1 /*
2 * Copyright (C) 2020 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 //#define LOG_NDEBUG 0
18 #define LOG_TAG "C2DmaBufAllocator"
19
20 #include <BufferAllocator/BufferAllocator.h>
21 #include <C2Buffer.h>
22 #include <C2Debug.h>
23 #include <C2DmaBufAllocator.h>
24 #include <C2ErrnoUtils.h>
25
26 #include <linux/ion.h>
27 #include <sys/mman.h>
28 #include <unistd.h> // getpagesize, size_t, close, dup
29 #include <utils/Log.h>
30
31 #include <list>
32
33 #include <android-base/properties.h>
34
35 namespace android {
36
37 namespace {
38 constexpr size_t USAGE_LRU_CACHE_SIZE = 1024;
39
40 // max padding after ion/dmabuf allocations in bytes
41 constexpr uint32_t MAX_PADDING = 0x8000; // 32KB
42 }
43
44 /* =========================== BUFFER HANDLE =========================== */
45 /**
46 * Buffer handle
47 *
48 * Stores dmabuf fd & metadata
49 *
50 * This handle will not capture mapped fd-s as updating that would require a
51 * global mutex.
52 */
53
54 struct C2HandleBuf : public C2Handle {
C2HandleBufandroid::C2HandleBuf55 C2HandleBuf(int bufferFd, size_t size)
56 : C2Handle(cHeader),
57 mFds{bufferFd},
58 mInts{int(size & 0xFFFFFFFF), int((uint64_t(size) >> 32) & 0xFFFFFFFF), kMagic} {}
59
60 static bool IsValid(const C2Handle* const o);
61
bufferFdandroid::C2HandleBuf62 int bufferFd() const { return mFds.mBuffer; }
sizeandroid::C2HandleBuf63 size_t size() const {
64 return size_t(unsigned(mInts.mSizeLo)) | size_t(uint64_t(unsigned(mInts.mSizeHi)) << 32);
65 }
66
67 protected:
68 struct {
69 int mBuffer; // dmabuf fd
70 } mFds;
71 struct {
72 int mSizeLo; // low 32-bits of size
73 int mSizeHi; // high 32-bits of size
74 int mMagic;
75 } mInts;
76
77 private:
78 typedef C2HandleBuf _type;
79 enum {
80 kMagic = '\xc2io\x00',
81 numFds = sizeof(mFds) / sizeof(int),
82 numInts = sizeof(mInts) / sizeof(int),
83 version = sizeof(C2Handle)
84 };
85 // constexpr static C2Handle cHeader = { version, numFds, numInts, {} };
86 const static C2Handle cHeader;
87 };
88
89 const C2Handle C2HandleBuf::cHeader = {
90 C2HandleBuf::version, C2HandleBuf::numFds, C2HandleBuf::numInts, {}};
91
92 // static
IsValid(const C2Handle * const o)93 bool C2HandleBuf::IsValid(const C2Handle* const o) {
94 if (!o || memcmp(o, &cHeader, sizeof(cHeader))) {
95 return false;
96 }
97 const C2HandleBuf* other = static_cast<const C2HandleBuf*>(o);
98 return other->mInts.mMagic == kMagic;
99 }
100
101 /* =========================== DMABUF ALLOCATION =========================== */
102 class C2DmaBufAllocation : public C2LinearAllocation {
103 public:
104 /* Interface methods */
105 virtual c2_status_t map(size_t offset, size_t size, C2MemoryUsage usage, C2Fence* fence,
106 void** addr /* nonnull */) override;
107 virtual c2_status_t unmap(void* addr, size_t size, C2Fence* fenceFd) override;
108 virtual ~C2DmaBufAllocation() override;
109 virtual const C2Handle* handle() const override;
110 virtual id_t getAllocatorId() const override;
111 virtual bool equals(const std::shared_ptr<C2LinearAllocation>& other) const override;
112
113 // internal methods
114
115 /**
116 * Constructs an allocation via a new allocation.
117 *
118 * @param alloc allocator
119 * @param allocSize size used for the allocator
120 * @param capacity capacity advertised to the client
121 * @param heap_name name of the dmabuf heap (device)
122 * @param flags flags
123 * @param id allocator id
124 */
125 C2DmaBufAllocation(BufferAllocator& alloc, size_t allocSize, size_t capacity,
126 C2String heap_name, unsigned flags, C2Allocator::id_t id);
127
128 /**
129 * Constructs an allocation by wrapping an existing allocation.
130 *
131 * @param size capacity advertised to the client
132 * @param shareFd dmabuf fd of the wrapped allocation
133 * @param id allocator id
134 */
135 C2DmaBufAllocation(size_t size, int shareFd, C2Allocator::id_t id);
136
137 c2_status_t status() const;
138
139 protected:
mapInternal(size_t mapSize,size_t mapOffset,size_t alignmentBytes,int prot,int flags,void ** base,void ** addr)140 virtual c2_status_t mapInternal(size_t mapSize, size_t mapOffset, size_t alignmentBytes,
141 int prot, int flags, void** base, void** addr) {
142 c2_status_t err = C2_OK;
143 *base = mmap(nullptr, mapSize, prot, flags, mHandle.bufferFd(), mapOffset);
144 ALOGV("mmap(size = %zu, prot = %d, flags = %d, mapFd = %d, offset = %zu) "
145 "returned (%d)",
146 mapSize, prot, flags, mHandle.bufferFd(), mapOffset, errno);
147 if (*base == MAP_FAILED) {
148 *base = *addr = nullptr;
149 err = c2_map_errno<EINVAL>(errno);
150 } else {
151 *addr = (uint8_t*)*base + alignmentBytes;
152 }
153 return err;
154 }
155
156 C2Allocator::id_t mId;
157 C2HandleBuf mHandle;
158 c2_status_t mInit;
159 struct Mapping {
160 void* addr;
161 size_t alignmentBytes;
162 size_t size;
163 };
164 std::list<Mapping> mMappings;
165
166 // TODO: we could make this encapsulate shared_ptr and copiable
167 C2_DO_NOT_COPY(C2DmaBufAllocation);
168 };
169
map(size_t offset,size_t size,C2MemoryUsage usage,C2Fence * fence,void ** addr)170 c2_status_t C2DmaBufAllocation::map(size_t offset, size_t size, C2MemoryUsage usage, C2Fence* fence,
171 void** addr) {
172 (void)fence; // TODO: wait for fence
173 *addr = nullptr;
174 if (!mMappings.empty()) {
175 ALOGV("multiple map");
176 // TODO: technically we should return DUPLICATE here, but our block views
177 // don't actually unmap, so we end up remapping the buffer multiple times.
178 //
179 // return C2_DUPLICATE;
180 }
181 if (size == 0) {
182 return C2_BAD_VALUE;
183 }
184
185 int prot = PROT_NONE;
186 int flags = MAP_SHARED;
187 if (usage.expected & C2MemoryUsage::CPU_READ) {
188 prot |= PROT_READ;
189 }
190 if (usage.expected & C2MemoryUsage::CPU_WRITE) {
191 prot |= PROT_WRITE;
192 }
193
194 size_t alignmentBytes = offset % PAGE_SIZE;
195 size_t mapOffset = offset - alignmentBytes;
196 size_t mapSize = size + alignmentBytes;
197 Mapping map = {nullptr, alignmentBytes, mapSize};
198
199 c2_status_t err =
200 mapInternal(mapSize, mapOffset, alignmentBytes, prot, flags, &(map.addr), addr);
201 if (map.addr) {
202 mMappings.push_back(map);
203 }
204 return err;
205 }
206
unmap(void * addr,size_t size,C2Fence * fence)207 c2_status_t C2DmaBufAllocation::unmap(void* addr, size_t size, C2Fence* fence) {
208 if (mMappings.empty()) {
209 ALOGD("tried to unmap unmapped buffer");
210 return C2_NOT_FOUND;
211 }
212 for (auto it = mMappings.begin(); it != mMappings.end(); ++it) {
213 if (addr != (uint8_t*)it->addr + it->alignmentBytes ||
214 size + it->alignmentBytes != it->size) {
215 continue;
216 }
217 int err = munmap(it->addr, it->size);
218 if (err != 0) {
219 ALOGD("munmap failed");
220 return c2_map_errno<EINVAL>(errno);
221 }
222 if (fence) {
223 *fence = C2Fence(); // not using fences
224 }
225 (void)mMappings.erase(it);
226 ALOGV("successfully unmapped: %d", mHandle.bufferFd());
227 return C2_OK;
228 }
229 ALOGD("unmap failed to find specified map");
230 return C2_BAD_VALUE;
231 }
232
status() const233 c2_status_t C2DmaBufAllocation::status() const {
234 return mInit;
235 }
236
getAllocatorId() const237 C2Allocator::id_t C2DmaBufAllocation::getAllocatorId() const {
238 return mId;
239 }
240
equals(const std::shared_ptr<C2LinearAllocation> & other) const241 bool C2DmaBufAllocation::equals(const std::shared_ptr<C2LinearAllocation>& other) const {
242 if (!other || other->getAllocatorId() != getAllocatorId()) {
243 return false;
244 }
245 // get user handle to compare objects
246 std::shared_ptr<C2DmaBufAllocation> otherAsBuf =
247 std::static_pointer_cast<C2DmaBufAllocation>(other);
248 return mHandle.bufferFd() == otherAsBuf->mHandle.bufferFd();
249 }
250
handle() const251 const C2Handle* C2DmaBufAllocation::handle() const {
252 return &mHandle;
253 }
254
~C2DmaBufAllocation()255 C2DmaBufAllocation::~C2DmaBufAllocation() {
256 if (!mMappings.empty()) {
257 ALOGD("Dangling mappings!");
258 for (const Mapping& map : mMappings) {
259 int err = munmap(map.addr, map.size);
260 if (err) ALOGD("munmap failed");
261 }
262 }
263 if (mInit == C2_OK) {
264 native_handle_close(&mHandle);
265 }
266 }
267
C2DmaBufAllocation(BufferAllocator & alloc,size_t allocSize,size_t capacity,C2String heap_name,unsigned flags,C2Allocator::id_t id)268 C2DmaBufAllocation::C2DmaBufAllocation(BufferAllocator& alloc, size_t allocSize, size_t capacity,
269 C2String heap_name, unsigned flags, C2Allocator::id_t id)
270 : C2LinearAllocation(capacity), mHandle(-1, 0) {
271 int bufferFd = -1;
272 int ret = 0;
273
274 bufferFd = alloc.Alloc(heap_name, allocSize, flags);
275 if (bufferFd < 0) {
276 ret = bufferFd;
277 }
278
279 // this may be a non-working handle if bufferFd is negative
280 mHandle = C2HandleBuf(bufferFd, capacity);
281 mId = id;
282 mInit = c2_status_t(c2_map_errno<ENOMEM, EACCES, EINVAL>(ret));
283 }
284
C2DmaBufAllocation(size_t size,int shareFd,C2Allocator::id_t id)285 C2DmaBufAllocation::C2DmaBufAllocation(size_t size, int shareFd, C2Allocator::id_t id)
286 : C2LinearAllocation(size), mHandle(-1, 0) {
287 mHandle = C2HandleBuf(shareFd, size);
288 mId = id;
289 mInit = c2_status_t(c2_map_errno<ENOMEM, EACCES, EINVAL>(0));
290 }
291
292 /* =========================== DMABUF ALLOCATOR =========================== */
C2DmaBufAllocator(id_t id)293 C2DmaBufAllocator::C2DmaBufAllocator(id_t id) : mInit(C2_OK) {
294 C2MemoryUsage minUsage = {0, 0};
295 C2MemoryUsage maxUsage = {C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE};
296 Traits traits = {"android.allocator.dmabuf", id, LINEAR, minUsage, maxUsage};
297 mTraits = std::make_shared<Traits>(traits);
298 }
299
getId() const300 C2Allocator::id_t C2DmaBufAllocator::getId() const {
301 std::lock_guard<std::mutex> lock(mUsageMapperLock);
302 return mTraits->id;
303 }
304
getName() const305 C2String C2DmaBufAllocator::getName() const {
306 std::lock_guard<std::mutex> lock(mUsageMapperLock);
307 return mTraits->name;
308 }
309
getTraits() const310 std::shared_ptr<const C2Allocator::Traits> C2DmaBufAllocator::getTraits() const {
311 std::lock_guard<std::mutex> lock(mUsageMapperLock);
312 return mTraits;
313 }
314
setUsageMapper(const UsageMapperFn & mapper __unused,uint64_t minUsage,uint64_t maxUsage,uint64_t blockSize)315 void C2DmaBufAllocator::setUsageMapper(const UsageMapperFn& mapper __unused, uint64_t minUsage,
316 uint64_t maxUsage, uint64_t blockSize) {
317 std::lock_guard<std::mutex> lock(mUsageMapperLock);
318 mUsageMapperCache.clear();
319 mUsageMapperLru.clear();
320 mUsageMapper = mapper;
321 Traits traits = {mTraits->name, mTraits->id, LINEAR, C2MemoryUsage(minUsage),
322 C2MemoryUsage(maxUsage)};
323 mTraits = std::make_shared<Traits>(traits);
324 mBlockSize = blockSize;
325 }
326
operator ()(const MapperKey & k) const327 std::size_t C2DmaBufAllocator::MapperKeyHash::operator()(const MapperKey& k) const {
328 return std::hash<uint64_t>{}(k.first) ^ std::hash<size_t>{}(k.second);
329 }
330
mapUsage(C2MemoryUsage usage,size_t capacity,C2String * heap_name,unsigned * flags)331 c2_status_t C2DmaBufAllocator::mapUsage(C2MemoryUsage usage, size_t capacity, C2String* heap_name,
332 unsigned* flags) {
333 std::lock_guard<std::mutex> lock(mUsageMapperLock);
334 c2_status_t res = C2_OK;
335 // align capacity
336 capacity = (capacity + mBlockSize - 1) & ~(mBlockSize - 1);
337 MapperKey key = std::make_pair(usage.expected, capacity);
338 auto entry = mUsageMapperCache.find(key);
339 if (entry == mUsageMapperCache.end()) {
340 if (mUsageMapper) {
341 res = mUsageMapper(usage, capacity, heap_name, flags);
342 } else {
343 if (C2DmaBufAllocator::system_uncached_supported() &&
344 !(usage.expected & (C2MemoryUsage::CPU_READ | C2MemoryUsage::CPU_WRITE)))
345 *heap_name = "system-uncached";
346 else
347 *heap_name = "system";
348 *flags = 0;
349 res = C2_NO_INIT;
350 }
351 // add usage to cache
352 MapperValue value = std::make_tuple(*heap_name, *flags, res);
353 mUsageMapperLru.emplace_front(key, value);
354 mUsageMapperCache.emplace(std::make_pair(key, mUsageMapperLru.begin()));
355 if (mUsageMapperCache.size() > USAGE_LRU_CACHE_SIZE) {
356 // remove LRU entry
357 MapperKey lruKey = mUsageMapperLru.front().first;
358 mUsageMapperCache.erase(lruKey);
359 mUsageMapperLru.pop_back();
360 }
361 } else {
362 // move entry to MRU
363 mUsageMapperLru.splice(mUsageMapperLru.begin(), mUsageMapperLru, entry->second);
364 const MapperValue& value = entry->second->second;
365 std::tie(*heap_name, *flags, res) = value;
366 }
367 return res;
368 }
369
newLinearAllocation(uint32_t capacity,C2MemoryUsage usage,std::shared_ptr<C2LinearAllocation> * allocation)370 c2_status_t C2DmaBufAllocator::newLinearAllocation(
371 uint32_t capacity, C2MemoryUsage usage, std::shared_ptr<C2LinearAllocation>* allocation) {
372 if (allocation == nullptr) {
373 return C2_BAD_VALUE;
374 }
375
376 allocation->reset();
377 if (mInit != C2_OK) {
378 return mInit;
379 }
380
381 C2String heap_name;
382 unsigned flags = 0;
383 c2_status_t ret = mapUsage(usage, capacity, &heap_name, &flags);
384 if (ret && ret != C2_NO_INIT) {
385 return ret;
386 }
387
388 // TODO: should we pad before mapping usage?
389
390 // NOTE: read this property directly from the property as this code has to run on
391 // Android Q, but the sysprop was only introduced in Android S.
392 static size_t sPadding =
393 base::GetUintProperty("media.c2.dmabuf.padding", (uint32_t)0, MAX_PADDING);
394 if (sPadding > SIZE_MAX - capacity) {
395 // size would overflow
396 ALOGD("dmabuf_alloc: size #%x cannot accommodate padding #%zx", capacity, sPadding);
397 return C2_NO_MEMORY;
398 }
399
400 size_t allocSize = (size_t)capacity + sPadding;
401 // TODO: should we align allocation size to mBlockSize to reflect the true allocation size?
402 std::shared_ptr<C2DmaBufAllocation> alloc = std::make_shared<C2DmaBufAllocation>(
403 mBufferAllocator, allocSize, allocSize - sPadding, heap_name, flags, getId());
404 ret = alloc->status();
405 if (ret == C2_OK) {
406 *allocation = alloc;
407 }
408 return ret;
409 }
410
priorLinearAllocation(const C2Handle * handle,std::shared_ptr<C2LinearAllocation> * allocation)411 c2_status_t C2DmaBufAllocator::priorLinearAllocation(
412 const C2Handle* handle, std::shared_ptr<C2LinearAllocation>* allocation) {
413 *allocation = nullptr;
414 if (mInit != C2_OK) {
415 return mInit;
416 }
417
418 if (!C2HandleBuf::IsValid(handle)) {
419 return C2_BAD_VALUE;
420 }
421
422 // TODO: get capacity and validate it
423 const C2HandleBuf* h = static_cast<const C2HandleBuf*>(handle);
424 std::shared_ptr<C2DmaBufAllocation> alloc =
425 std::make_shared<C2DmaBufAllocation>(h->size(), h->bufferFd(), getId());
426 c2_status_t ret = alloc->status();
427 if (ret == C2_OK) {
428 *allocation = alloc;
429 native_handle_delete(
430 const_cast<native_handle_t*>(reinterpret_cast<const native_handle_t*>(handle)));
431 }
432 return ret;
433 }
434
435 // static
CheckHandle(const C2Handle * const o)436 bool C2DmaBufAllocator::CheckHandle(const C2Handle* const o) {
437 return C2HandleBuf::IsValid(o);
438 }
439
440 } // namespace android
441