata.smpte2086.maxLuminance;
216 } else if (hasCta861_3) {
217 maxLuminance = mBufferInfo.mHdrMetadata.cta8613.maxContentLightLevel;
218 } else {
219 switch (layer.sourceDataspace & HAL_DATASPACE_TRANSFER_MASK) {
220 case HAL_DATASPACE_TRANSFER_ST2084:
221 case HAL_DATASPACE_TRANSFER_HLG:
222 // Behavior-match previous releases for HDR content
223 maxLuminance = defaultMaxLuminance;
224 break;
225 }
226 }
227 layer.source.buffer.maxLuminanceNits = maxLuminance;
228 layer.frameNumber = mCurrentFrameNumber;
229 layer.bufferId = mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getBuffer()->getId() : 0;
230
231 const bool useFiltering =
232 targetSettings.needsFiltering || mNeedsFiltering || bufferNeedsFiltering();
233
234 // Query the texture matrix given our current filtering mode.
235 float textureMatrix[16];
236 getDrawingTransformMatrix(useFiltering, textureMatrix);
237
238 if (getTransformToDisplayInverse()) {
239 /*
240 * the code below applies the primary display's inverse transform to
241 * the texture transform
242 */
243 uint32_t transform = DisplayDevice::getPrimaryDisplayRotationFlags();
244 mat4 tr = inverseOrientation(transform);
245
246 /**
247 * TODO(b/36727915): This is basically a hack.
248 *
249 * Ensure that regardless of the parent transformation,
250 * this buffer is always transformed from native display
251 * orientation to display orientation. For example, in the case
252 * of a camera where the buffer remains in native orientation,
253 * we want the pixels to always be upright.
254 */
255 sp<Layer> p = mDrawingParent.promote();
256 if (p != nullptr) {
257 const auto parentTransform = p->getTransform();
258 tr = tr * inverseOrientation(parentTransform.getOrientation());
259 }
260
261 // and finally apply it to the original texture matrix
262 const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
263 memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
264 }
265
266 const Rect win{getBounds()};
267 float bufferWidth = getBufferSize(s).getWidth();
268 float bufferHeight = getBufferSize(s).getHeight();
269
270 // BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has
271 // been set and there is no parent layer bounds. In that case, the scale is meaningless so
272 // ignore them.
273 if (!getBufferSize(s).isValid()) {
274 bufferWidth = float(win.right) - float(win.left);
275 bufferHeight = float(win.bottom) - float(win.top);
276 }
277
278 const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight;
279 const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth;
280 const float translateY = float(win.top) / bufferHeight;
281 const float translateX = float(win.left) / bufferWidth;
282
283 // Flip y-coordinates because GLConsumer expects OpenGL convention.
284 mat4 tr = mat4::translate(vec4(.5, .5, 0, 1)) * mat4::scale(vec4(1, -1, 1, 1)) *
285 mat4::translate(vec4(-.5, -.5, 0, 1)) *
286 mat4::translate(vec4(translateX, translateY, 0, 1)) *
287 mat4::scale(vec4(scaleWidth, scaleHeight, 1.0, 1.0));
288
289 layer.source.buffer.useTextureFiltering = useFiltering;
290 layer.source.buffer.textureTransform = mat4(static_cast<const float*>(textureMatrix)) * tr;
291
292 return layer;
293 }
294
isHdrY410() const295 bool BufferLayer::isHdrY410() const {
296 // pixel format is HDR Y410 masquerading as RGBA_1010102
297 return (mBufferInfo.mDataspace == ui::Dataspace::BT2020_ITU_PQ &&
298 mBufferInfo.mApi == NATIVE_WINDOW_API_MEDIA &&
299 mBufferInfo.mPixelFormat == HAL_PIXEL_FORMAT_RGBA_1010102);
300 }
301
getCompositionEngineLayerFE() const302 sp<compositionengine::LayerFE> BufferLayer::getCompositionEngineLayerFE() const {
303 return asLayerFE();
304 }
305
editCompositionState()306 compositionengine::LayerFECompositionState* BufferLayer::editCompositionState() {
307 return mCompositionState.get();
308 }
309
getCompositionState() const310 const compositionengine::LayerFECompositionState* BufferLayer::getCompositionState() const {
311 return mCompositionState.get();
312 }
313
preparePerFrameCompositionState()314 void BufferLayer::preparePerFrameCompositionState() {
315 Layer::preparePerFrameCompositionState();
316
317 // Sideband layers
318 auto* compositionState = editCompositionState();
319 if (compositionState->sidebandStream.get()) {
320 compositionState->compositionType = Hwc2::IComposerClient::Composition::SIDEBAND;
321 return;
322 } else {
323 // Normal buffer layers
324 compositionState->hdrMetadata = mBufferInfo.mHdrMetadata;
325 compositionState->compositionType = mPotentialCursor
326 ? Hwc2::IComposerClient::Composition::CURSOR
327 : Hwc2::IComposerClient::Composition::DEVICE;
328 }
329
330 compositionState->buffer = mBufferInfo.mBuffer->getBuffer();
331 compositionState->bufferSlot = (mBufferInfo.mBufferSlot == BufferQueue::INVALID_BUFFER_SLOT)
332 ? 0
333 : mBufferInfo.mBufferSlot;
334 compositionState->acquireFence = mBufferInfo.mFence;
335 }
336
onPreComposition(nsecs_t refreshStartTime)337 bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) {
338 if (mBufferInfo.mBuffer != nullptr) {
339 Mutex::Autolock lock(mFrameEventHistoryMutex);
340 mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime);
341 }
342 mRefreshPending = false;
343 return hasReadyFrame();
344 }
345 namespace {
frameRateToSetFrameRateVotePayload(Layer::FrameRate frameRate)346 TimeStats::SetFrameRateVote frameRateToSetFrameRateVotePayload(Layer::FrameRate frameRate) {
347 using FrameRateCompatibility = TimeStats::SetFrameRateVote::FrameRateCompatibility;
348 using Seamlessness = TimeStats::SetFrameRateVote::Seamlessness;
349 const auto frameRateCompatibility = [frameRate] {
350 switch (frameRate.type) {
351 case Layer::FrameRateCompatibility::Default:
352 return FrameRateCompatibility::Default;
353 case Layer::FrameRateCompatibility::ExactOrMultiple:
354 return FrameRateCompatibility::ExactOrMultiple;
355 default:
356 return FrameRateCompatibility::Undefined;
357 }
358 }();
359
360 const auto seamlessness = [frameRate] {
361 switch (frameRate.seamlessness) {
362 case scheduler::Seamlessness::OnlySeamless:
363 return Seamlessness::ShouldBeSeamless;
364 case scheduler::Seamlessness::SeamedAndSeamless:
365 return Seamlessness::NotRequired;
366 default:
367 return Seamlessness::Undefined;
368 }
369 }();
370
371 return TimeStats::SetFrameRateVote{.frameRate = frameRate.rate.getValue(),
372 .frameRateCompatibility = frameRateCompatibility,
373 .seamlessness = seamlessness};
374 }
375 } // namespace
376
onPostComposition(const DisplayDevice * display,const std::shared_ptr<FenceTime> & glDoneFence,const std::shared_ptr<FenceTime> & presentFence,const CompositorTiming & compositorTiming)377 bool BufferLayer::onPostComposition(const DisplayDevice* display,
378 const std::shared_ptr<FenceTime>& glDoneFence,
379 const std::shared_ptr<FenceTime>& presentFence,
380 const CompositorTiming& compositorTiming) {
381 // mFrameLatencyNeeded is true when a new frame was latched for the
382 // composition.
383 if (!mBufferInfo.mFrameLatencyNeeded) return false;
384
385 // Update mFrameEventHistory.
386 {
387 Mutex::Autolock lock(mFrameEventHistoryMutex);
388 mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence,
389 compositorTiming);
390 finalizeFrameEventHistory(glDoneFence, compositorTiming);
391 }
392
393 // Update mFrameTracker.
394 nsecs_t desiredPresentTime = mBufferInfo.mDesiredPresentTime;
395 mFrameTracker.setDesiredPresentTime(desiredPresentTime);
396
397 const int32_t layerId = getSequence();
398 mFlinger->mTimeStats->setDesiredTime(layerId, mCurrentFrameNumber, desiredPresentTime);
399
400 const auto outputLayer = findOutputLayerForDisplay(display);
401 if (outputLayer && outputLayer->requiresClientComposition()) {
402 nsecs_t clientCompositionTimestamp = outputLayer->getState().clientCompositionTimestamp;
403 mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(), mCurrentFrameNumber,
404 clientCompositionTimestamp,
405 FrameTracer::FrameEvent::FALLBACK_COMPOSITION);
406 // Update the SurfaceFrames in the drawing state
407 if (mDrawingState.bufferSurfaceFrameTX) {
408 mDrawingState.bufferSurfaceFrameTX->setGpuComposition();
409 }
410 for (auto& [token, surfaceFrame] : mDrawingState.bufferlessSurfaceFramesTX) {
411 surfaceFrame->setGpuComposition();
412 }
413 }
414
415 std::shared_ptr<FenceTime> frameReadyFence = mBufferInfo.mFenceTime;
416 if (frameReadyFence->isValid()) {
417 mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
418 } else {
419 // There was no fence for this frame, so assume that it was ready
420 // to be presented at the desired present time.
421 mFrameTracker.setFrameReadyTime(desiredPresentTime);
422 }
423
424 if (display) {
425 const Fps refreshRate = display->refreshRateConfigs().getCurrentRefreshRate().getFps();
426 const std::optional<Fps> renderRate =
427 mFlinger->mScheduler->getFrameRateOverride(getOwnerUid());
428 if (presentFence->isValid()) {
429 mFlinger->mTimeStats->setPresentFence(layerId, mCurrentFrameNumber, presentFence,
430 refreshRate, renderRate,
431 frameRateToSetFrameRateVotePayload(
432 mDrawingState.frameRate),
433 getGameMode());
434 mFlinger->mFrameTracer->traceFence(layerId, getCurrentBufferId(), mCurrentFrameNumber,
435 presentFence,
436 FrameTracer::FrameEvent::PRESENT_FENCE);
437 mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
438 } else if (const auto displayId = PhysicalDisplayId::tryCast(display->getId());
439 displayId && mFlinger->getHwComposer().isConnected(*displayId)) {
440 // The HWC doesn't support present fences, so use the refresh
441 // timestamp instead.
442 const nsecs_t actualPresentTime = display->getRefreshTimestamp();
443 mFlinger->mTimeStats->setPresentTime(layerId, mCurrentFrameNumber, actualPresentTime,
444 refreshRate, renderRate,
445 frameRateToSetFrameRateVotePayload(
446 mDrawingState.frameRate),
447 getGameMode());
448 mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(),
449 mCurrentFrameNumber, actualPresentTime,
450 FrameTracer::FrameEvent::PRESENT_FENCE);
451 mFrameTracker.setActualPresentTime(actualPresentTime);
452 }
453 }
454
455 mFrameTracker.advanceFrame();
456 mBufferInfo.mFrameLatencyNeeded = false;
457 return true;
458 }
459
gatherBufferInfo()460 void BufferLayer::gatherBufferInfo() {
461 mBufferInfo.mPixelFormat =
462 !mBufferInfo.mBuffer ? PIXEL_FORMAT_NONE : mBufferInfo.mBuffer->getBuffer()->format;
463 mBufferInfo.mFrameLatencyNeeded = true;
464 }
465
shouldPresentNow(nsecs_t expectedPresentTime) const466 bool BufferLayer::shouldPresentNow(nsecs_t expectedPresentTime) const {
467 // If this is not a valid vsync for the layer's uid, return and try again later
468 const bool isVsyncValidForUid =
469 mFlinger->mScheduler->isVsyncValid(expectedPresentTime, mOwnerUid);
470 if (!isVsyncValidForUid) {
471 ATRACE_NAME("!isVsyncValidForUid");
472 return false;
473 }
474
475 // AutoRefresh layers and sideband streams should always be presented
476 if (getSidebandStreamChanged() || getAutoRefresh()) {
477 return true;
478 }
479
480 // If this layer doesn't have a frame is shouldn't be presented
481 if (!hasFrameUpdate()) {
482 return false;
483 }
484
485 // Defer to the derived class to decide whether the next buffer is due for
486 // presentation.
487 return isBufferDue(expectedPresentTime);
488 }
489
latchBuffer(bool & recomputeVisibleRegions,nsecs_t latchTime,nsecs_t expectedPresentTime)490 bool BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime,
491 nsecs_t expectedPresentTime) {
492 ATRACE_CALL();
493
494 bool refreshRequired = latchSidebandStream(recomputeVisibleRegions);
495
496 if (refreshRequired) {
497 return refreshRequired;
498 }
499
500 if (!hasReadyFrame()) {
501 return false;
502 }
503
504 // if we've already called updateTexImage() without going through
505 // a composition step, we have to skip this layer at this point
506 // because we cannot call updateTeximage() without a corresponding
507 // compositionComplete() call.
508 // we'll trigger an update in onPreComposition().
509 if (mRefreshPending) {
510 return false;
511 }
512
513 // If the head buffer's acquire fence hasn't signaled yet, return and
514 // try again later
515 if (!fenceHasSignaled()) {
516 ATRACE_NAME("!fenceHasSignaled()");
517 mFlinger->signalLayerUpdate();
518 return false;
519 }
520
521 // Capture the old state of the layer for comparisons later
522 const State& s(getDrawingState());
523 const bool oldOpacity = isOpaque(s);
524
525 BufferInfo oldBufferInfo = mBufferInfo;
526
527 status_t err = updateTexImage(recomputeVisibleRegions, latchTime, expectedPresentTime);
528 if (err != NO_ERROR) {
529 return false;
530 }
531
532 err = updateActiveBuffer();
533 if (err != NO_ERROR) {
534 return false;
535 }
536
537 err = updateFrameNumber(latchTime);
538 if (err != NO_ERROR) {
539 return false;
540 }
541
542 gatherBufferInfo();
543
544 mRefreshPending = true;
545 if (oldBufferInfo.mBuffer == nullptr) {
546 // the first time we receive a buffer, we need to trigger a
547 // geometry invalidation.
548 recomputeVisibleRegions = true;
549 }
550
551 if ((mBufferInfo.mCrop != oldBufferInfo.mCrop) ||
552 (mBufferInfo.mTransform != oldBufferInfo.mTransform) ||
553 (mBufferInfo.mScaleMode != oldBufferInfo.mScaleMode) ||
554 (mBufferInfo.mTransformToDisplayInverse != oldBufferInfo.mTransformToDisplayInverse)) {
555 recomputeVisibleRegions = true;
556 }
557
558 if (oldBufferInfo.mBuffer != nullptr) {
559 uint32_t bufWidth = mBufferInfo.mBuffer->getBuffer()->getWidth();
560 uint32_t bufHeight = mBufferInfo.mBuffer->getBuffer()->getHeight();
561 if (bufWidth != uint32_t(oldBufferInfo.mBuffer->getBuffer()->width) ||
562 bufHeight != uint32_t(oldBufferInfo.mBuffer->getBuffer()->height)) {
563 recomputeVisibleRegions = true;
564 }
565 }
566
567 if (oldOpacity != isOpaque(s)) {
568 recomputeVisibleRegions = true;
569 }
570
571 return true;
572 }
573
hasReadyFrame() const574 bool BufferLayer::hasReadyFrame() const {
575 return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh();
576 }
577
getEffectiveScalingMode() const578 uint32_t BufferLayer::getEffectiveScalingMode() const {
579 return mBufferInfo.mScaleMode;
580 }
581
isProtected() const582 bool BufferLayer::isProtected() const {
583 return (mBufferInfo.mBuffer != nullptr) &&
584 (mBufferInfo.mBuffer->getBuffer()->getUsage() & GRALLOC_USAGE_PROTECTED);
585 }
586
587 // As documented in libhardware header, formats in the range
588 // 0x100 - 0x1FF are specific to the HAL implementation, and
589 // are known to have no alpha channel
590 // TODO: move definition for device-specific range into
591 // hardware.h, instead of using hard-coded values here.
592 #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
593
getOpacityForFormat(uint32_t format)594 bool BufferLayer::getOpacityForFormat(uint32_t format) {
595 if (HARDWARE_IS_DEVICE_FORMAT(format)) {
596 return true;
597 }
598 switch (format) {
599 case HAL_PIXEL_FORMAT_RGBA_8888:
600 case HAL_PIXEL_FORMAT_BGRA_8888:
601 case HAL_PIXEL_FORMAT_RGBA_FP16:
602 case HAL_PIXEL_FORMAT_RGBA_1010102:
603 return false;
604 }
605 // in all other case, we have no blending (also for unknown formats)
606 return true;
607 }
608
needsFiltering(const DisplayDevice * display) const609 bool BufferLayer::needsFiltering(const DisplayDevice* display) const {
610 const auto outputLayer = findOutputLayerForDisplay(display);
611 if (outputLayer == nullptr) {
612 return false;
613 }
614
615 // We need filtering if the sourceCrop rectangle size does not match the
616 // displayframe rectangle size (not a 1:1 render)
617 const auto& compositionState = outputLayer->getState();
618 const auto displayFrame = compositionState.displayFrame;
619 const auto sourceCrop = compositionState.sourceCrop;
620 return sourceCrop.getHeight() != displayFrame.getHeight() ||
621 sourceCrop.getWidth() != displayFrame.getWidth();
622 }
623
needsFilteringForScreenshots(const DisplayDevice * display,const ui::Transform & inverseParentTransform) const624 bool BufferLayer::needsFilteringForScreenshots(const DisplayDevice* display,
625 const ui::Transform& inverseParentTransform) const {
626 const auto outputLayer = findOutputLayerForDisplay(display);
627 if (outputLayer == nullptr) {
628 return false;
629 }
630
631 // We need filtering if the sourceCrop rectangle size does not match the
632 // viewport rectangle size (not a 1:1 render)
633 const auto& compositionState = outputLayer->getState();
634 const ui::Transform& displayTransform = display->getTransform();
635 const ui::Transform inverseTransform = inverseParentTransform * displayTransform.inverse();
636 // Undo the transformation of the displayFrame so that we're back into
637 // layer-stack space.
638 const Rect frame = inverseTransform.transform(compositionState.displayFrame);
639 const FloatRect sourceCrop = compositionState.sourceCrop;
640
641 int32_t frameHeight = frame.getHeight();
642 int32_t frameWidth = frame.getWidth();
643 // If the display transform had a rotational component then undo the
644 // rotation so that the orientation matches the source crop.
645 if (displayTransform.getOrientation() & ui::Transform::ROT_90) {
646 std::swap(frameHeight, frameWidth);
647 }
648 return sourceCrop.getHeight() != frameHeight || sourceCrop.getWidth() != frameWidth;
649 }
650
getHeadFrameNumber(nsecs_t expectedPresentTime) const651 uint64_t BufferLayer::getHeadFrameNumber(nsecs_t expectedPresentTime) const {
652 if (hasFrameUpdate()) {
653 return getFrameNumber(expectedPresentTime);
654 } else {
655 return mCurrentFrameNumber;
656 }
657 }
658
getBufferSize(const State & s) const659 Rect BufferLayer::getBufferSize(const State& s) const {
660 // If we have a sideband stream, or we are scaling the buffer then return the layer size since
661 // we cannot determine the buffer size.
662 if ((s.sidebandStream != nullptr) ||
663 (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
664 return Rect(getActiveWidth(s), getActiveHeight(s));
665 }
666
667 if (mBufferInfo.mBuffer == nullptr) {
668 return Rect::INVALID_RECT;
669 }
670
671 uint32_t bufWidth = mBufferInfo.mBuffer->getBuffer()->getWidth();
672 uint32_t bufHeight = mBufferInfo.mBuffer->getBuffer()->getHeight();
673
674 // Undo any transformations on the buffer and return the result.
675 if (mBufferInfo.mTransform & ui::Transform::ROT_90) {
676 std::swap(bufWidth, bufHeight);
677 }
678
679 if (getTransformToDisplayInverse()) {
680 uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags();
681 if (invTransform & ui::Transform::ROT_90) {
682 std::swap(bufWidth, bufHeight);
683 }
684 }
685
686 return Rect(bufWidth, bufHeight);
687 }
688
computeSourceBounds(const FloatRect & parentBounds) const689 FloatRect BufferLayer::computeSourceBounds(const FloatRect& parentBounds) const {
690 const State& s(getDrawingState());
691
692 // If we have a sideband stream, or we are scaling the buffer then return the layer size since
693 // we cannot determine the buffer size.
694 if ((s.sidebandStream != nullptr) ||
695 (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
696 return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s));
697 }
698
699 if (mBufferInfo.mBuffer == nullptr) {
700 return parentBounds;
701 }
702
703 uint32_t bufWidth = mBufferInfo.mBuffer->getBuffer()->getWidth();
704 uint32_t bufHeight = mBufferInfo.mBuffer->getBuffer()->getHeight();
705
706 // Undo any transformations on the buffer and return the result.
707 if (mBufferInfo.mTransform & ui::Transform::ROT_90) {
708 std::swap(bufWidth, bufHeight);
709 }
710
711 if (getTransformToDisplayInverse()) {
712 uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags();
713 if (invTransform & ui::Transform::ROT_90) {
714 std::swap(bufWidth, bufHeight);
715 }
716 }
717
718 return FloatRect(0, 0, bufWidth, bufHeight);
719 }
720
latchAndReleaseBuffer()721 void BufferLayer::latchAndReleaseBuffer() {
722 mRefreshPending = false;
723 if (hasReadyFrame()) {
724 bool ignored = false;
725 latchBuffer(ignored, systemTime(), 0 /* expectedPresentTime */);
726 }
727 releasePendingBuffer(systemTime());
728 }
729
getPixelFormat() const730 PixelFormat BufferLayer::getPixelFormat() const {
731 return mBufferInfo.mPixelFormat;
732 }
733
getTransformToDisplayInverse() const734 bool BufferLayer::getTransformToDisplayInverse() const {
735 return mBufferInfo.mTransformToDisplayInverse;
736 }
737
getBufferCrop() const738 Rect BufferLayer::getBufferCrop() const {
739 // this is the crop rectangle that applies to the buffer
740 // itself (as opposed to the window)
741 if (!mBufferInfo.mCrop.isEmpty()) {
742 // if the buffer crop is defined, we use that
743 return mBufferInfo.mCrop;
744 } else if (mBufferInfo.mBuffer != nullptr) {
745 // otherwise we use the whole buffer
746 return mBufferInfo.mBuffer->getBuffer()->getBounds();
747 } else {
748 // if we don't have a buffer yet, we use an empty/invalid crop
749 return Rect();
750 }
751 }
752
getBufferTransform() const753 uint32_t BufferLayer::getBufferTransform() const {
754 return mBufferInfo.mTransform;
755 }
756
getDataSpace() const757 ui::Dataspace BufferLayer::getDataSpace() const {
758 return mBufferInfo.mDataspace;
759 }
760
translateDataspace(ui::Dataspace dataspace)761 ui::Dataspace BufferLayer::translateDataspace(ui::Dataspace dataspace) {
762 ui::Dataspace updatedDataspace = dataspace;
763 // translate legacy dataspaces to modern dataspaces
764 switch (dataspace) {
765 case ui::Dataspace::SRGB:
766 updatedDataspace = ui::Dataspace::V0_SRGB;
767 break;
768 case ui::Dataspace::SRGB_LINEAR:
769 updatedDataspace = ui::Dataspace::V0_SRGB_LINEAR;
770 break;
771 case ui::Dataspace::JFIF:
772 updatedDataspace = ui::Dataspace::V0_JFIF;
773 break;
774 case ui::Dataspace::BT601_625:
775 updatedDataspace = ui::Dataspace::V0_BT601_625;
776 break;
777 case ui::Dataspace::BT601_525:
778 updatedDataspace = ui::Dataspace::V0_BT601_525;
779 break;
780 case ui::Dataspace::BT709:
781 updatedDataspace = ui::Dataspace::V0_BT709;
782 break;
783 default:
784 break;
785 }
786
787 return updatedDataspace;
788 }
789
getBuffer() const790 sp<GraphicBuffer> BufferLayer::getBuffer() const {
791 return mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getBuffer() : nullptr;
792 }
793
getDrawingTransformMatrix(bool filteringEnabled,float outMatrix[16])794 void BufferLayer::getDrawingTransformMatrix(bool filteringEnabled, float outMatrix[16]) {
795 GLConsumer::computeTransformMatrix(outMatrix,
796 mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getBuffer()
797 : nullptr,
798 mBufferInfo.mCrop, mBufferInfo.mTransform, filteringEnabled);
799 }
800
setInitialValuesForClone(const sp<Layer> & clonedFrom)801 void BufferLayer::setInitialValuesForClone(const sp<Layer>& clonedFrom) {
802 Layer::setInitialValuesForClone(clonedFrom);
803
804 sp<BufferLayer> bufferClonedFrom = static_cast<BufferLayer*>(clonedFrom.get());
805 mPremultipliedAlpha = bufferClonedFrom->mPremultipliedAlpha;
806 mPotentialCursor = bufferClonedFrom->mPotentialCursor;
807 mProtectedByApp = bufferClonedFrom->mProtectedByApp;
808
809 updateCloneBufferInfo();
810 }
811
updateCloneBufferInfo()812 void BufferLayer::updateCloneBufferInfo() {
813 if (!isClone() || !isClonedFromAlive()) {
814 return;
815 }
816
817 sp<BufferLayer> clonedFrom = static_cast<BufferLayer*>(getClonedFrom().get());
818 mBufferInfo = clonedFrom->mBufferInfo;
819 mSidebandStream = clonedFrom->mSidebandStream;
820 surfaceDamageRegion = clonedFrom->surfaceDamageRegion;
821 mCurrentFrameNumber = clonedFrom->mCurrentFrameNumber.load();
822 mPreviousFrameNumber = clonedFrom->mPreviousFrameNumber;
823
824 // After buffer info is updated, the drawingState from the real layer needs to be copied into
825 // the cloned. This is because some properties of drawingState can change when latchBuffer is
826 // called. However, copying the drawingState would also overwrite the cloned layer's relatives
827 // and touchableRegionCrop. Therefore, temporarily store the relatives so they can be set in
828 // the cloned drawingState again.
829 wp<Layer> tmpZOrderRelativeOf = mDrawingState.zOrderRelativeOf;
830 SortedVector<wp<Layer>> tmpZOrderRelatives = mDrawingState.zOrderRelatives;
831 wp<Layer> tmpTouchableRegionCrop = mDrawingState.touchableRegionCrop;
832 WindowInfo tmpInputInfo = mDrawingState.inputInfo;
833
834 cloneDrawingState(clonedFrom.get());
835
836 mDrawingState.touchableRegionCrop = tmpTouchableRegionCrop;
837 mDrawingState.zOrderRelativeOf = tmpZOrderRelativeOf;
838 mDrawingState.zOrderRelatives = tmpZOrderRelatives;
839 mDrawingState.inputInfo = tmpInputInfo;
840 }
841
setTransformHint(ui::Transform::RotationFlags displayTransformHint)842 void BufferLayer::setTransformHint(ui::Transform::RotationFlags displayTransformHint) {
843 mTransformHint = getFixedTransformHint();
844 if (mTransformHint == ui::Transform::ROT_INVALID) {
845 mTransformHint = displayTransformHint;
846 }
847 }
848
bufferNeedsFiltering() const849 bool BufferLayer::bufferNeedsFiltering() const {
850 return isFixedSize();
851 }
852
853 } // namespace android
854
855 #if defined(__gl_h_)
856 #error "don't include gl/gl.h in this file"
857 #endif
858
859 #if defined(__gl2_h_)
860 #error "don't include gl2/gl2.h in this file"
861 #endif
862
863 // TODO(b/129481165): remove the #pragma below and fix conversion issues
864 #pragma clang diagnostic pop // ignored "-Wconversion"
865