1 /*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <assert.h>
18 #include <dirent.h>
19 #include <errno.h>
20 #include <fcntl.h>
21 #include <inttypes.h>
22 #include <memory.h>
23 #include <stdint.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/capability.h>
28 #include <sys/epoll.h>
29 #include <sys/inotify.h>
30 #include <sys/ioctl.h>
31 #include <sys/limits.h>
32 #include <sys/stat.h>
33 #include <sys/sysmacros.h>
34 #include <unistd.h>
35
36 #define LOG_TAG "EventHub"
37
38 // #define LOG_NDEBUG 0
39 #include <android-base/file.h>
40 #include <android-base/stringprintf.h>
41 #include <android-base/strings.h>
42 #include <cutils/properties.h>
43 #include <input/KeyCharacterMap.h>
44 #include <input/KeyLayoutMap.h>
45 #include <input/VirtualKeyMap.h>
46 #include <openssl/sha.h>
47 #include <statslog.h>
48 #include <utils/Errors.h>
49 #include <utils/Log.h>
50 #include <utils/Timers.h>
51
52 #include <filesystem>
53 #include <regex>
54
55 #include "EventHub.h"
56
57 #define INDENT " "
58 #define INDENT2 " "
59 #define INDENT3 " "
60
61 using android::base::StringPrintf;
62 using namespace android::flag_operators;
63
64 namespace android {
65
66 static const char* DEVICE_PATH = "/dev/input";
67 // v4l2 devices go directly into /dev
68 static const char* VIDEO_DEVICE_PATH = "/dev";
69
70 static constexpr size_t OBFUSCATED_LENGTH = 8;
71
72 static constexpr int32_t FF_STRONG_MAGNITUDE_CHANNEL_IDX = 0;
73 static constexpr int32_t FF_WEAK_MAGNITUDE_CHANNEL_IDX = 1;
74
75 // Mapping for input battery class node IDs lookup.
76 // https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
77 static const std::unordered_map<std::string, InputBatteryClass> BATTERY_CLASSES =
78 {{"capacity", InputBatteryClass::CAPACITY},
79 {"capacity_level", InputBatteryClass::CAPACITY_LEVEL},
80 {"status", InputBatteryClass::STATUS}};
81
82 // Mapping for input battery class node names lookup.
83 // https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
84 static const std::unordered_map<InputBatteryClass, std::string> BATTERY_NODES =
85 {{InputBatteryClass::CAPACITY, "capacity"},
86 {InputBatteryClass::CAPACITY_LEVEL, "capacity_level"},
87 {InputBatteryClass::STATUS, "status"}};
88
89 // must be kept in sync with definitions in kernel /drivers/power/supply/power_supply_sysfs.c
90 static const std::unordered_map<std::string, int32_t> BATTERY_STATUS =
91 {{"Unknown", BATTERY_STATUS_UNKNOWN},
92 {"Charging", BATTERY_STATUS_CHARGING},
93 {"Discharging", BATTERY_STATUS_DISCHARGING},
94 {"Not charging", BATTERY_STATUS_NOT_CHARGING},
95 {"Full", BATTERY_STATUS_FULL}};
96
97 // Mapping taken from
98 // https://gitlab.freedesktop.org/upower/upower/-/blob/master/src/linux/up-device-supply.c#L484
99 static const std::unordered_map<std::string, int32_t> BATTERY_LEVEL = {{"Critical", 5},
100 {"Low", 10},
101 {"Normal", 55},
102 {"High", 70},
103 {"Full", 100},
104 {"Unknown", 50}};
105
106 // Mapping for input led class node names lookup.
107 // https://www.kernel.org/doc/html/latest/leds/leds-class.html
108 static const std::unordered_map<std::string, InputLightClass> LIGHT_CLASSES =
109 {{"red", InputLightClass::RED},
110 {"green", InputLightClass::GREEN},
111 {"blue", InputLightClass::BLUE},
112 {"global", InputLightClass::GLOBAL},
113 {"brightness", InputLightClass::BRIGHTNESS},
114 {"multi_index", InputLightClass::MULTI_INDEX},
115 {"multi_intensity", InputLightClass::MULTI_INTENSITY},
116 {"max_brightness", InputLightClass::MAX_BRIGHTNESS}};
117
118 // Mapping for input multicolor led class node names.
119 // https://www.kernel.org/doc/html/latest/leds/leds-class-multicolor.html
120 static const std::unordered_map<InputLightClass, std::string> LIGHT_NODES =
121 {{InputLightClass::BRIGHTNESS, "brightness"},
122 {InputLightClass::MULTI_INDEX, "multi_index"},
123 {InputLightClass::MULTI_INTENSITY, "multi_intensity"}};
124
125 // Mapping for light color name and the light color
126 const std::unordered_map<std::string, LightColor> LIGHT_COLORS = {{"red", LightColor::RED},
127 {"green", LightColor::GREEN},
128 {"blue", LightColor::BLUE}};
129
toString(bool value)130 static inline const char* toString(bool value) {
131 return value ? "true" : "false";
132 }
133
sha1(const std::string & in)134 static std::string sha1(const std::string& in) {
135 SHA_CTX ctx;
136 SHA1_Init(&ctx);
137 SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.c_str()), in.size());
138 u_char digest[SHA_DIGEST_LENGTH];
139 SHA1_Final(digest, &ctx);
140
141 std::string out;
142 for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
143 out += StringPrintf("%02x", digest[i]);
144 }
145 return out;
146 }
147
148 /**
149 * Return true if name matches "v4l-touch*"
150 */
isV4lTouchNode(std::string name)151 static bool isV4lTouchNode(std::string name) {
152 return name.find("v4l-touch") != std::string::npos;
153 }
154
155 /**
156 * Returns true if V4L devices should be scanned.
157 *
158 * The system property ro.input.video_enabled can be used to control whether
159 * EventHub scans and opens V4L devices. As V4L does not support multiple
160 * clients, EventHub effectively blocks access to these devices when it opens
161 * them.
162 *
163 * Setting this to "false" would prevent any video devices from being discovered and
164 * associated with input devices.
165 *
166 * This property can be used as follows:
167 * 1. To turn off features that are dependent on video device presence.
168 * 2. During testing and development, to allow other clients to read video devices
169 * directly from /dev.
170 */
isV4lScanningEnabled()171 static bool isV4lScanningEnabled() {
172 return property_get_bool("ro.input.video_enabled", true /* default_value */);
173 }
174
processEventTimestamp(const struct input_event & event)175 static nsecs_t processEventTimestamp(const struct input_event& event) {
176 // Use the time specified in the event instead of the current time
177 // so that downstream code can get more accurate estimates of
178 // event dispatch latency from the time the event is enqueued onto
179 // the evdev client buffer.
180 //
181 // The event's timestamp fortuitously uses the same monotonic clock
182 // time base as the rest of Android. The kernel event device driver
183 // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
184 // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
185 // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
186 // system call that also queries ktime_get_ts().
187
188 const nsecs_t inputEventTime = seconds_to_nanoseconds(event.time.tv_sec) +
189 microseconds_to_nanoseconds(event.time.tv_usec);
190 return inputEventTime;
191 }
192
193 /**
194 * Returns the sysfs root path of the input device
195 *
196 */
getSysfsRootPath(const char * devicePath)197 static std::optional<std::filesystem::path> getSysfsRootPath(const char* devicePath) {
198 std::error_code errorCode;
199
200 // Stat the device path to get the major and minor number of the character file
201 struct stat statbuf;
202 if (stat(devicePath, &statbuf) == -1) {
203 ALOGE("Could not stat device %s due to error: %s.", devicePath, std::strerror(errno));
204 return std::nullopt;
205 }
206
207 unsigned int major_num = major(statbuf.st_rdev);
208 unsigned int minor_num = minor(statbuf.st_rdev);
209
210 // Realpath "/sys/dev/char/{major}:{minor}" to get the sysfs path to the input event
211 auto sysfsPath = std::filesystem::path("/sys/dev/char/");
212 sysfsPath /= std::to_string(major_num) + ":" + std::to_string(minor_num);
213 sysfsPath = std::filesystem::canonical(sysfsPath, errorCode);
214
215 // Make sure nothing went wrong in call to canonical()
216 if (errorCode) {
217 ALOGW("Could not run filesystem::canonical() due to error %d : %s.", errorCode.value(),
218 errorCode.message().c_str());
219 return std::nullopt;
220 }
221
222 // Continue to go up a directory until we reach a directory named "input"
223 while (sysfsPath != "/" && sysfsPath.filename() != "input") {
224 sysfsPath = sysfsPath.parent_path();
225 }
226
227 // Then go up one more and you will be at the sysfs root of the device
228 sysfsPath = sysfsPath.parent_path();
229
230 // Make sure we didn't reach root path and that directory actually exists
231 if (sysfsPath == "/" || !std::filesystem::exists(sysfsPath, errorCode)) {
232 if (errorCode) {
233 ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
234 errorCode.message().c_str());
235 }
236
237 // Not found
238 return std::nullopt;
239 }
240
241 return sysfsPath;
242 }
243
244 /**
245 * Returns the list of files under a specified path.
246 */
allFilesInPath(const std::filesystem::path & path)247 static std::vector<std::filesystem::path> allFilesInPath(const std::filesystem::path& path) {
248 std::vector<std::filesystem::path> nodes;
249 std::error_code errorCode;
250 auto iter = std::filesystem::directory_iterator(path, errorCode);
251 while (!errorCode && iter != std::filesystem::directory_iterator()) {
252 nodes.push_back(iter->path());
253 iter++;
254 }
255 return nodes;
256 }
257
258 /**
259 * Returns the list of files under a specified directory in a sysfs path.
260 * Example:
261 * findSysfsNodes(sysfsRootPath, SysfsClass::LEDS) will return all led nodes under "leds" directory
262 * in the sysfs path.
263 */
findSysfsNodes(const std::filesystem::path & sysfsRoot,SysfsClass clazz)264 static std::vector<std::filesystem::path> findSysfsNodes(const std::filesystem::path& sysfsRoot,
265 SysfsClass clazz) {
266 std::string nodeStr = NamedEnum::string(clazz);
267 std::for_each(nodeStr.begin(), nodeStr.end(),
268 [](char& c) { c = std::tolower(static_cast<unsigned char>(c)); });
269 std::vector<std::filesystem::path> nodes;
270 for (auto path = sysfsRoot; path != "/" && nodes.empty(); path = path.parent_path()) {
271 nodes = allFilesInPath(path / nodeStr);
272 }
273 return nodes;
274 }
275
getColorIndexArray(std::filesystem::path path)276 static std::optional<std::array<LightColor, COLOR_NUM>> getColorIndexArray(
277 std::filesystem::path path) {
278 std::string indexStr;
279 if (!base::ReadFileToString(path, &indexStr)) {
280 return std::nullopt;
281 }
282
283 // Parse the multi color LED index file, refer to kernel docs
284 // leds/leds-class-multicolor.html
285 std::regex indexPattern("(red|green|blue)\\s(red|green|blue)\\s(red|green|blue)[\\n]");
286 std::smatch results;
287 std::array<LightColor, COLOR_NUM> colors;
288 if (!std::regex_match(indexStr, results, indexPattern)) {
289 return std::nullopt;
290 }
291
292 for (size_t i = 1; i < results.size(); i++) {
293 const auto it = LIGHT_COLORS.find(results[i].str());
294 if (it != LIGHT_COLORS.end()) {
295 // intensities.emplace(it->second, 0);
296 colors[i - 1] = it->second;
297 }
298 }
299 return colors;
300 }
301
302 // --- Global Functions ---
303
getAbsAxisUsage(int32_t axis,Flags<InputDeviceClass> deviceClasses)304 Flags<InputDeviceClass> getAbsAxisUsage(int32_t axis, Flags<InputDeviceClass> deviceClasses) {
305 // Touch devices get dibs on touch-related axes.
306 if (deviceClasses.test(InputDeviceClass::TOUCH)) {
307 switch (axis) {
308 case ABS_X:
309 case ABS_Y:
310 case ABS_PRESSURE:
311 case ABS_TOOL_WIDTH:
312 case ABS_DISTANCE:
313 case ABS_TILT_X:
314 case ABS_TILT_Y:
315 case ABS_MT_SLOT:
316 case ABS_MT_TOUCH_MAJOR:
317 case ABS_MT_TOUCH_MINOR:
318 case ABS_MT_WIDTH_MAJOR:
319 case ABS_MT_WIDTH_MINOR:
320 case ABS_MT_ORIENTATION:
321 case ABS_MT_POSITION_X:
322 case ABS_MT_POSITION_Y:
323 case ABS_MT_TOOL_TYPE:
324 case ABS_MT_BLOB_ID:
325 case ABS_MT_TRACKING_ID:
326 case ABS_MT_PRESSURE:
327 case ABS_MT_DISTANCE:
328 return InputDeviceClass::TOUCH;
329 }
330 }
331
332 if (deviceClasses.test(InputDeviceClass::SENSOR)) {
333 switch (axis) {
334 case ABS_X:
335 case ABS_Y:
336 case ABS_Z:
337 case ABS_RX:
338 case ABS_RY:
339 case ABS_RZ:
340 return InputDeviceClass::SENSOR;
341 }
342 }
343
344 // External stylus gets the pressure axis
345 if (deviceClasses.test(InputDeviceClass::EXTERNAL_STYLUS)) {
346 if (axis == ABS_PRESSURE) {
347 return InputDeviceClass::EXTERNAL_STYLUS;
348 }
349 }
350
351 // Joystick devices get the rest.
352 return deviceClasses & InputDeviceClass::JOYSTICK;
353 }
354
355 // --- EventHub::Device ---
356
Device(int fd,int32_t id,const std::string & path,const InputDeviceIdentifier & identifier)357 EventHub::Device::Device(int fd, int32_t id, const std::string& path,
358 const InputDeviceIdentifier& identifier)
359 : fd(fd),
360 id(id),
361 path(path),
362 identifier(identifier),
363 classes(0),
364 configuration(nullptr),
365 virtualKeyMap(nullptr),
366 ffEffectPlaying(false),
367 ffEffectId(-1),
368 associatedDevice(nullptr),
369 controllerNumber(0),
370 enabled(true),
371 isVirtual(fd < 0) {}
372
~Device()373 EventHub::Device::~Device() {
374 close();
375 }
376
close()377 void EventHub::Device::close() {
378 if (fd >= 0) {
379 ::close(fd);
380 fd = -1;
381 }
382 }
383
enable()384 status_t EventHub::Device::enable() {
385 fd = open(path.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
386 if (fd < 0) {
387 ALOGE("could not open %s, %s\n", path.c_str(), strerror(errno));
388 return -errno;
389 }
390 enabled = true;
391 return OK;
392 }
393
disable()394 status_t EventHub::Device::disable() {
395 close();
396 enabled = false;
397 return OK;
398 }
399
hasValidFd() const400 bool EventHub::Device::hasValidFd() const {
401 return !isVirtual && enabled;
402 }
403
getKeyCharacterMap() const404 const std::shared_ptr<KeyCharacterMap> EventHub::Device::getKeyCharacterMap() const {
405 return keyMap.keyCharacterMap;
406 }
407
408 template <std::size_t N>
readDeviceBitMask(unsigned long ioctlCode,BitArray<N> & bitArray)409 status_t EventHub::Device::readDeviceBitMask(unsigned long ioctlCode, BitArray<N>& bitArray) {
410 if (!hasValidFd()) {
411 return BAD_VALUE;
412 }
413 if ((_IOC_SIZE(ioctlCode) == 0)) {
414 ioctlCode |= _IOC(0, 0, 0, bitArray.bytes());
415 }
416
417 typename BitArray<N>::Buffer buffer;
418 status_t ret = ioctl(fd, ioctlCode, buffer.data());
419 bitArray.loadFromBuffer(buffer);
420 return ret;
421 }
422
configureFd()423 void EventHub::Device::configureFd() {
424 // Set fd parameters with ioctl, such as key repeat, suspend block, and clock type
425 if (classes.test(InputDeviceClass::KEYBOARD)) {
426 // Disable kernel key repeat since we handle it ourselves
427 unsigned int repeatRate[] = {0, 0};
428 if (ioctl(fd, EVIOCSREP, repeatRate)) {
429 ALOGW("Unable to disable kernel key repeat for %s: %s", path.c_str(), strerror(errno));
430 }
431 }
432
433 // Tell the kernel that we want to use the monotonic clock for reporting timestamps
434 // associated with input events. This is important because the input system
435 // uses the timestamps extensively and assumes they were recorded using the monotonic
436 // clock.
437 int clockId = CLOCK_MONOTONIC;
438 if (classes.test(InputDeviceClass::SENSOR)) {
439 // Each new sensor event should use the same time base as
440 // SystemClock.elapsedRealtimeNanos().
441 clockId = CLOCK_BOOTTIME;
442 }
443 bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
444 ALOGI("usingClockIoctl=%s", toString(usingClockIoctl));
445 }
446
hasKeycodeLocked(int keycode) const447 bool EventHub::Device::hasKeycodeLocked(int keycode) const {
448 if (!keyMap.haveKeyLayout()) {
449 return false;
450 }
451
452 std::vector<int32_t> scanCodes;
453 keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
454 const size_t N = scanCodes.size();
455 for (size_t i = 0; i < N && i <= KEY_MAX; i++) {
456 int32_t sc = scanCodes[i];
457 if (sc >= 0 && sc <= KEY_MAX && keyBitmask.test(sc)) {
458 return true;
459 }
460 }
461
462 return false;
463 }
464
loadConfigurationLocked()465 void EventHub::Device::loadConfigurationLocked() {
466 configurationFile =
467 getInputDeviceConfigurationFilePathByDeviceIdentifier(identifier,
468 InputDeviceConfigurationFileType::
469 CONFIGURATION);
470 if (configurationFile.empty()) {
471 ALOGD("No input device configuration file found for device '%s'.", identifier.name.c_str());
472 } else {
473 android::base::Result<std::unique_ptr<PropertyMap>> propertyMap =
474 PropertyMap::load(configurationFile.c_str());
475 if (!propertyMap.ok()) {
476 ALOGE("Error loading input device configuration file for device '%s'. "
477 "Using default configuration.",
478 identifier.name.c_str());
479 } else {
480 configuration = std::move(*propertyMap);
481 }
482 }
483 }
484
loadVirtualKeyMapLocked()485 bool EventHub::Device::loadVirtualKeyMapLocked() {
486 // The virtual key map is supplied by the kernel as a system board property file.
487 std::string propPath = "/sys/board_properties/virtualkeys.";
488 propPath += identifier.getCanonicalName();
489 if (access(propPath.c_str(), R_OK)) {
490 return false;
491 }
492 virtualKeyMap = VirtualKeyMap::load(propPath);
493 return virtualKeyMap != nullptr;
494 }
495
loadKeyMapLocked()496 status_t EventHub::Device::loadKeyMapLocked() {
497 return keyMap.load(identifier, configuration.get());
498 }
499
isExternalDeviceLocked()500 bool EventHub::Device::isExternalDeviceLocked() {
501 if (configuration) {
502 bool value;
503 if (configuration->tryGetProperty(String8("device.internal"), value)) {
504 return !value;
505 }
506 }
507 return identifier.bus == BUS_USB || identifier.bus == BUS_BLUETOOTH;
508 }
509
deviceHasMicLocked()510 bool EventHub::Device::deviceHasMicLocked() {
511 if (configuration) {
512 bool value;
513 if (configuration->tryGetProperty(String8("audio.mic"), value)) {
514 return value;
515 }
516 }
517 return false;
518 }
519
setLedStateLocked(int32_t led,bool on)520 void EventHub::Device::setLedStateLocked(int32_t led, bool on) {
521 int32_t sc;
522 if (hasValidFd() && mapLed(led, &sc) != NAME_NOT_FOUND) {
523 struct input_event ev;
524 ev.time.tv_sec = 0;
525 ev.time.tv_usec = 0;
526 ev.type = EV_LED;
527 ev.code = sc;
528 ev.value = on ? 1 : 0;
529
530 ssize_t nWrite;
531 do {
532 nWrite = write(fd, &ev, sizeof(struct input_event));
533 } while (nWrite == -1 && errno == EINTR);
534 }
535 }
536
setLedForControllerLocked()537 void EventHub::Device::setLedForControllerLocked() {
538 for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
539 setLedStateLocked(ALED_CONTROLLER_1 + i, controllerNumber == i + 1);
540 }
541 }
542
mapLed(int32_t led,int32_t * outScanCode) const543 status_t EventHub::Device::mapLed(int32_t led, int32_t* outScanCode) const {
544 if (!keyMap.haveKeyLayout()) {
545 return NAME_NOT_FOUND;
546 }
547
548 int32_t scanCode;
549 if (keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) {
550 if (scanCode >= 0 && scanCode <= LED_MAX && ledBitmask.test(scanCode)) {
551 *outScanCode = scanCode;
552 return NO_ERROR;
553 }
554 }
555 return NAME_NOT_FOUND;
556 }
557
558 // Check the sysfs path for any input device batteries, returns true if battery found.
configureBatteryLocked()559 bool EventHub::AssociatedDevice::configureBatteryLocked() {
560 nextBatteryId = 0;
561 // Check if device has any battery.
562 const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::POWER_SUPPLY);
563 for (const auto& nodePath : paths) {
564 RawBatteryInfo info;
565 info.id = ++nextBatteryId;
566 info.path = nodePath;
567 info.name = nodePath.filename();
568
569 // Scan the path for all the files
570 // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
571 const auto& files = allFilesInPath(nodePath);
572 for (const auto& file : files) {
573 const auto it = BATTERY_CLASSES.find(file.filename().string());
574 if (it != BATTERY_CLASSES.end()) {
575 info.flags |= it->second;
576 }
577 }
578 batteryInfos.insert_or_assign(info.id, info);
579 ALOGD("configureBatteryLocked rawBatteryId %d name %s", info.id, info.name.c_str());
580 }
581 return !batteryInfos.empty();
582 }
583
584 // Check the sysfs path for any input device lights, returns true if lights found.
configureLightsLocked()585 bool EventHub::AssociatedDevice::configureLightsLocked() {
586 nextLightId = 0;
587 // Check if device has any lights.
588 const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::LEDS);
589 for (const auto& nodePath : paths) {
590 RawLightInfo info;
591 info.id = ++nextLightId;
592 info.path = nodePath;
593 info.name = nodePath.filename();
594 info.maxBrightness = std::nullopt;
595 size_t nameStart = info.name.rfind(":");
596 if (nameStart != std::string::npos) {
597 // Trim the name to color name
598 info.name = info.name.substr(nameStart + 1);
599 // Set InputLightClass flag for colors
600 const auto it = LIGHT_CLASSES.find(info.name);
601 if (it != LIGHT_CLASSES.end()) {
602 info.flags |= it->second;
603 }
604 }
605 // Scan the path for all the files
606 // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
607 const auto& files = allFilesInPath(nodePath);
608 for (const auto& file : files) {
609 const auto it = LIGHT_CLASSES.find(file.filename().string());
610 if (it != LIGHT_CLASSES.end()) {
611 info.flags |= it->second;
612 // If the node has maximum brightness, read it
613 if (it->second == InputLightClass::MAX_BRIGHTNESS) {
614 std::string str;
615 if (base::ReadFileToString(file, &str)) {
616 info.maxBrightness = std::stoi(str);
617 }
618 }
619 }
620 }
621 lightInfos.insert_or_assign(info.id, info);
622 ALOGD("configureLightsLocked rawLightId %d name %s", info.id, info.name.c_str());
623 }
624 return !lightInfos.empty();
625 }
626
627 /**
628 * Get the capabilities for the current process.
629 * Crashes the system if unable to create / check / destroy the capabilities object.
630 */
631 class Capabilities final {
632 public:
Capabilities()633 explicit Capabilities() {
634 mCaps = cap_get_proc();
635 LOG_ALWAYS_FATAL_IF(mCaps == nullptr, "Could not get capabilities of the current process");
636 }
637
638 /**
639 * Check whether the current process has a specific capability
640 * in the set of effective capabilities.
641 * Return CAP_SET if the process has the requested capability
642 * Return CAP_CLEAR otherwise.
643 */
checkEffectiveCapability(cap_value_t capability)644 cap_flag_value_t checkEffectiveCapability(cap_value_t capability) {
645 cap_flag_value_t value;
646 const int result = cap_get_flag(mCaps, capability, CAP_EFFECTIVE, &value);
647 LOG_ALWAYS_FATAL_IF(result == -1, "Could not obtain the requested capability");
648 return value;
649 }
650
~Capabilities()651 ~Capabilities() {
652 const int result = cap_free(mCaps);
653 LOG_ALWAYS_FATAL_IF(result == -1, "Could not release the capabilities structure");
654 }
655
656 private:
657 cap_t mCaps;
658 };
659
ensureProcessCanBlockSuspend()660 static void ensureProcessCanBlockSuspend() {
661 Capabilities capabilities;
662 const bool canBlockSuspend =
663 capabilities.checkEffectiveCapability(CAP_BLOCK_SUSPEND) == CAP_SET;
664 LOG_ALWAYS_FATAL_IF(!canBlockSuspend,
665 "Input must be able to block suspend to properly process events");
666 }
667
668 // --- EventHub ---
669
670 const int EventHub::EPOLL_MAX_EVENTS;
671
EventHub(void)672 EventHub::EventHub(void)
673 : mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD),
674 mNextDeviceId(1),
675 mControllerNumbers(),
676 mNeedToSendFinishedDeviceScan(false),
677 mNeedToReopenDevices(false),
678 mNeedToScanDevices(true),
679 mPendingEventCount(0),
680 mPendingEventIndex(0),
681 mPendingINotify(false) {
682 ensureProcessCanBlockSuspend();
683
684 mEpollFd = epoll_create1(EPOLL_CLOEXEC);
685 LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));
686
687 mINotifyFd = inotify_init();
688 mInputWd = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
689 LOG_ALWAYS_FATAL_IF(mInputWd < 0, "Could not register INotify for %s: %s", DEVICE_PATH,
690 strerror(errno));
691 if (isV4lScanningEnabled()) {
692 mVideoWd = inotify_add_watch(mINotifyFd, VIDEO_DEVICE_PATH, IN_DELETE | IN_CREATE);
693 LOG_ALWAYS_FATAL_IF(mVideoWd < 0, "Could not register INotify for %s: %s",
694 VIDEO_DEVICE_PATH, strerror(errno));
695 } else {
696 mVideoWd = -1;
697 ALOGI("Video device scanning disabled");
698 }
699
700 struct epoll_event eventItem = {};
701 eventItem.events = EPOLLIN | EPOLLWAKEUP;
702 eventItem.data.fd = mINotifyFd;
703 int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
704 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno);
705
706 int wakeFds[2];
707 result = pipe(wakeFds);
708 LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno);
709
710 mWakeReadPipeFd = wakeFds[0];
711 mWakeWritePipeFd = wakeFds[1];
712
713 result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
714 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d",
715 errno);
716
717 result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
718 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d",
719 errno);
720
721 eventItem.data.fd = mWakeReadPipeFd;
722 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
723 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d",
724 errno);
725 }
726
~EventHub(void)727 EventHub::~EventHub(void) {
728 closeAllDevicesLocked();
729
730 ::close(mEpollFd);
731 ::close(mINotifyFd);
732 ::close(mWakeReadPipeFd);
733 ::close(mWakeWritePipeFd);
734 }
735
getDeviceIdentifier(int32_t deviceId) const736 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
737 std::scoped_lock _l(mLock);
738 Device* device = getDeviceLocked(deviceId);
739 return device != nullptr ? device->identifier : InputDeviceIdentifier();
740 }
741
getDeviceClasses(int32_t deviceId) const742 Flags<InputDeviceClass> EventHub::getDeviceClasses(int32_t deviceId) const {
743 std::scoped_lock _l(mLock);
744 Device* device = getDeviceLocked(deviceId);
745 return device != nullptr ? device->classes : Flags<InputDeviceClass>(0);
746 }
747
getDeviceControllerNumber(int32_t deviceId) const748 int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
749 std::scoped_lock _l(mLock);
750 Device* device = getDeviceLocked(deviceId);
751 return device != nullptr ? device->controllerNumber : 0;
752 }
753
getConfiguration(int32_t deviceId,PropertyMap * outConfiguration) const754 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
755 std::scoped_lock _l(mLock);
756 Device* device = getDeviceLocked(deviceId);
757 if (device != nullptr && device->configuration) {
758 *outConfiguration = *device->configuration;
759 } else {
760 outConfiguration->clear();
761 }
762 }
763
getAbsoluteAxisInfo(int32_t deviceId,int axis,RawAbsoluteAxisInfo * outAxisInfo) const764 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
765 RawAbsoluteAxisInfo* outAxisInfo) const {
766 outAxisInfo->clear();
767
768 if (axis >= 0 && axis <= ABS_MAX) {
769 std::scoped_lock _l(mLock);
770
771 Device* device = getDeviceLocked(deviceId);
772 if (device != nullptr && device->hasValidFd() && device->absBitmask.test(axis)) {
773 struct input_absinfo info;
774 if (ioctl(device->fd, EVIOCGABS(axis), &info)) {
775 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", axis,
776 device->identifier.name.c_str(), device->fd, errno);
777 return -errno;
778 }
779
780 if (info.minimum != info.maximum) {
781 outAxisInfo->valid = true;
782 outAxisInfo->minValue = info.minimum;
783 outAxisInfo->maxValue = info.maximum;
784 outAxisInfo->flat = info.flat;
785 outAxisInfo->fuzz = info.fuzz;
786 outAxisInfo->resolution = info.resolution;
787 }
788 return OK;
789 }
790 }
791 return -1;
792 }
793
hasRelativeAxis(int32_t deviceId,int axis) const794 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
795 if (axis >= 0 && axis <= REL_MAX) {
796 std::scoped_lock _l(mLock);
797 Device* device = getDeviceLocked(deviceId);
798 return device != nullptr ? device->relBitmask.test(axis) : false;
799 }
800 return false;
801 }
802
hasInputProperty(int32_t deviceId,int property) const803 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
804 std::scoped_lock _l(mLock);
805
806 Device* device = getDeviceLocked(deviceId);
807 return property >= 0 && property <= INPUT_PROP_MAX && device != nullptr
808 ? device->propBitmask.test(property)
809 : false;
810 }
811
hasMscEvent(int32_t deviceId,int mscEvent) const812 bool EventHub::hasMscEvent(int32_t deviceId, int mscEvent) const {
813 std::scoped_lock _l(mLock);
814
815 Device* device = getDeviceLocked(deviceId);
816 return mscEvent >= 0 && mscEvent <= MSC_MAX && device != nullptr
817 ? device->mscBitmask.test(mscEvent)
818 : false;
819 }
820
getScanCodeState(int32_t deviceId,int32_t scanCode) const821 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
822 if (scanCode >= 0 && scanCode <= KEY_MAX) {
823 std::scoped_lock _l(mLock);
824
825 Device* device = getDeviceLocked(deviceId);
826 if (device != nullptr && device->hasValidFd() && device->keyBitmask.test(scanCode)) {
827 if (device->readDeviceBitMask(EVIOCGKEY(0), device->keyState) >= 0) {
828 return device->keyState.test(scanCode) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
829 }
830 }
831 }
832 return AKEY_STATE_UNKNOWN;
833 }
834
getKeyCodeState(int32_t deviceId,int32_t keyCode) const835 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
836 std::scoped_lock _l(mLock);
837
838 Device* device = getDeviceLocked(deviceId);
839 if (device != nullptr && device->hasValidFd() && device->keyMap.haveKeyLayout()) {
840 std::vector<int32_t> scanCodes;
841 device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
842 if (scanCodes.size() != 0) {
843 if (device->readDeviceBitMask(EVIOCGKEY(0), device->keyState) >= 0) {
844 for (size_t i = 0; i < scanCodes.size(); i++) {
845 int32_t sc = scanCodes[i];
846 if (sc >= 0 && sc <= KEY_MAX && device->keyState.test(sc)) {
847 return AKEY_STATE_DOWN;
848 }
849 }
850 return AKEY_STATE_UP;
851 }
852 }
853 }
854 return AKEY_STATE_UNKNOWN;
855 }
856
getSwitchState(int32_t deviceId,int32_t sw) const857 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
858 if (sw >= 0 && sw <= SW_MAX) {
859 std::scoped_lock _l(mLock);
860
861 Device* device = getDeviceLocked(deviceId);
862 if (device != nullptr && device->hasValidFd() && device->swBitmask.test(sw)) {
863 if (device->readDeviceBitMask(EVIOCGSW(0), device->swState) >= 0) {
864 return device->swState.test(sw) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
865 }
866 }
867 }
868 return AKEY_STATE_UNKNOWN;
869 }
870
getAbsoluteAxisValue(int32_t deviceId,int32_t axis,int32_t * outValue) const871 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
872 *outValue = 0;
873
874 if (axis >= 0 && axis <= ABS_MAX) {
875 std::scoped_lock _l(mLock);
876
877 Device* device = getDeviceLocked(deviceId);
878 if (device != nullptr && device->hasValidFd() && device->absBitmask.test(axis)) {
879 struct input_absinfo info;
880 if (ioctl(device->fd, EVIOCGABS(axis), &info)) {
881 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", axis,
882 device->identifier.name.c_str(), device->fd, errno);
883 return -errno;
884 }
885
886 *outValue = info.value;
887 return OK;
888 }
889 }
890 return -1;
891 }
892
markSupportedKeyCodes(int32_t deviceId,size_t numCodes,const int32_t * keyCodes,uint8_t * outFlags) const893 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes, const int32_t* keyCodes,
894 uint8_t* outFlags) const {
895 std::scoped_lock _l(mLock);
896
897 Device* device = getDeviceLocked(deviceId);
898 if (device != nullptr && device->keyMap.haveKeyLayout()) {
899 std::vector<int32_t> scanCodes;
900 for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
901 scanCodes.clear();
902
903 status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(keyCodes[codeIndex],
904 &scanCodes);
905 if (!err) {
906 // check the possible scan codes identified by the layout map against the
907 // map of codes actually emitted by the driver
908 for (size_t sc = 0; sc < scanCodes.size(); sc++) {
909 if (device->keyBitmask.test(scanCodes[sc])) {
910 outFlags[codeIndex] = 1;
911 break;
912 }
913 }
914 }
915 }
916 return true;
917 }
918 return false;
919 }
920
mapKey(int32_t deviceId,int32_t scanCode,int32_t usageCode,int32_t metaState,int32_t * outKeycode,int32_t * outMetaState,uint32_t * outFlags) const921 status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t metaState,
922 int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const {
923 std::scoped_lock _l(mLock);
924 Device* device = getDeviceLocked(deviceId);
925 status_t status = NAME_NOT_FOUND;
926
927 if (device != nullptr) {
928 // Check the key character map first.
929 const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap();
930 if (kcm) {
931 if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
932 *outFlags = 0;
933 status = NO_ERROR;
934 }
935 }
936
937 // Check the key layout next.
938 if (status != NO_ERROR && device->keyMap.haveKeyLayout()) {
939 if (!device->keyMap.keyLayoutMap->mapKey(scanCode, usageCode, outKeycode, outFlags)) {
940 status = NO_ERROR;
941 }
942 }
943
944 if (status == NO_ERROR) {
945 if (kcm) {
946 kcm->tryRemapKey(*outKeycode, metaState, outKeycode, outMetaState);
947 } else {
948 *outMetaState = metaState;
949 }
950 }
951 }
952
953 if (status != NO_ERROR) {
954 *outKeycode = 0;
955 *outFlags = 0;
956 *outMetaState = metaState;
957 }
958
959 return status;
960 }
961
mapAxis(int32_t deviceId,int32_t scanCode,AxisInfo * outAxisInfo) const962 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
963 std::scoped_lock _l(mLock);
964 Device* device = getDeviceLocked(deviceId);
965
966 if (device != nullptr && device->keyMap.haveKeyLayout()) {
967 status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
968 if (err == NO_ERROR) {
969 return NO_ERROR;
970 }
971 }
972
973 return NAME_NOT_FOUND;
974 }
975
mapSensor(int32_t deviceId,int32_t absCode)976 base::Result<std::pair<InputDeviceSensorType, int32_t>> EventHub::mapSensor(int32_t deviceId,
977 int32_t absCode) {
978 std::scoped_lock _l(mLock);
979 Device* device = getDeviceLocked(deviceId);
980
981 if (device != nullptr && device->keyMap.haveKeyLayout()) {
982 return device->keyMap.keyLayoutMap->mapSensor(absCode);
983 }
984 return Errorf("Device not found or device has no key layout.");
985 }
986
987 // Gets the battery info map from battery ID to RawBatteryInfo of the miscellaneous device
988 // associated with the device ID. Returns an empty map if no miscellaneous device found.
getBatteryInfoLocked(int32_t deviceId) const989 const std::unordered_map<int32_t, RawBatteryInfo>& EventHub::getBatteryInfoLocked(
990 int32_t deviceId) const {
991 static const std::unordered_map<int32_t, RawBatteryInfo> EMPTY_BATTERY_INFO = {};
992 Device* device = getDeviceLocked(deviceId);
993 if (device == nullptr || !device->associatedDevice) {
994 return EMPTY_BATTERY_INFO;
995 }
996 return device->associatedDevice->batteryInfos;
997 }
998
getRawBatteryIds(int32_t deviceId)999 const std::vector<int32_t> EventHub::getRawBatteryIds(int32_t deviceId) {
1000 std::scoped_lock _l(mLock);
1001 std::vector<int32_t> batteryIds;
1002
1003 for (const auto [id, info] : getBatteryInfoLocked(deviceId)) {
1004 batteryIds.push_back(id);
1005 }
1006
1007 return batteryIds;
1008 }
1009
getRawBatteryInfo(int32_t deviceId,int32_t batteryId)1010 std::optional<RawBatteryInfo> EventHub::getRawBatteryInfo(int32_t deviceId, int32_t batteryId) {
1011 std::scoped_lock _l(mLock);
1012
1013 const auto infos = getBatteryInfoLocked(deviceId);
1014
1015 auto it = infos.find(batteryId);
1016 if (it != infos.end()) {
1017 return it->second;
1018 }
1019
1020 return std::nullopt;
1021 }
1022
1023 // Gets the light info map from light ID to RawLightInfo of the miscellaneous device associated
1024 // with the deivice ID. Returns an empty map if no miscellaneous device found.
getLightInfoLocked(int32_t deviceId) const1025 const std::unordered_map<int32_t, RawLightInfo>& EventHub::getLightInfoLocked(
1026 int32_t deviceId) const {
1027 static const std::unordered_map<int32_t, RawLightInfo> EMPTY_LIGHT_INFO = {};
1028 Device* device = getDeviceLocked(deviceId);
1029 if (device == nullptr || !device->associatedDevice) {
1030 return EMPTY_LIGHT_INFO;
1031 }
1032 return device->associatedDevice->lightInfos;
1033 }
1034
getRawLightIds(int32_t deviceId)1035 const std::vector<int32_t> EventHub::getRawLightIds(int32_t deviceId) {
1036 std::scoped_lock _l(mLock);
1037 std::vector<int32_t> lightIds;
1038
1039 for (const auto [id, info] : getLightInfoLocked(deviceId)) {
1040 lightIds.push_back(id);
1041 }
1042
1043 return lightIds;
1044 }
1045
getRawLightInfo(int32_t deviceId,int32_t lightId)1046 std::optional<RawLightInfo> EventHub::getRawLightInfo(int32_t deviceId, int32_t lightId) {
1047 std::scoped_lock _l(mLock);
1048
1049 const auto infos = getLightInfoLocked(deviceId);
1050
1051 auto it = infos.find(lightId);
1052 if (it != infos.end()) {
1053 return it->second;
1054 }
1055
1056 return std::nullopt;
1057 }
1058
getLightBrightness(int32_t deviceId,int32_t lightId)1059 std::optional<int32_t> EventHub::getLightBrightness(int32_t deviceId, int32_t lightId) {
1060 std::scoped_lock _l(mLock);
1061
1062 const auto infos = getLightInfoLocked(deviceId);
1063 auto it = infos.find(lightId);
1064 if (it == infos.end()) {
1065 return std::nullopt;
1066 }
1067 std::string buffer;
1068 if (!base::ReadFileToString(it->second.path / LIGHT_NODES.at(InputLightClass::BRIGHTNESS),
1069 &buffer)) {
1070 return std::nullopt;
1071 }
1072 return std::stoi(buffer);
1073 }
1074
getLightIntensities(int32_t deviceId,int32_t lightId)1075 std::optional<std::unordered_map<LightColor, int32_t>> EventHub::getLightIntensities(
1076 int32_t deviceId, int32_t lightId) {
1077 std::scoped_lock _l(mLock);
1078
1079 const auto infos = getLightInfoLocked(deviceId);
1080 auto lightIt = infos.find(lightId);
1081 if (lightIt == infos.end()) {
1082 return std::nullopt;
1083 }
1084
1085 auto ret =
1086 getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));
1087
1088 if (!ret.has_value()) {
1089 return std::nullopt;
1090 }
1091 std::array<LightColor, COLOR_NUM> colors = ret.value();
1092
1093 std::string intensityStr;
1094 if (!base::ReadFileToString(lightIt->second.path /
1095 LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY),
1096 &intensityStr)) {
1097 return std::nullopt;
1098 }
1099
1100 // Intensity node outputs 3 color values
1101 std::regex intensityPattern("([0-9]+)\\s([0-9]+)\\s([0-9]+)[\\n]");
1102 std::smatch results;
1103
1104 if (!std::regex_match(intensityStr, results, intensityPattern)) {
1105 return std::nullopt;
1106 }
1107 std::unordered_map<LightColor, int32_t> intensities;
1108 for (size_t i = 1; i < results.size(); i++) {
1109 int value = std::stoi(results[i].str());
1110 intensities.emplace(colors[i - 1], value);
1111 }
1112 return intensities;
1113 }
1114
setLightBrightness(int32_t deviceId,int32_t lightId,int32_t brightness)1115 void EventHub::setLightBrightness(int32_t deviceId, int32_t lightId, int32_t brightness) {
1116 std::scoped_lock _l(mLock);
1117
1118 const auto infos = getLightInfoLocked(deviceId);
1119 auto lightIt = infos.find(lightId);
1120 if (lightIt == infos.end()) {
1121 ALOGE("%s lightId %d not found ", __func__, lightId);
1122 return;
1123 }
1124
1125 if (!base::WriteStringToFile(std::to_string(brightness),
1126 lightIt->second.path /
1127 LIGHT_NODES.at(InputLightClass::BRIGHTNESS))) {
1128 ALOGE("Can not write to file, error: %s", strerror(errno));
1129 }
1130 }
1131
setLightIntensities(int32_t deviceId,int32_t lightId,std::unordered_map<LightColor,int32_t> intensities)1132 void EventHub::setLightIntensities(int32_t deviceId, int32_t lightId,
1133 std::unordered_map<LightColor, int32_t> intensities) {
1134 std::scoped_lock _l(mLock);
1135
1136 const auto infos = getLightInfoLocked(deviceId);
1137 auto lightIt = infos.find(lightId);
1138 if (lightIt == infos.end()) {
1139 ALOGE("Light Id %d does not exist.", lightId);
1140 return;
1141 }
1142
1143 auto ret =
1144 getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));
1145
1146 if (!ret.has_value()) {
1147 return;
1148 }
1149 std::array<LightColor, COLOR_NUM> colors = ret.value();
1150
1151 std::string rgbStr;
1152 for (size_t i = 0; i < COLOR_NUM; i++) {
1153 auto it = intensities.find(colors[i]);
1154 if (it != intensities.end()) {
1155 rgbStr += std::to_string(it->second);
1156 // Insert space between colors
1157 if (i < COLOR_NUM - 1) {
1158 rgbStr += " ";
1159 }
1160 }
1161 }
1162 // Append new line
1163 rgbStr += "\n";
1164
1165 if (!base::WriteStringToFile(rgbStr,
1166 lightIt->second.path /
1167 LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY))) {
1168 ALOGE("Can not write to file, error: %s", strerror(errno));
1169 }
1170 }
1171
setExcludedDevices(const std::vector<std::string> & devices)1172 void EventHub::setExcludedDevices(const std::vector<std::string>& devices) {
1173 std::scoped_lock _l(mLock);
1174
1175 mExcludedDevices = devices;
1176 }
1177
hasScanCode(int32_t deviceId,int32_t scanCode) const1178 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
1179 std::scoped_lock _l(mLock);
1180 Device* device = getDeviceLocked(deviceId);
1181 if (device != nullptr && scanCode >= 0 && scanCode <= KEY_MAX) {
1182 return device->keyBitmask.test(scanCode);
1183 }
1184 return false;
1185 }
1186
hasLed(int32_t deviceId,int32_t led) const1187 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
1188 std::scoped_lock _l(mLock);
1189 Device* device = getDeviceLocked(deviceId);
1190 int32_t sc;
1191 if (device != nullptr && device->mapLed(led, &sc) == NO_ERROR) {
1192 return device->ledBitmask.test(sc);
1193 }
1194 return false;
1195 }
1196
setLedState(int32_t deviceId,int32_t led,bool on)1197 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
1198 std::scoped_lock _l(mLock);
1199 Device* device = getDeviceLocked(deviceId);
1200 if (device != nullptr && device->hasValidFd()) {
1201 device->setLedStateLocked(led, on);
1202 }
1203 }
1204
getVirtualKeyDefinitions(int32_t deviceId,std::vector<VirtualKeyDefinition> & outVirtualKeys) const1205 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
1206 std::vector<VirtualKeyDefinition>& outVirtualKeys) const {
1207 outVirtualKeys.clear();
1208
1209 std::scoped_lock _l(mLock);
1210 Device* device = getDeviceLocked(deviceId);
1211 if (device != nullptr && device->virtualKeyMap) {
1212 const std::vector<VirtualKeyDefinition> virtualKeys =
1213 device->virtualKeyMap->getVirtualKeys();
1214 outVirtualKeys.insert(outVirtualKeys.end(), virtualKeys.begin(), virtualKeys.end());
1215 }
1216 }
1217
getKeyCharacterMap(int32_t deviceId) const1218 const std::shared_ptr<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
1219 std::scoped_lock _l(mLock);
1220 Device* device = getDeviceLocked(deviceId);
1221 if (device != nullptr) {
1222 return device->getKeyCharacterMap();
1223 }
1224 return nullptr;
1225 }
1226
setKeyboardLayoutOverlay(int32_t deviceId,std::shared_ptr<KeyCharacterMap> map)1227 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, std::shared_ptr<KeyCharacterMap> map) {
1228 std::scoped_lock _l(mLock);
1229 Device* device = getDeviceLocked(deviceId);
1230 if (device == nullptr || map == nullptr || device->keyMap.keyCharacterMap == nullptr) {
1231 return false;
1232 }
1233 device->keyMap.keyCharacterMap->combine(*map);
1234 return true;
1235 }
1236
generateDescriptor(InputDeviceIdentifier & identifier)1237 static std::string generateDescriptor(InputDeviceIdentifier& identifier) {
1238 std::string rawDescriptor;
1239 rawDescriptor += StringPrintf(":%04x:%04x:", identifier.vendor, identifier.product);
1240 // TODO add handling for USB devices to not uniqueify kbs that show up twice
1241 if (!identifier.uniqueId.empty()) {
1242 rawDescriptor += "uniqueId:";
1243 rawDescriptor += identifier.uniqueId;
1244 } else if (identifier.nonce != 0) {
1245 rawDescriptor += StringPrintf("nonce:%04x", identifier.nonce);
1246 }
1247
1248 if (identifier.vendor == 0 && identifier.product == 0) {
1249 // If we don't know the vendor and product id, then the device is probably
1250 // built-in so we need to rely on other information to uniquely identify
1251 // the input device. Usually we try to avoid relying on the device name or
1252 // location but for built-in input device, they are unlikely to ever change.
1253 if (!identifier.name.empty()) {
1254 rawDescriptor += "name:";
1255 rawDescriptor += identifier.name;
1256 } else if (!identifier.location.empty()) {
1257 rawDescriptor += "location:";
1258 rawDescriptor += identifier.location;
1259 }
1260 }
1261 identifier.descriptor = sha1(rawDescriptor);
1262 return rawDescriptor;
1263 }
1264
assignDescriptorLocked(InputDeviceIdentifier & identifier)1265 void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
1266 // Compute a device descriptor that uniquely identifies the device.
1267 // The descriptor is assumed to be a stable identifier. Its value should not
1268 // change between reboots, reconnections, firmware updates or new releases
1269 // of Android. In practice we sometimes get devices that cannot be uniquely
1270 // identified. In this case we enforce uniqueness between connected devices.
1271 // Ideally, we also want the descriptor to be short and relatively opaque.
1272
1273 identifier.nonce = 0;
1274 std::string rawDescriptor = generateDescriptor(identifier);
1275 if (identifier.uniqueId.empty()) {
1276 // If it didn't have a unique id check for conflicts and enforce
1277 // uniqueness if necessary.
1278 while (getDeviceByDescriptorLocked(identifier.descriptor) != nullptr) {
1279 identifier.nonce++;
1280 rawDescriptor = generateDescriptor(identifier);
1281 }
1282 }
1283 ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.c_str(),
1284 identifier.descriptor.c_str());
1285 }
1286
vibrate(int32_t deviceId,const VibrationElement & element)1287 void EventHub::vibrate(int32_t deviceId, const VibrationElement& element) {
1288 std::scoped_lock _l(mLock);
1289 Device* device = getDeviceLocked(deviceId);
1290 if (device != nullptr && device->hasValidFd()) {
1291 ff_effect effect;
1292 memset(&effect, 0, sizeof(effect));
1293 effect.type = FF_RUMBLE;
1294 effect.id = device->ffEffectId;
1295 // evdev FF_RUMBLE effect only supports two channels of vibration.
1296 effect.u.rumble.strong_magnitude = element.getMagnitude(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
1297 effect.u.rumble.weak_magnitude = element.getMagnitude(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
1298 effect.replay.length = element.duration.count();
1299 effect.replay.delay = 0;
1300 if (ioctl(device->fd, EVIOCSFF, &effect)) {
1301 ALOGW("Could not upload force feedback effect to device %s due to error %d.",
1302 device->identifier.name.c_str(), errno);
1303 return;
1304 }
1305 device->ffEffectId = effect.id;
1306
1307 struct input_event ev;
1308 ev.time.tv_sec = 0;
1309 ev.time.tv_usec = 0;
1310 ev.type = EV_FF;
1311 ev.code = device->ffEffectId;
1312 ev.value = 1;
1313 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
1314 ALOGW("Could not start force feedback effect on device %s due to error %d.",
1315 device->identifier.name.c_str(), errno);
1316 return;
1317 }
1318 device->ffEffectPlaying = true;
1319 }
1320 }
1321
cancelVibrate(int32_t deviceId)1322 void EventHub::cancelVibrate(int32_t deviceId) {
1323 std::scoped_lock _l(mLock);
1324 Device* device = getDeviceLocked(deviceId);
1325 if (device != nullptr && device->hasValidFd()) {
1326 if (device->ffEffectPlaying) {
1327 device->ffEffectPlaying = false;
1328
1329 struct input_event ev;
1330 ev.time.tv_sec = 0;
1331 ev.time.tv_usec = 0;
1332 ev.type = EV_FF;
1333 ev.code = device->ffEffectId;
1334 ev.value = 0;
1335 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
1336 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
1337 device->identifier.name.c_str(), errno);
1338 return;
1339 }
1340 }
1341 }
1342 }
1343
getVibratorIds(int32_t deviceId)1344 std::vector<int32_t> EventHub::getVibratorIds(int32_t deviceId) {
1345 std::scoped_lock _l(mLock);
1346 std::vector<int32_t> vibrators;
1347 Device* device = getDeviceLocked(deviceId);
1348 if (device != nullptr && device->hasValidFd() &&
1349 device->classes.test(InputDeviceClass::VIBRATOR)) {
1350 vibrators.push_back(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
1351 vibrators.push_back(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
1352 }
1353 return vibrators;
1354 }
1355
getDeviceByDescriptorLocked(const std::string & descriptor) const1356 EventHub::Device* EventHub::getDeviceByDescriptorLocked(const std::string& descriptor) const {
1357 for (const auto& [id, device] : mDevices) {
1358 if (descriptor == device->identifier.descriptor) {
1359 return device.get();
1360 }
1361 }
1362 return nullptr;
1363 }
1364
getDeviceLocked(int32_t deviceId) const1365 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
1366 if (deviceId == ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID) {
1367 deviceId = mBuiltInKeyboardId;
1368 }
1369 const auto& it = mDevices.find(deviceId);
1370 return it != mDevices.end() ? it->second.get() : nullptr;
1371 }
1372
getDeviceByPathLocked(const std::string & devicePath) const1373 EventHub::Device* EventHub::getDeviceByPathLocked(const std::string& devicePath) const {
1374 for (const auto& [id, device] : mDevices) {
1375 if (device->path == devicePath) {
1376 return device.get();
1377 }
1378 }
1379 return nullptr;
1380 }
1381
1382 /**
1383 * The file descriptor could be either input device, or a video device (associated with a
1384 * specific input device). Check both cases here, and return the device that this event
1385 * belongs to. Caller can compare the fd's once more to determine event type.
1386 * Looks through all input devices, and only attached video devices. Unattached video
1387 * devices are ignored.
1388 */
getDeviceByFdLocked(int fd) const1389 EventHub::Device* EventHub::getDeviceByFdLocked(int fd) const {
1390 for (const auto& [id, device] : mDevices) {
1391 if (device->fd == fd) {
1392 // This is an input device event
1393 return device.get();
1394 }
1395 if (device->videoDevice && device->videoDevice->getFd() == fd) {
1396 // This is a video device event
1397 return device.get();
1398 }
1399 }
1400 // We do not check mUnattachedVideoDevices here because they should not participate in epoll,
1401 // and therefore should never be looked up by fd.
1402 return nullptr;
1403 }
1404
getBatteryCapacity(int32_t deviceId,int32_t batteryId) const1405 std::optional<int32_t> EventHub::getBatteryCapacity(int32_t deviceId, int32_t batteryId) const {
1406 std::scoped_lock _l(mLock);
1407
1408 const auto infos = getBatteryInfoLocked(deviceId);
1409 auto it = infos.find(batteryId);
1410 if (it == infos.end()) {
1411 return std::nullopt;
1412 }
1413 std::string buffer;
1414
1415 // Some devices report battery capacity as an integer through the "capacity" file
1416 if (base::ReadFileToString(it->second.path / BATTERY_NODES.at(InputBatteryClass::CAPACITY),
1417 &buffer)) {
1418 return std::stoi(base::Trim(buffer));
1419 }
1420
1421 // Other devices report capacity as an enum value POWER_SUPPLY_CAPACITY_LEVEL_XXX
1422 // These values are taken from kernel source code include/linux/power_supply.h
1423 if (base::ReadFileToString(it->second.path /
1424 BATTERY_NODES.at(InputBatteryClass::CAPACITY_LEVEL),
1425 &buffer)) {
1426 // Remove any white space such as trailing new line
1427 const auto levelIt = BATTERY_LEVEL.find(base::Trim(buffer));
1428 if (levelIt != BATTERY_LEVEL.end()) {
1429 return levelIt->second;
1430 }
1431 }
1432
1433 return std::nullopt;
1434 }
1435
getBatteryStatus(int32_t deviceId,int32_t batteryId) const1436 std::optional<int32_t> EventHub::getBatteryStatus(int32_t deviceId, int32_t batteryId) const {
1437 std::scoped_lock _l(mLock);
1438 const auto infos = getBatteryInfoLocked(deviceId);
1439 auto it = infos.find(batteryId);
1440 if (it == infos.end()) {
1441 return std::nullopt;
1442 }
1443 std::string buffer;
1444
1445 if (!base::ReadFileToString(it->second.path / BATTERY_NODES.at(InputBatteryClass::STATUS),
1446 &buffer)) {
1447 ALOGE("Failed to read sysfs battery info: %s", strerror(errno));
1448 return std::nullopt;
1449 }
1450
1451 // Remove white space like trailing new line
1452 const auto statusIt = BATTERY_STATUS.find(base::Trim(buffer));
1453 if (statusIt != BATTERY_STATUS.end()) {
1454 return statusIt->second;
1455 }
1456
1457 return std::nullopt;
1458 }
1459
getEvents(int timeoutMillis,RawEvent * buffer,size_t bufferSize)1460 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
1461 ALOG_ASSERT(bufferSize >= 1);
1462
1463 std::scoped_lock _l(mLock);
1464
1465 struct input_event readBuffer[bufferSize];
1466
1467 RawEvent* event = buffer;
1468 size_t capacity = bufferSize;
1469 bool awoken = false;
1470 for (;;) {
1471 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
1472
1473 // Reopen input devices if needed.
1474 if (mNeedToReopenDevices) {
1475 mNeedToReopenDevices = false;
1476
1477 ALOGI("Reopening all input devices due to a configuration change.");
1478
1479 closeAllDevicesLocked();
1480 mNeedToScanDevices = true;
1481 break; // return to the caller before we actually rescan
1482 }
1483
1484 // Report any devices that had last been added/removed.
1485 for (auto it = mClosingDevices.begin(); it != mClosingDevices.end();) {
1486 std::unique_ptr<Device> device = std::move(*it);
1487 ALOGV("Reporting device closed: id=%d, name=%s\n", device->id, device->path.c_str());
1488 event->when = now;
1489 event->deviceId = (device->id == mBuiltInKeyboardId)
1490 ? ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID
1491 : device->id;
1492 event->type = DEVICE_REMOVED;
1493 event += 1;
1494 it = mClosingDevices.erase(it);
1495 mNeedToSendFinishedDeviceScan = true;
1496 if (--capacity == 0) {
1497 break;
1498 }
1499 }
1500
1501 if (mNeedToScanDevices) {
1502 mNeedToScanDevices = false;
1503 scanDevicesLocked();
1504 mNeedToSendFinishedDeviceScan = true;
1505 }
1506
1507 while (!mOpeningDevices.empty()) {
1508 std::unique_ptr<Device> device = std::move(*mOpeningDevices.rbegin());
1509 mOpeningDevices.pop_back();
1510 ALOGV("Reporting device opened: id=%d, name=%s\n", device->id, device->path.c_str());
1511 event->when = now;
1512 event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
1513 event->type = DEVICE_ADDED;
1514 event += 1;
1515
1516 // Try to find a matching video device by comparing device names
1517 for (auto it = mUnattachedVideoDevices.begin(); it != mUnattachedVideoDevices.end();
1518 it++) {
1519 std::unique_ptr<TouchVideoDevice>& videoDevice = *it;
1520 if (tryAddVideoDeviceLocked(*device, videoDevice)) {
1521 // videoDevice was transferred to 'device'
1522 it = mUnattachedVideoDevices.erase(it);
1523 break;
1524 }
1525 }
1526
1527 auto [dev_it, inserted] = mDevices.insert_or_assign(device->id, std::move(device));
1528 if (!inserted) {
1529 ALOGW("Device id %d exists, replaced.", device->id);
1530 }
1531 mNeedToSendFinishedDeviceScan = true;
1532 if (--capacity == 0) {
1533 break;
1534 }
1535 }
1536
1537 if (mNeedToSendFinishedDeviceScan) {
1538 mNeedToSendFinishedDeviceScan = false;
1539 event->when = now;
1540 event->type = FINISHED_DEVICE_SCAN;
1541 event += 1;
1542 if (--capacity == 0) {
1543 break;
1544 }
1545 }
1546
1547 // Grab the next input event.
1548 bool deviceChanged = false;
1549 while (mPendingEventIndex < mPendingEventCount) {
1550 const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
1551 if (eventItem.data.fd == mINotifyFd) {
1552 if (eventItem.events & EPOLLIN) {
1553 mPendingINotify = true;
1554 } else {
1555 ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
1556 }
1557 continue;
1558 }
1559
1560 if (eventItem.data.fd == mWakeReadPipeFd) {
1561 if (eventItem.events & EPOLLIN) {
1562 ALOGV("awoken after wake()");
1563 awoken = true;
1564 char wakeReadBuffer[16];
1565 ssize_t nRead;
1566 do {
1567 nRead = read(mWakeReadPipeFd, wakeReadBuffer, sizeof(wakeReadBuffer));
1568 } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(wakeReadBuffer));
1569 } else {
1570 ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
1571 eventItem.events);
1572 }
1573 continue;
1574 }
1575
1576 Device* device = getDeviceByFdLocked(eventItem.data.fd);
1577 if (device == nullptr) {
1578 ALOGE("Received unexpected epoll event 0x%08x for unknown fd %d.", eventItem.events,
1579 eventItem.data.fd);
1580 ALOG_ASSERT(!DEBUG);
1581 continue;
1582 }
1583 if (device->videoDevice && eventItem.data.fd == device->videoDevice->getFd()) {
1584 if (eventItem.events & EPOLLIN) {
1585 size_t numFrames = device->videoDevice->readAndQueueFrames();
1586 if (numFrames == 0) {
1587 ALOGE("Received epoll event for video device %s, but could not read frame",
1588 device->videoDevice->getName().c_str());
1589 }
1590 } else if (eventItem.events & EPOLLHUP) {
1591 // TODO(b/121395353) - consider adding EPOLLRDHUP
1592 ALOGI("Removing video device %s due to epoll hang-up event.",
1593 device->videoDevice->getName().c_str());
1594 unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
1595 device->videoDevice = nullptr;
1596 } else {
1597 ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
1598 device->videoDevice->getName().c_str());
1599 ALOG_ASSERT(!DEBUG);
1600 }
1601 continue;
1602 }
1603 // This must be an input event
1604 if (eventItem.events & EPOLLIN) {
1605 int32_t readSize =
1606 read(device->fd, readBuffer, sizeof(struct input_event) * capacity);
1607 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
1608 // Device was removed before INotify noticed.
1609 ALOGW("could not get event, removed? (fd: %d size: %" PRId32
1610 " bufferSize: %zu capacity: %zu errno: %d)\n",
1611 device->fd, readSize, bufferSize, capacity, errno);
1612 deviceChanged = true;
1613 closeDeviceLocked(*device);
1614 } else if (readSize < 0) {
1615 if (errno != EAGAIN && errno != EINTR) {
1616 ALOGW("could not get event (errno=%d)", errno);
1617 }
1618 } else if ((readSize % sizeof(struct input_event)) != 0) {
1619 ALOGE("could not get event (wrong size: %d)", readSize);
1620 } else {
1621 int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
1622
1623 size_t count = size_t(readSize) / sizeof(struct input_event);
1624 for (size_t i = 0; i < count; i++) {
1625 struct input_event& iev = readBuffer[i];
1626 event->when = processEventTimestamp(iev);
1627 event->readTime = systemTime(SYSTEM_TIME_MONOTONIC);
1628 event->deviceId = deviceId;
1629 event->type = iev.type;
1630 event->code = iev.code;
1631 event->value = iev.value;
1632 event += 1;
1633 capacity -= 1;
1634 }
1635 if (capacity == 0) {
1636 // The result buffer is full. Reset the pending event index
1637 // so we will try to read the device again on the next iteration.
1638 mPendingEventIndex -= 1;
1639 break;
1640 }
1641 }
1642 } else if (eventItem.events & EPOLLHUP) {
1643 ALOGI("Removing device %s due to epoll hang-up event.",
1644 device->identifier.name.c_str());
1645 deviceChanged = true;
1646 closeDeviceLocked(*device);
1647 } else {
1648 ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
1649 device->identifier.name.c_str());
1650 }
1651 }
1652
1653 // readNotify() will modify the list of devices so this must be done after
1654 // processing all other events to ensure that we read all remaining events
1655 // before closing the devices.
1656 if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
1657 mPendingINotify = false;
1658 readNotifyLocked();
1659 deviceChanged = true;
1660 }
1661
1662 // Report added or removed devices immediately.
1663 if (deviceChanged) {
1664 continue;
1665 }
1666
1667 // Return now if we have collected any events or if we were explicitly awoken.
1668 if (event != buffer || awoken) {
1669 break;
1670 }
1671
1672 // Poll for events.
1673 // When a device driver has pending (unread) events, it acquires
1674 // a kernel wake lock. Once the last pending event has been read, the device
1675 // driver will release the kernel wake lock, but the epoll will hold the wakelock,
1676 // since we are using EPOLLWAKEUP. The wakelock is released by the epoll when epoll_wait
1677 // is called again for the same fd that produced the event.
1678 // Thus the system can only sleep if there are no events pending or
1679 // currently being processed.
1680 //
1681 // The timeout is advisory only. If the device is asleep, it will not wake just to
1682 // service the timeout.
1683 mPendingEventIndex = 0;
1684
1685 mLock.unlock(); // release lock before poll
1686
1687 int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
1688
1689 mLock.lock(); // reacquire lock after poll
1690
1691 if (pollResult == 0) {
1692 // Timed out.
1693 mPendingEventCount = 0;
1694 break;
1695 }
1696
1697 if (pollResult < 0) {
1698 // An error occurred.
1699 mPendingEventCount = 0;
1700
1701 // Sleep after errors to avoid locking up the system.
1702 // Hopefully the error is transient.
1703 if (errno != EINTR) {
1704 ALOGW("poll failed (errno=%d)\n", errno);
1705 usleep(100000);
1706 }
1707 } else {
1708 // Some events occurred.
1709 mPendingEventCount = size_t(pollResult);
1710 }
1711 }
1712
1713 // All done, return the number of events we read.
1714 return event - buffer;
1715 }
1716
getVideoFrames(int32_t deviceId)1717 std::vector<TouchVideoFrame> EventHub::getVideoFrames(int32_t deviceId) {
1718 std::scoped_lock _l(mLock);
1719
1720 Device* device = getDeviceLocked(deviceId);
1721 if (device == nullptr || !device->videoDevice) {
1722 return {};
1723 }
1724 return device->videoDevice->consumeFrames();
1725 }
1726
wake()1727 void EventHub::wake() {
1728 ALOGV("wake() called");
1729
1730 ssize_t nWrite;
1731 do {
1732 nWrite = write(mWakeWritePipeFd, "W", 1);
1733 } while (nWrite == -1 && errno == EINTR);
1734
1735 if (nWrite != 1 && errno != EAGAIN) {
1736 ALOGW("Could not write wake signal: %s", strerror(errno));
1737 }
1738 }
1739
scanDevicesLocked()1740 void EventHub::scanDevicesLocked() {
1741 status_t result = scanDirLocked(DEVICE_PATH);
1742 if (result < 0) {
1743 ALOGE("scan dir failed for %s", DEVICE_PATH);
1744 }
1745 if (isV4lScanningEnabled()) {
1746 result = scanVideoDirLocked(VIDEO_DEVICE_PATH);
1747 if (result != OK) {
1748 ALOGE("scan video dir failed for %s", VIDEO_DEVICE_PATH);
1749 }
1750 }
1751 if (mDevices.find(ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID) == mDevices.end()) {
1752 createVirtualKeyboardLocked();
1753 }
1754 }
1755
1756 // ----------------------------------------------------------------------------
1757
1758 static const int32_t GAMEPAD_KEYCODES[] = {
1759 AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C, //
1760 AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z, //
1761 AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1, //
1762 AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2, //
1763 AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR, //
1764 AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE, //
1765 };
1766
registerFdForEpoll(int fd)1767 status_t EventHub::registerFdForEpoll(int fd) {
1768 // TODO(b/121395353) - consider adding EPOLLRDHUP
1769 struct epoll_event eventItem = {};
1770 eventItem.events = EPOLLIN | EPOLLWAKEUP;
1771 eventItem.data.fd = fd;
1772 if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
1773 ALOGE("Could not add fd to epoll instance: %s", strerror(errno));
1774 return -errno;
1775 }
1776 return OK;
1777 }
1778
unregisterFdFromEpoll(int fd)1779 status_t EventHub::unregisterFdFromEpoll(int fd) {
1780 if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, fd, nullptr)) {
1781 ALOGW("Could not remove fd from epoll instance: %s", strerror(errno));
1782 return -errno;
1783 }
1784 return OK;
1785 }
1786
registerDeviceForEpollLocked(Device & device)1787 status_t EventHub::registerDeviceForEpollLocked(Device& device) {
1788 status_t result = registerFdForEpoll(device.fd);
1789 if (result != OK) {
1790 ALOGE("Could not add input device fd to epoll for device %" PRId32, device.id);
1791 return result;
1792 }
1793 if (device.videoDevice) {
1794 registerVideoDeviceForEpollLocked(*device.videoDevice);
1795 }
1796 return result;
1797 }
1798
registerVideoDeviceForEpollLocked(const TouchVideoDevice & videoDevice)1799 void EventHub::registerVideoDeviceForEpollLocked(const TouchVideoDevice& videoDevice) {
1800 status_t result = registerFdForEpoll(videoDevice.getFd());
1801 if (result != OK) {
1802 ALOGE("Could not add video device %s to epoll", videoDevice.getName().c_str());
1803 }
1804 }
1805
unregisterDeviceFromEpollLocked(Device & device)1806 status_t EventHub::unregisterDeviceFromEpollLocked(Device& device) {
1807 if (device.hasValidFd()) {
1808 status_t result = unregisterFdFromEpoll(device.fd);
1809 if (result != OK) {
1810 ALOGW("Could not remove input device fd from epoll for device %" PRId32, device.id);
1811 return result;
1812 }
1813 }
1814 if (device.videoDevice) {
1815 unregisterVideoDeviceFromEpollLocked(*device.videoDevice);
1816 }
1817 return OK;
1818 }
1819
unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice & videoDevice)1820 void EventHub::unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice& videoDevice) {
1821 if (videoDevice.hasValidFd()) {
1822 status_t result = unregisterFdFromEpoll(videoDevice.getFd());
1823 if (result != OK) {
1824 ALOGW("Could not remove video device fd from epoll for device: %s",
1825 videoDevice.getName().c_str());
1826 }
1827 }
1828 }
1829
reportDeviceAddedForStatisticsLocked(const InputDeviceIdentifier & identifier,Flags<InputDeviceClass> classes)1830 void EventHub::reportDeviceAddedForStatisticsLocked(const InputDeviceIdentifier& identifier,
1831 Flags<InputDeviceClass> classes) {
1832 SHA256_CTX ctx;
1833 SHA256_Init(&ctx);
1834 SHA256_Update(&ctx, reinterpret_cast<const uint8_t*>(identifier.uniqueId.c_str()),
1835 identifier.uniqueId.size());
1836 std::array<uint8_t, SHA256_DIGEST_LENGTH> digest;
1837 SHA256_Final(digest.data(), &ctx);
1838
1839 std::string obfuscatedId;
1840 for (size_t i = 0; i < OBFUSCATED_LENGTH; i++) {
1841 obfuscatedId += StringPrintf("%02x", digest[i]);
1842 }
1843
1844 android::util::stats_write(android::util::INPUTDEVICE_REGISTERED, identifier.name.c_str(),
1845 identifier.vendor, identifier.product, identifier.version,
1846 identifier.bus, obfuscatedId.c_str(), classes.get());
1847 }
1848
openDeviceLocked(const std::string & devicePath)1849 void EventHub::openDeviceLocked(const std::string& devicePath) {
1850 // If an input device happens to register around the time when EventHub's constructor runs, it
1851 // is possible that the same input event node (for example, /dev/input/event3) will be noticed
1852 // in both 'inotify' callback and also in the 'scanDirLocked' pass. To prevent duplicate devices
1853 // from getting registered, ensure that this path is not already covered by an existing device.
1854 for (const auto& [deviceId, device] : mDevices) {
1855 if (device->path == devicePath) {
1856 return; // device was already registered
1857 }
1858 }
1859
1860 char buffer[80];
1861
1862 ALOGV("Opening device: %s", devicePath.c_str());
1863
1864 int fd = open(devicePath.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
1865 if (fd < 0) {
1866 ALOGE("could not open %s, %s\n", devicePath.c_str(), strerror(errno));
1867 return;
1868 }
1869
1870 InputDeviceIdentifier identifier;
1871
1872 // Get device name.
1873 if (ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
1874 ALOGE("Could not get device name for %s: %s", devicePath.c_str(), strerror(errno));
1875 } else {
1876 buffer[sizeof(buffer) - 1] = '\0';
1877 identifier.name = buffer;
1878 }
1879
1880 // Check to see if the device is on our excluded list
1881 for (size_t i = 0; i < mExcludedDevices.size(); i++) {
1882 const std::string& item = mExcludedDevices[i];
1883 if (identifier.name == item) {
1884 ALOGI("ignoring event id %s driver %s\n", devicePath.c_str(), item.c_str());
1885 close(fd);
1886 return;
1887 }
1888 }
1889
1890 // Get device driver version.
1891 int driverVersion;
1892 if (ioctl(fd, EVIOCGVERSION, &driverVersion)) {
1893 ALOGE("could not get driver version for %s, %s\n", devicePath.c_str(), strerror(errno));
1894 close(fd);
1895 return;
1896 }
1897
1898 // Get device identifier.
1899 struct input_id inputId;
1900 if (ioctl(fd, EVIOCGID, &inputId)) {
1901 ALOGE("could not get device input id for %s, %s\n", devicePath.c_str(), strerror(errno));
1902 close(fd);
1903 return;
1904 }
1905 identifier.bus = inputId.bustype;
1906 identifier.product = inputId.product;
1907 identifier.vendor = inputId.vendor;
1908 identifier.version = inputId.version;
1909
1910 // Get device physical location.
1911 if (ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
1912 // fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
1913 } else {
1914 buffer[sizeof(buffer) - 1] = '\0';
1915 identifier.location = buffer;
1916 }
1917
1918 // Get device unique id.
1919 if (ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
1920 // fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
1921 } else {
1922 buffer[sizeof(buffer) - 1] = '\0';
1923 identifier.uniqueId = buffer;
1924 }
1925
1926 // Fill in the descriptor.
1927 assignDescriptorLocked(identifier);
1928
1929 // Allocate device. (The device object takes ownership of the fd at this point.)
1930 int32_t deviceId = mNextDeviceId++;
1931 std::unique_ptr<Device> device = std::make_unique<Device>(fd, deviceId, devicePath, identifier);
1932
1933 ALOGV("add device %d: %s\n", deviceId, devicePath.c_str());
1934 ALOGV(" bus: %04x\n"
1935 " vendor %04x\n"
1936 " product %04x\n"
1937 " version %04x\n",
1938 identifier.bus, identifier.vendor, identifier.product, identifier.version);
1939 ALOGV(" name: \"%s\"\n", identifier.name.c_str());
1940 ALOGV(" location: \"%s\"\n", identifier.location.c_str());
1941 ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.c_str());
1942 ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.c_str());
1943 ALOGV(" driver: v%d.%d.%d\n", driverVersion >> 16, (driverVersion >> 8) & 0xff,
1944 driverVersion & 0xff);
1945
1946 // Load the configuration file for the device.
1947 device->loadConfigurationLocked();
1948
1949 bool hasBattery = false;
1950 bool hasLights = false;
1951 // Check the sysfs root path
1952 std::optional<std::filesystem::path> sysfsRootPath = getSysfsRootPath(devicePath.c_str());
1953 if (sysfsRootPath.has_value()) {
1954 std::shared_ptr<AssociatedDevice> associatedDevice;
1955 for (const auto& [id, dev] : mDevices) {
1956 if (device->identifier.descriptor == dev->identifier.descriptor &&
1957 !dev->associatedDevice) {
1958 associatedDevice = dev->associatedDevice;
1959 }
1960 }
1961 if (!associatedDevice) {
1962 associatedDevice = std::make_shared<AssociatedDevice>(sysfsRootPath.value());
1963 }
1964 hasBattery = associatedDevice->configureBatteryLocked();
1965 hasLights = associatedDevice->configureLightsLocked();
1966
1967 device->associatedDevice = associatedDevice;
1968 }
1969
1970 // Figure out the kinds of events the device reports.
1971 device->readDeviceBitMask(EVIOCGBIT(EV_KEY, 0), device->keyBitmask);
1972 device->readDeviceBitMask(EVIOCGBIT(EV_ABS, 0), device->absBitmask);
1973 device->readDeviceBitMask(EVIOCGBIT(EV_REL, 0), device->relBitmask);
1974 device->readDeviceBitMask(EVIOCGBIT(EV_SW, 0), device->swBitmask);
1975 device->readDeviceBitMask(EVIOCGBIT(EV_LED, 0), device->ledBitmask);
1976 device->readDeviceBitMask(EVIOCGBIT(EV_FF, 0), device->ffBitmask);
1977 device->readDeviceBitMask(EVIOCGBIT(EV_MSC, 0), device->mscBitmask);
1978 device->readDeviceBitMask(EVIOCGPROP(0), device->propBitmask);
1979
1980 // See if this is a keyboard. Ignore everything in the button range except for
1981 // joystick and gamepad buttons which are handled like keyboards for the most part.
1982 bool haveKeyboardKeys =
1983 device->keyBitmask.any(0, BTN_MISC) || device->keyBitmask.any(BTN_WHEEL, KEY_MAX + 1);
1984 bool haveGamepadButtons = device->keyBitmask.any(BTN_MISC, BTN_MOUSE) ||
1985 device->keyBitmask.any(BTN_JOYSTICK, BTN_DIGI);
1986 if (haveKeyboardKeys || haveGamepadButtons) {
1987 device->classes |= InputDeviceClass::KEYBOARD;
1988 }
1989
1990 // See if this is a cursor device such as a trackball or mouse.
1991 if (device->keyBitmask.test(BTN_MOUSE) && device->relBitmask.test(REL_X) &&
1992 device->relBitmask.test(REL_Y)) {
1993 device->classes |= InputDeviceClass::CURSOR;
1994 }
1995
1996 // See if this is a rotary encoder type device.
1997 String8 deviceType = String8();
1998 if (device->configuration &&
1999 device->configuration->tryGetProperty(String8("device.type"), deviceType)) {
2000 if (!deviceType.compare(String8("rotaryEncoder"))) {
2001 device->classes |= InputDeviceClass::ROTARY_ENCODER;
2002 }
2003 }
2004
2005 // See if this is a touch pad.
2006 // Is this a new modern multi-touch driver?
2007 if (device->absBitmask.test(ABS_MT_POSITION_X) && device->absBitmask.test(ABS_MT_POSITION_Y)) {
2008 // Some joysticks such as the PS3 controller report axes that conflict
2009 // with the ABS_MT range. Try to confirm that the device really is
2010 // a touch screen.
2011 if (device->keyBitmask.test(BTN_TOUCH) || !haveGamepadButtons) {
2012 device->classes |= (InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT);
2013 }
2014 // Is this an old style single-touch driver?
2015 } else if (device->keyBitmask.test(BTN_TOUCH) && device->absBitmask.test(ABS_X) &&
2016 device->absBitmask.test(ABS_Y)) {
2017 device->classes |= InputDeviceClass::TOUCH;
2018 // Is this a BT stylus?
2019 } else if ((device->absBitmask.test(ABS_PRESSURE) || device->keyBitmask.test(BTN_TOUCH)) &&
2020 !device->absBitmask.test(ABS_X) && !device->absBitmask.test(ABS_Y)) {
2021 device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
2022 // Keyboard will try to claim some of the buttons but we really want to reserve those so we
2023 // can fuse it with the touch screen data, so just take them back. Note this means an
2024 // external stylus cannot also be a keyboard device.
2025 device->classes &= ~InputDeviceClass::KEYBOARD;
2026 }
2027
2028 // See if this device is a joystick.
2029 // Assumes that joysticks always have gamepad buttons in order to distinguish them
2030 // from other devices such as accelerometers that also have absolute axes.
2031 if (haveGamepadButtons) {
2032 auto assumedClasses = device->classes | InputDeviceClass::JOYSTICK;
2033 for (int i = 0; i <= ABS_MAX; i++) {
2034 if (device->absBitmask.test(i) &&
2035 (getAbsAxisUsage(i, assumedClasses).test(InputDeviceClass::JOYSTICK))) {
2036 device->classes = assumedClasses;
2037 break;
2038 }
2039 }
2040 }
2041
2042 // Check whether this device is an accelerometer.
2043 if (device->propBitmask.test(INPUT_PROP_ACCELEROMETER)) {
2044 device->classes |= InputDeviceClass::SENSOR;
2045 }
2046
2047 // Check whether this device has switches.
2048 for (int i = 0; i <= SW_MAX; i++) {
2049 if (device->swBitmask.test(i)) {
2050 device->classes |= InputDeviceClass::SWITCH;
2051 break;
2052 }
2053 }
2054
2055 // Check whether this device supports the vibrator.
2056 if (device->ffBitmask.test(FF_RUMBLE)) {
2057 device->classes |= InputDeviceClass::VIBRATOR;
2058 }
2059
2060 // Configure virtual keys.
2061 if ((device->classes.test(InputDeviceClass::TOUCH))) {
2062 // Load the virtual keys for the touch screen, if any.
2063 // We do this now so that we can make sure to load the keymap if necessary.
2064 bool success = device->loadVirtualKeyMapLocked();
2065 if (success) {
2066 device->classes |= InputDeviceClass::KEYBOARD;
2067 }
2068 }
2069
2070 // Load the key map.
2071 // We need to do this for joysticks too because the key layout may specify axes, and for
2072 // sensor as well because the key layout may specify the axes to sensor data mapping.
2073 status_t keyMapStatus = NAME_NOT_FOUND;
2074 if (device->classes.any(InputDeviceClass::KEYBOARD | InputDeviceClass::JOYSTICK |
2075 InputDeviceClass::SENSOR)) {
2076 // Load the keymap for the device.
2077 keyMapStatus = device->loadKeyMapLocked();
2078 }
2079
2080 // Configure the keyboard, gamepad or virtual keyboard.
2081 if (device->classes.test(InputDeviceClass::KEYBOARD)) {
2082 // Register the keyboard as a built-in keyboard if it is eligible.
2083 if (!keyMapStatus && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD &&
2084 isEligibleBuiltInKeyboard(device->identifier, device->configuration.get(),
2085 &device->keyMap)) {
2086 mBuiltInKeyboardId = device->id;
2087 }
2088
2089 // 'Q' key support = cheap test of whether this is an alpha-capable kbd
2090 if (device->hasKeycodeLocked(AKEYCODE_Q)) {
2091 device->classes |= InputDeviceClass::ALPHAKEY;
2092 }
2093
2094 // See if this device has a DPAD.
2095 if (device->hasKeycodeLocked(AKEYCODE_DPAD_UP) &&
2096 device->hasKeycodeLocked(AKEYCODE_DPAD_DOWN) &&
2097 device->hasKeycodeLocked(AKEYCODE_DPAD_LEFT) &&
2098 device->hasKeycodeLocked(AKEYCODE_DPAD_RIGHT) &&
2099 device->hasKeycodeLocked(AKEYCODE_DPAD_CENTER)) {
2100 device->classes |= InputDeviceClass::DPAD;
2101 }
2102
2103 // See if this device has a gamepad.
2104 for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES) / sizeof(GAMEPAD_KEYCODES[0]); i++) {
2105 if (device->hasKeycodeLocked(GAMEPAD_KEYCODES[i])) {
2106 device->classes |= InputDeviceClass::GAMEPAD;
2107 break;
2108 }
2109 }
2110 }
2111
2112 // If the device isn't recognized as something we handle, don't monitor it.
2113 if (device->classes == Flags<InputDeviceClass>(0)) {
2114 ALOGV("Dropping device: id=%d, path='%s', name='%s'", deviceId, devicePath.c_str(),
2115 device->identifier.name.c_str());
2116 return;
2117 }
2118
2119 // Classify InputDeviceClass::BATTERY.
2120 if (hasBattery) {
2121 device->classes |= InputDeviceClass::BATTERY;
2122 }
2123
2124 // Classify InputDeviceClass::LIGHT.
2125 if (hasLights) {
2126 device->classes |= InputDeviceClass::LIGHT;
2127 }
2128
2129 // Determine whether the device has a mic.
2130 if (device->deviceHasMicLocked()) {
2131 device->classes |= InputDeviceClass::MIC;
2132 }
2133
2134 // Determine whether the device is external or internal.
2135 if (device->isExternalDeviceLocked()) {
2136 device->classes |= InputDeviceClass::EXTERNAL;
2137 }
2138
2139 if (device->classes.any(InputDeviceClass::JOYSTICK | InputDeviceClass::DPAD) &&
2140 device->classes.test(InputDeviceClass::GAMEPAD)) {
2141 device->controllerNumber = getNextControllerNumberLocked(device->identifier.name);
2142 device->setLedForControllerLocked();
2143 }
2144
2145 if (registerDeviceForEpollLocked(*device) != OK) {
2146 return;
2147 }
2148
2149 device->configureFd();
2150
2151 ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=%s, "
2152 "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, ",
2153 deviceId, fd, devicePath.c_str(), device->identifier.name.c_str(),
2154 device->classes.string().c_str(), device->configurationFile.c_str(),
2155 device->keyMap.keyLayoutFile.c_str(), device->keyMap.keyCharacterMapFile.c_str(),
2156 toString(mBuiltInKeyboardId == deviceId));
2157
2158 addDeviceLocked(std::move(device));
2159 }
2160
openVideoDeviceLocked(const std::string & devicePath)2161 void EventHub::openVideoDeviceLocked(const std::string& devicePath) {
2162 std::unique_ptr<TouchVideoDevice> videoDevice = TouchVideoDevice::create(devicePath);
2163 if (!videoDevice) {
2164 ALOGE("Could not create touch video device for %s. Ignoring", devicePath.c_str());
2165 return;
2166 }
2167 // Transfer ownership of this video device to a matching input device
2168 for (const auto& [id, device] : mDevices) {
2169 if (tryAddVideoDeviceLocked(*device, videoDevice)) {
2170 return; // 'device' now owns 'videoDevice'
2171 }
2172 }
2173
2174 // Couldn't find a matching input device, so just add it to a temporary holding queue.
2175 // A matching input device may appear later.
2176 ALOGI("Adding video device %s to list of unattached video devices",
2177 videoDevice->getName().c_str());
2178 mUnattachedVideoDevices.push_back(std::move(videoDevice));
2179 }
2180
tryAddVideoDeviceLocked(EventHub::Device & device,std::unique_ptr<TouchVideoDevice> & videoDevice)2181 bool EventHub::tryAddVideoDeviceLocked(EventHub::Device& device,
2182 std::unique_ptr<TouchVideoDevice>& videoDevice) {
2183 if (videoDevice->getName() != device.identifier.name) {
2184 return false;
2185 }
2186 device.videoDevice = std::move(videoDevice);
2187 if (device.enabled) {
2188 registerVideoDeviceForEpollLocked(*device.videoDevice);
2189 }
2190 return true;
2191 }
2192
isDeviceEnabled(int32_t deviceId)2193 bool EventHub::isDeviceEnabled(int32_t deviceId) {
2194 std::scoped_lock _l(mLock);
2195 Device* device = getDeviceLocked(deviceId);
2196 if (device == nullptr) {
2197 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2198 return false;
2199 }
2200 return device->enabled;
2201 }
2202
enableDevice(int32_t deviceId)2203 status_t EventHub::enableDevice(int32_t deviceId) {
2204 std::scoped_lock _l(mLock);
2205 Device* device = getDeviceLocked(deviceId);
2206 if (device == nullptr) {
2207 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2208 return BAD_VALUE;
2209 }
2210 if (device->enabled) {
2211 ALOGW("Duplicate call to %s, input device %" PRId32 " already enabled", __func__, deviceId);
2212 return OK;
2213 }
2214 status_t result = device->enable();
2215 if (result != OK) {
2216 ALOGE("Failed to enable device %" PRId32, deviceId);
2217 return result;
2218 }
2219
2220 device->configureFd();
2221
2222 return registerDeviceForEpollLocked(*device);
2223 }
2224
disableDevice(int32_t deviceId)2225 status_t EventHub::disableDevice(int32_t deviceId) {
2226 std::scoped_lock _l(mLock);
2227 Device* device = getDeviceLocked(deviceId);
2228 if (device == nullptr) {
2229 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2230 return BAD_VALUE;
2231 }
2232 if (!device->enabled) {
2233 ALOGW("Duplicate call to %s, input device already disabled", __func__);
2234 return OK;
2235 }
2236 unregisterDeviceFromEpollLocked(*device);
2237 return device->disable();
2238 }
2239
createVirtualKeyboardLocked()2240 void EventHub::createVirtualKeyboardLocked() {
2241 InputDeviceIdentifier identifier;
2242 identifier.name = "Virtual";
2243 identifier.uniqueId = "<virtual>";
2244 assignDescriptorLocked(identifier);
2245
2246 std::unique_ptr<Device> device =
2247 std::make_unique<Device>(-1, ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID, "<virtual>",
2248 identifier);
2249 device->classes = InputDeviceClass::KEYBOARD | InputDeviceClass::ALPHAKEY |
2250 InputDeviceClass::DPAD | InputDeviceClass::VIRTUAL;
2251 device->loadKeyMapLocked();
2252 addDeviceLocked(std::move(device));
2253 }
2254
addDeviceLocked(std::unique_ptr<Device> device)2255 void EventHub::addDeviceLocked(std::unique_ptr<Device> device) {
2256 reportDeviceAddedForStatisticsLocked(device->identifier, device->classes);
2257 mOpeningDevices.push_back(std::move(device));
2258 }
2259
getNextControllerNumberLocked(const std::string & name)2260 int32_t EventHub::getNextControllerNumberLocked(const std::string& name) {
2261 if (mControllerNumbers.isFull()) {
2262 ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
2263 name.c_str());
2264 return 0;
2265 }
2266 // Since the controller number 0 is reserved for non-controllers, translate all numbers up by
2267 // one
2268 return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
2269 }
2270
releaseControllerNumberLocked(int32_t num)2271 void EventHub::releaseControllerNumberLocked(int32_t num) {
2272 if (num > 0) {
2273 mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
2274 }
2275 }
2276
closeDeviceByPathLocked(const std::string & devicePath)2277 void EventHub::closeDeviceByPathLocked(const std::string& devicePath) {
2278 Device* device = getDeviceByPathLocked(devicePath);
2279 if (device != nullptr) {
2280 closeDeviceLocked(*device);
2281 return;
2282 }
2283 ALOGV("Remove device: %s not found, device may already have been removed.", devicePath.c_str());
2284 }
2285
2286 /**
2287 * Find the video device by filename, and close it.
2288 * The video device is closed by path during an inotify event, where we don't have the
2289 * additional context about the video device fd, or the associated input device.
2290 */
closeVideoDeviceByPathLocked(const std::string & devicePath)2291 void EventHub::closeVideoDeviceByPathLocked(const std::string& devicePath) {
2292 // A video device may be owned by an existing input device, or it may be stored in
2293 // the mUnattachedVideoDevices queue. Check both locations.
2294 for (const auto& [id, device] : mDevices) {
2295 if (device->videoDevice && device->videoDevice->getPath() == devicePath) {
2296 unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
2297 device->videoDevice = nullptr;
2298 return;
2299 }
2300 }
2301 mUnattachedVideoDevices
2302 .erase(std::remove_if(mUnattachedVideoDevices.begin(), mUnattachedVideoDevices.end(),
2303 [&devicePath](
2304 const std::unique_ptr<TouchVideoDevice>& videoDevice) {
2305 return videoDevice->getPath() == devicePath;
2306 }),
2307 mUnattachedVideoDevices.end());
2308 }
2309
closeAllDevicesLocked()2310 void EventHub::closeAllDevicesLocked() {
2311 mUnattachedVideoDevices.clear();
2312 while (!mDevices.empty()) {
2313 closeDeviceLocked(*(mDevices.begin()->second));
2314 }
2315 }
2316
closeDeviceLocked(Device & device)2317 void EventHub::closeDeviceLocked(Device& device) {
2318 ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=%s", device.path.c_str(),
2319 device.identifier.name.c_str(), device.id, device.fd, device.classes.string().c_str());
2320
2321 if (device.id == mBuiltInKeyboardId) {
2322 ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
2323 device.path.c_str(), mBuiltInKeyboardId);
2324 mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
2325 }
2326
2327 unregisterDeviceFromEpollLocked(device);
2328 if (device.videoDevice) {
2329 // This must be done after the video device is removed from epoll
2330 mUnattachedVideoDevices.push_back(std::move(device.videoDevice));
2331 }
2332
2333 releaseControllerNumberLocked(device.controllerNumber);
2334 device.controllerNumber = 0;
2335 device.close();
2336 mClosingDevices.push_back(std::move(mDevices[device.id]));
2337
2338 mDevices.erase(device.id);
2339 }
2340
readNotifyLocked()2341 status_t EventHub::readNotifyLocked() {
2342 int res;
2343 char event_buf[512];
2344 int event_size;
2345 int event_pos = 0;
2346 struct inotify_event* event;
2347
2348 ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
2349 res = read(mINotifyFd, event_buf, sizeof(event_buf));
2350 if (res < (int)sizeof(*event)) {
2351 if (errno == EINTR) return 0;
2352 ALOGW("could not get event, %s\n", strerror(errno));
2353 return -1;
2354 }
2355
2356 while (res >= (int)sizeof(*event)) {
2357 event = (struct inotify_event*)(event_buf + event_pos);
2358 if (event->len) {
2359 if (event->wd == mInputWd) {
2360 std::string filename = std::string(DEVICE_PATH) + "/" + event->name;
2361 if (event->mask & IN_CREATE) {
2362 openDeviceLocked(filename);
2363 } else {
2364 ALOGI("Removing device '%s' due to inotify event\n", filename.c_str());
2365 closeDeviceByPathLocked(filename);
2366 }
2367 } else if (event->wd == mVideoWd) {
2368 if (isV4lTouchNode(event->name)) {
2369 std::string filename = std::string(VIDEO_DEVICE_PATH) + "/" + event->name;
2370 if (event->mask & IN_CREATE) {
2371 openVideoDeviceLocked(filename);
2372 } else {
2373 ALOGI("Removing video device '%s' due to inotify event", filename.c_str());
2374 closeVideoDeviceByPathLocked(filename);
2375 }
2376 }
2377 } else {
2378 LOG_ALWAYS_FATAL("Unexpected inotify event, wd = %i", event->wd);
2379 }
2380 }
2381 event_size = sizeof(*event) + event->len;
2382 res -= event_size;
2383 event_pos += event_size;
2384 }
2385 return 0;
2386 }
2387
scanDirLocked(const std::string & dirname)2388 status_t EventHub::scanDirLocked(const std::string& dirname) {
2389 for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
2390 openDeviceLocked(entry.path());
2391 }
2392 return 0;
2393 }
2394
2395 /**
2396 * Look for all dirname/v4l-touch* devices, and open them.
2397 */
scanVideoDirLocked(const std::string & dirname)2398 status_t EventHub::scanVideoDirLocked(const std::string& dirname) {
2399 for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
2400 if (isV4lTouchNode(entry.path())) {
2401 ALOGI("Found touch video device %s", entry.path().c_str());
2402 openVideoDeviceLocked(entry.path());
2403 }
2404 }
2405 return OK;
2406 }
2407
requestReopenDevices()2408 void EventHub::requestReopenDevices() {
2409 ALOGV("requestReopenDevices() called");
2410
2411 std::scoped_lock _l(mLock);
2412 mNeedToReopenDevices = true;
2413 }
2414
dump(std::string & dump)2415 void EventHub::dump(std::string& dump) {
2416 dump += "Event Hub State:\n";
2417
2418 { // acquire lock
2419 std::scoped_lock _l(mLock);
2420
2421 dump += StringPrintf(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
2422
2423 dump += INDENT "Devices:\n";
2424
2425 for (const auto& [id, device] : mDevices) {
2426 if (mBuiltInKeyboardId == device->id) {
2427 dump += StringPrintf(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
2428 device->id, device->identifier.name.c_str());
2429 } else {
2430 dump += StringPrintf(INDENT2 "%d: %s\n", device->id,
2431 device->identifier.name.c_str());
2432 }
2433 dump += StringPrintf(INDENT3 "Classes: %s\n", device->classes.string().c_str());
2434 dump += StringPrintf(INDENT3 "Path: %s\n", device->path.c_str());
2435 dump += StringPrintf(INDENT3 "Enabled: %s\n", toString(device->enabled));
2436 dump += StringPrintf(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.c_str());
2437 dump += StringPrintf(INDENT3 "Location: %s\n", device->identifier.location.c_str());
2438 dump += StringPrintf(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
2439 dump += StringPrintf(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.c_str());
2440 dump += StringPrintf(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
2441 "product=0x%04x, version=0x%04x\n",
2442 device->identifier.bus, device->identifier.vendor,
2443 device->identifier.product, device->identifier.version);
2444 dump += StringPrintf(INDENT3 "KeyLayoutFile: %s\n",
2445 device->keyMap.keyLayoutFile.c_str());
2446 dump += StringPrintf(INDENT3 "KeyCharacterMapFile: %s\n",
2447 device->keyMap.keyCharacterMapFile.c_str());
2448 dump += StringPrintf(INDENT3 "ConfigurationFile: %s\n",
2449 device->configurationFile.c_str());
2450 dump += INDENT3 "VideoDevice: ";
2451 if (device->videoDevice) {
2452 dump += device->videoDevice->dump() + "\n";
2453 } else {
2454 dump += "<none>\n";
2455 }
2456 }
2457
2458 dump += INDENT "Unattached video devices:\n";
2459 for (const std::unique_ptr<TouchVideoDevice>& videoDevice : mUnattachedVideoDevices) {
2460 dump += INDENT2 + videoDevice->dump() + "\n";
2461 }
2462 if (mUnattachedVideoDevices.empty()) {
2463 dump += INDENT2 "<none>\n";
2464 }
2465 } // release lock
2466 }
2467
monitor()2468 void EventHub::monitor() {
2469 // Acquire and release the lock to ensure that the event hub has not deadlocked.
2470 std::unique_lock<std::mutex> lock(mLock);
2471 }
2472
2473 }; // namespace android
2474