/aosp12/frameworks/av/media/libeffects/loudness/dsp/core/ |
H A D | interpolator_base-inl.h | 55 bool InterpolatorBase<T, Algorithm>::Initialize(const vector<T> &x_data, in Initialize() argument 58 if (x_data.size() != y_data.size()) { in Initialize() 60 " (%d)", x_data.size(), y_data.size()); in Initialize() 63 return Initialize(&x_data[0], &y_data[0], x_data.size()); in Initialize() 99 const T *x_data, const T *y_data, int data_length) { in Initialize() argument 108 x_data_ = x_data; in Initialize()
|
H A D | basic-inl.h | 27 int SearchIndex(const T x_data[], in SearchIndex() argument 35 if (x_data[i] > x) { in SearchIndex()
|
H A D | interpolator_base.h | 60 bool Initialize(const T *x_data, const T *y_data, int data_length); 66 bool Initialize(const vector<T> &x_data, const vector<T> &y_data);
|
H A D | basic.h | 37 int SearchIndex(const T x_data[],
|
/aosp12/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/ |
H A D | while_sum_of_powers.mod.py | 92 def Test(x_data, n_data, sum_data): argument 103 x: x_data, 112 Test(x_data=[2, 3], n_data=0, sum_data=[1, 1]) 113 Test(x_data=[2, 3], n_data=1, sum_data=[1 + 2, 1 + 3]) 114 Test(x_data=[2, 3], n_data=2, sum_data=[1 + 2 + 4, 1 + 3 + 9]) 115 Test(x_data=[2, 3], n_data=3, sum_data=[1 + 2 + 4 + 8, 1 + 3 + 9 + 27]) 116 Test(x_data=[2, 3], n_data=4, sum_data=[1 + 2 + 4 + 8 + 16, 1 + 3 + 9 + 27 + 81])
|
H A D | while_sum_of_powers_quant8.mod.py | 98 def Test(x_data, n_data, sum_data): argument 109 x: quantize(x_data, 0.5, 128), 115 Test(x_data=[2, 3], n_data=0, sum_data=[1, 1]) 116 Test(x_data=[2, 3], n_data=1, sum_data=[1 + 2, 1 + 3]) 117 Test(x_data=[2, 3], n_data=2, sum_data=[1 + 2 + 4, 1 + 3 + 9]) 118 Test(x_data=[2, 3], n_data=3, sum_data=[1 + 2 + 4 + 8, 1 + 3 + 9 + 27]) 119 Test(x_data=[2, 3], n_data=4, sum_data=[1 + 2 + 4 + 8 + 16, 1 + 3 + 9 + 27 + 81])
|
H A D | while_sum_of_powers_quant8_signed.mod.py | 98 def Test(x_data, n_data, sum_data): argument 109 x: quantize(x_data, 0.5, 12), 115 Test(x_data=[2, 3], n_data=0, sum_data=[1, 1]) 116 Test(x_data=[2, 3], n_data=1, sum_data=[1 + 2, 1 + 3]) 117 Test(x_data=[2, 3], n_data=2, sum_data=[1 + 2 + 4, 1 + 3 + 9]) 118 Test(x_data=[2, 3], n_data=3, sum_data=[1 + 2 + 4 + 8, 1 + 3 + 9 + 27]) 119 Test(x_data=[2, 3], n_data=4, sum_data=[1 + 2 + 4 + 8 + 16, 1 + 3 + 9 + 27 + 81])
|
H A D | if_simple.mod.py | 31 def Test(x_data, y_data, z_data, name): argument 42 example = Example({x: [x_data], y: y_data, z: z_data}, name=name) 46 Test(x_data=True, y_data=input_data, z_data=output_add, name="true") 47 Test(x_data=False, y_data=input_data, z_data=output_sub, name="false")
|
H A D | if_constant.mod.py | 20 x_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] variable 23 True: [x + y for (x, y) in zip(x_data, y_data)], 24 False: [x - y for (x, y) in zip(x_data, y_data)], 49 x: x_data,
|
H A D | if_no_value.mod.py | 20 x_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] variable 44 example = Example({x: x_data, y: y_data, z: y_data})
|
H A D | if_same_branch_model.mod.py | 32 x_data, y_data, z_data = x, y, z 43 example = Example({x: [x_data], y: y_data, z: z_data}, name=name)
|
/aosp12/packages/modules/NeuralNetworks/runtime/test/specs/V1_3_cts_only/ |
H A D | if_simple_unknown_dimension.mod.py | 32 def Test(x_data, y_data, z_data, name): argument 43 example = Example({x: [x_data], y: y_data, z: z_data}, name=name) 47 Test(x_data=True, y_data=input_data, z_data=output_add, name="true") 48 Test(x_data=False, y_data=input_data, z_data=output_sub, name="false")
|
H A D | if_simple_unknown_rank.mod.py | 32 def Test(x_data, y_data, z_data, name): argument 43 example = Example({x: [x_data], y: y_data, z: z_data}, name=name) 47 Test(x_data=True, y_data=input_data, z_data=output_add, name="true") 48 Test(x_data=False, y_data=input_data, z_data=output_sub, name="false")
|
/aosp12/system/extras/partition_tools/ |
H A D | lpdump.cc | 345 auto x_data = ParseLinearExtentData(pt, *std::get<1>(x)); in PrintMetadata() local 347 return x_data < y_data; in PrintMetadata()
|