1 /*
2  * Copyright (C) 2021 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <media/SensorPoseProvider.h>
18 
19 #define LOG_TAG "SensorPoseProvider"
20 
21 #include <inttypes.h>
22 
23 #include <future>
24 #include <map>
25 #include <thread>
26 
27 #include <android-base/thread_annotations.h>
28 #include <log/log_main.h>
29 #include <sensor/Sensor.h>
30 #include <sensor/SensorEventQueue.h>
31 #include <sensor/SensorManager.h>
32 #include <utils/Looper.h>
33 
34 #include "QuaternionUtil.h"
35 
36 namespace android {
37 namespace media {
38 namespace {
39 
40 // Identifier to use for our event queue on the loop.
41 // The number 19 is arbitrary, only useful if using multiple objects on the same looper.
42 constexpr int kIdent = 19;
43 
ALooper_to_Looper(ALooper * alooper)44 static inline Looper* ALooper_to_Looper(ALooper* alooper) {
45     return reinterpret_cast<Looper*>(alooper);
46 }
47 
Looper_to_ALooper(Looper * looper)48 static inline ALooper* Looper_to_ALooper(Looper* looper) {
49     return reinterpret_cast<ALooper*>(looper);
50 }
51 
52 /**
53  * RAII-wrapper around SensorEventQueue, which unregisters it on destruction.
54  */
55 class EventQueueGuard {
56   public:
EventQueueGuard(const sp<SensorEventQueue> & queue,Looper * looper)57     EventQueueGuard(const sp<SensorEventQueue>& queue, Looper* looper) : mQueue(queue) {
58         mQueue->looper = Looper_to_ALooper(looper);
59         mQueue->requestAdditionalInfo = false;
60         looper->addFd(mQueue->getFd(), kIdent, ALOOPER_EVENT_INPUT, nullptr, nullptr);
61     }
62 
~EventQueueGuard()63     ~EventQueueGuard() {
64         if (mQueue) {
65             ALooper_to_Looper(mQueue->looper)->removeFd(mQueue->getFd());
66         }
67     }
68 
69     EventQueueGuard(const EventQueueGuard&) = delete;
70     EventQueueGuard& operator=(const EventQueueGuard&) = delete;
71 
get() const72     [[nodiscard]] SensorEventQueue* get() const { return mQueue.get(); }
73 
74   private:
75     sp<SensorEventQueue> mQueue;
76 };
77 
78 /**
79  * RAII-wrapper around an enabled sensor, which disables it upon destruction.
80  */
81 class SensorEnableGuard {
82   public:
SensorEnableGuard(const sp<SensorEventQueue> & queue,int32_t sensor)83     SensorEnableGuard(const sp<SensorEventQueue>& queue, int32_t sensor)
84         : mQueue(queue), mSensor(sensor) {}
85 
~SensorEnableGuard()86     ~SensorEnableGuard() {
87         if (mSensor != SensorPoseProvider::INVALID_HANDLE) {
88             int ret = mQueue->disableSensor(mSensor);
89             if (ret) {
90                 ALOGE("Failed to disable sensor: %s", strerror(ret));
91             }
92         }
93     }
94 
95     SensorEnableGuard(const SensorEnableGuard&) = delete;
96     SensorEnableGuard& operator=(const SensorEnableGuard&) = delete;
97 
98     // Enable moving.
SensorEnableGuard(SensorEnableGuard && other)99     SensorEnableGuard(SensorEnableGuard&& other) : mQueue(other.mQueue), mSensor(other.mSensor) {
100         other.mSensor = SensorPoseProvider::INVALID_HANDLE;
101     }
102 
103   private:
104     sp<SensorEventQueue> const mQueue;
105     int32_t mSensor;
106 };
107 
108 /**
109  * Streams the required events to a PoseListener, based on events originating from the Sensor stack.
110  */
111 class SensorPoseProviderImpl : public SensorPoseProvider {
112   public:
create(const char * packageName,Listener * listener)113     static std::unique_ptr<SensorPoseProvider> create(const char* packageName, Listener* listener) {
114         std::unique_ptr<SensorPoseProviderImpl> result(
115                 new SensorPoseProviderImpl(packageName, listener));
116         return result->waitInitFinished() ? std::move(result) : nullptr;
117     }
118 
~SensorPoseProviderImpl()119     ~SensorPoseProviderImpl() override {
120         // Disable all active sensors.
121         mEnabledSensors.clear();
122         mLooper->wake();
123         mThread.join();
124     }
125 
startSensor(int32_t sensor,std::chrono::microseconds samplingPeriod)126     bool startSensor(int32_t sensor, std::chrono::microseconds samplingPeriod) override {
127         // Figure out the sensor's data format.
128         DataFormat format = getSensorFormat(sensor);
129         if (format == DataFormat::kUnknown) {
130             ALOGE("Unknown format for sensor %" PRId32, sensor);
131             return false;
132         }
133 
134         {
135             std::lock_guard lock(mMutex);
136             mEnabledSensorFormats.emplace(sensor, format);
137         }
138 
139         // Enable the sensor.
140         if (mQueue->enableSensor(sensor, samplingPeriod.count(), 0, 0)) {
141             ALOGE("Failed to enable sensor");
142             std::lock_guard lock(mMutex);
143             mEnabledSensorFormats.erase(sensor);
144             return false;
145         }
146 
147         mEnabledSensors.emplace(sensor, SensorEnableGuard(mQueue.get(), sensor));
148         return true;
149     }
150 
stopSensor(int handle)151     void stopSensor(int handle) override {
152         mEnabledSensors.erase(handle);
153         std::lock_guard lock(mMutex);
154         mEnabledSensorFormats.erase(handle);
155     }
156 
157   private:
158     enum DataFormat {
159         kUnknown,
160         kQuaternion,
161         kRotationVectorsAndFlags,
162     };
163 
164     struct PoseEvent {
165         Pose3f pose;
166         std::optional<Twist3f> twist;
167         bool isNewReference;
168     };
169 
170     sp<Looper> mLooper;
171     Listener* const mListener;
172     SensorManager* const mSensorManager;
173     std::thread mThread;
174     std::mutex mMutex;
175     std::map<int32_t, SensorEnableGuard> mEnabledSensors;
176     std::map<int32_t, DataFormat> mEnabledSensorFormats GUARDED_BY(mMutex);
177     sp<SensorEventQueue> mQueue;
178 
179     // We must do some of the initialization operations on the worker thread, because the API relies
180     // on the thread-local looper. In addition, as a matter of convenience, we store some of the
181     // state on the stack.
182     // For that reason, we use a two-step initialization approach, where the ctor mostly just starts
183     // the worker thread and that thread would notify, via the promise below whenever initialization
184     // is finished, and whether it was successful.
185     std::promise<bool> mInitPromise;
186 
SensorPoseProviderImpl(const char * packageName,Listener * listener)187     SensorPoseProviderImpl(const char* packageName, Listener* listener)
188         : mListener(listener),
189           mSensorManager(&SensorManager::getInstanceForPackage(String16(packageName))),
190           mThread([this] { threadFunc(); }) {}
191 
initFinished(bool success)192     void initFinished(bool success) { mInitPromise.set_value(success); }
193 
waitInitFinished()194     bool waitInitFinished() { return mInitPromise.get_future().get(); }
195 
threadFunc()196     void threadFunc() {
197         // Obtain looper.
198         mLooper = Looper::prepare(ALOOPER_PREPARE_ALLOW_NON_CALLBACKS);
199 
200         // Create event queue.
201         mQueue = mSensorManager->createEventQueue();
202 
203         if (mQueue == nullptr) {
204             ALOGE("Failed to create a sensor event queue");
205             initFinished(false);
206             return;
207         }
208 
209         EventQueueGuard eventQueueGuard(mQueue, mLooper.get());
210 
211         initFinished(true);
212 
213         while (true) {
214             int ret = mLooper->pollOnce(-1 /* no timeout */, nullptr, nullptr, nullptr);
215 
216             switch (ret) {
217                 case ALOOPER_POLL_WAKE:
218                     // Normal way to exit.
219                     return;
220 
221                 case kIdent:
222                     // Possible events on our queue.
223                     break;
224 
225                 default:
226                     ALOGE("Unexpected status out of Looper::pollOnce: %d", ret);
227             }
228 
229             // Process an event.
230             ASensorEvent event;
231             ssize_t actual = mQueue->read(&event, 1);
232             if (actual > 0) {
233                 mQueue->sendAck(&event, actual);
234             }
235             ssize_t size = mQueue->filterEvents(&event, actual);
236 
237             if (size < 0 || size > 1) {
238                 ALOGE("Unexpected return value from SensorEventQueue::filterEvents: %zd", size);
239                 break;
240             }
241             if (size == 0) {
242                 // No events.
243                 continue;
244             }
245 
246             handleEvent(event);
247         }
248     }
249 
handleEvent(const ASensorEvent & event)250     void handleEvent(const ASensorEvent& event) {
251         DataFormat format;
252         {
253             std::lock_guard lock(mMutex);
254             auto iter = mEnabledSensorFormats.find(event.sensor);
255             if (iter == mEnabledSensorFormats.end()) {
256                 // This can happen if we have any pending events shortly after stopping.
257                 return;
258             }
259             format = iter->second;
260         }
261         auto value = parseEvent(event, format);
262         mListener->onPose(event.timestamp, event.sensor, value.pose, value.twist,
263                           value.isNewReference);
264     }
265 
getSensorFormat(int32_t handle)266     DataFormat getSensorFormat(int32_t handle) {
267         std::optional<const Sensor> sensor = getSensorByHandle(handle);
268         if (!sensor) {
269             ALOGE("Sensor not found: %d", handle);
270             return DataFormat::kUnknown;
271         }
272         if (sensor->getType() == ASENSOR_TYPE_ROTATION_VECTOR ||
273             sensor->getType() == ASENSOR_TYPE_GAME_ROTATION_VECTOR) {
274             return DataFormat::kQuaternion;
275         }
276 
277         if (sensor->getStringType() == "com.google.hardware.sensor.hid_dynamic.headtracker") {
278             return DataFormat::kRotationVectorsAndFlags;
279         }
280 
281         return DataFormat::kUnknown;
282     }
283 
getSensorByHandle(int32_t handle)284     std::optional<const Sensor> getSensorByHandle(int32_t handle) {
285         const Sensor* const* list;
286         ssize_t size;
287 
288         // Search static sensor list.
289         size = mSensorManager->getSensorList(&list);
290         if (size < 0) {
291             ALOGE("getSensorList failed with error code %zd", size);
292             return std::nullopt;
293         }
294         for (size_t i = 0; i < size; ++i) {
295             if (list[i]->getHandle() == handle) {
296                 return *list[i];
297             }
298         }
299 
300         // Search dynamic sensor list.
301         Vector<Sensor> dynList;
302         size = mSensorManager->getDynamicSensorList(dynList);
303         if (size < 0) {
304             ALOGE("getDynamicSensorList failed with error code %zd", size);
305             return std::nullopt;
306         }
307         for (size_t i = 0; i < size; ++i) {
308             if (dynList[i].getHandle() == handle) {
309                 return dynList[i];
310             }
311         }
312 
313         return std::nullopt;
314     }
315 
parseEvent(const ASensorEvent & event,DataFormat format)316     static PoseEvent parseEvent(const ASensorEvent& event, DataFormat format) {
317         // TODO(ytai): Add more types.
318         switch (format) {
319             case DataFormat::kQuaternion: {
320                 Eigen::Quaternionf quat(event.data[3], event.data[0], event.data[1], event.data[2]);
321                 // Adapt to different frame convention.
322                 quat *= rotateX(-M_PI_2);
323                 return PoseEvent{Pose3f(quat), std::optional<Twist3f>(), false};
324             }
325 
326             case DataFormat::kRotationVectorsAndFlags: {
327                 // Custom sensor, assumed to contain:
328                 // 3 floats representing orientation as a rotation vector (in rad).
329                 // 3 floats representing angular velocity as a rotation vector (in rad/s).
330                 // 1 uint32_t of flags, where:
331                 // - LSb is '1' iff the given sample is the first one in a new frame of reference.
332                 // - The rest of the bits are reserved for future use.
333                 Eigen::Vector3f rotation = {event.data[0], event.data[1], event.data[2]};
334                 Eigen::Vector3f twist = {event.data[3], event.data[4], event.data[5]};
335                 Eigen::Quaternionf quat = rotationVectorToQuaternion(rotation);
336                 uint32_t flags = *reinterpret_cast<const uint32_t*>(&event.data[6]);
337                 return PoseEvent{Pose3f(quat), Twist3f(Eigen::Vector3f::Zero(), twist),
338                                  (flags & (1 << 0)) != 0};
339             }
340 
341             default:
342                 LOG_ALWAYS_FATAL("Unexpected sensor type: %d", static_cast<int>(format));
343         }
344     }
345 };
346 
347 }  // namespace
348 
create(const char * packageName,Listener * listener)349 std::unique_ptr<SensorPoseProvider> SensorPoseProvider::create(const char* packageName,
350                                                                Listener* listener) {
351     return SensorPoseProviderImpl::create(packageName, listener);
352 }
353 
354 }  // namespace media
355 }  // namespace android
356