/aosp12/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/ |
H A D | bidirectional_sequence_lstm.mod.py | 22 n_batch, argument 455 n_batch = 1 variable 464 n_batch=n_batch, 495 fw_activation_state_data=[0] * (n_batch * n_output), 497 fw_cell_state_data=[0] * (n_batch * n_cell), 498 bw_cell_state_data=[0] * (n_batch * n_cell), 503 n_batch = 1 variable 512 n_batch=n_batch, 518 input_data=[0] * (max_time * n_batch * n_fw_input), 545 fw_cell_state_data=[0] * (n_batch * n_cell), [all …]
|
H A D | unidirectional_sequence_lstm_layer_norm_cifg_peephole_state_output.mod.py | 24 n_batch = 2 variable 31 "{%d, %d, %d}" % (max_time, n_batch, n_input)) 71 "{%d, %d}" % (n_batch, n_output)) 73 "{%d, %d}" % (n_batch, n_cell)) 90 "{%d, %d, %d}" % (max_time, n_batch, n_output)) 92 "{%d, %d}" % (n_batch, n_output)) 94 "{%d, %d}" % (n_batch, n_cell)) 181 golden_output[(max_time - 1) * (n_batch * n_output):], 189 input0[output_state_in] = [0 for _ in range(n_batch * n_output)] 190 input0[cell_state_in] = [0 for _ in range(n_batch * n_cell)]
|
/aosp12/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/ |
H A D | layer_norm_lstm.mod.py | 22 n_batch = 2 variable 69 "{%d, %d}" % (n_batch, n_output)) 71 "{%d, %d}" % (n_batch, n_cell)) 89 "{%d, %d}" % (n_batch, n_output)) 91 "{%d, %d}" % (n_batch, n_cell)) 183 scratch_buffer: [0] * (n_batch * n_cell * 4), 194 n_batch = 2 variable 241 "{%d, %d}" % (n_batch, n_output)) 243 "{%d, %d}" % (n_batch, n_cell)) 263 "{%d, %d}" % (n_batch, n_cell)) [all …]
|
H A D | lstm2_float16.mod.py | 21 n_batch = 1 variable 27 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_cell * … 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 60 cell_state_out = Output("cell_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 132 scratch_buffer: [ 0 for x in range(n_batch * n_cell * 3) ], 138 input0[output_state_in] = [ 0 for _ in range(n_batch * n_output) ] [all …]
|
H A D | lstm2_state2_float16.mod.py | 21 n_batch = 1 variable 27 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_cell * … 59 output_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_out… 60 cell_state_out = IgnoredOutput("cell_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 132 scratch_buffer: [ 0 for x in range(n_batch * n_cell * 3) ], 133 cell_state_out: [ 0 for x in range(n_batch * n_cell) ], [all …]
|
H A D | lstm3_float16.mod.py | 21 n_batch = 2 variable 27 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, (n_cell *… 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 60 cell_state_out = Output("cell_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 620 input0[cell_state_in] = [ 0 for _ in range(n_batch * n_cell) ] 621 input0[output_state_in] = [ 0 for _ in range(n_batch * n_output) ] [all …]
|
H A D | lstm3_state3_float16.mod.py | 21 n_batch = 2 variable 27 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, (n_cell *… 59 output_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_out… 60 cell_state_out = IgnoredOutput("cell_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 643 scratch_buffer: [ 0 for x in range(n_batch * n_cell * 4) ], 644 cell_state_out: [ 0 for x in range(n_batch * n_cell) ], [all …]
|
H A D | lstm_state2_float16.mod.py | 21 n_batch = 1 variable 27 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, (n_cell *… 59 output_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_out… 60 cell_state_out = IgnoredOutput("cell_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 140 scratch_buffer: [ 0 for x in range(n_batch * n_cell * 4) ], 141 cell_state_out: [ 0 for x in range(n_batch * n_cell) ], [all …]
|
H A D | lstm2_state_float16.mod.py | 21 n_batch = 1 variable 27 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_cell * … 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 60 cell_state_out = Output("cell_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 132 scratch_buffer: [ 0 for x in range(n_batch * n_cell * 3) ],
|
/aosp12/packages/modules/NeuralNetworks/runtime/test/specs/V1_0/ |
H A D | lstm2.mod.py | 21 n_batch = 1 variable 27 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell * … 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 60 cell_state_out = Output("cell_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 132 scratch_buffer: [ 0 for x in range(n_batch * n_cell * 3) ], 138 input0[output_state_in] = [ 0 for _ in range(n_batch * n_output) ] [all …]
|
H A D | lstm2_state2.mod.py | 21 n_batch = 1 variable 27 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell * … 59 output_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_out… 60 cell_state_out = IgnoredOutput("cell_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 132 scratch_buffer: [ 0 for x in range(n_batch * n_cell * 3) ], 133 cell_state_out: [ 0 for x in range(n_batch * n_cell) ], [all …]
|
H A D | lstm3.mod.py | 21 n_batch = 2 variable 27 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, (n_cell *… 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 60 cell_state_out = Output("cell_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 620 input0[cell_state_in] = [ 0 for _ in range(n_batch * n_cell) ] 621 input0[output_state_in] = [ 0 for _ in range(n_batch * n_output) ] [all …]
|
H A D | lstm3_state3.mod.py | 21 n_batch = 2 variable 27 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, (n_cell *… 59 output_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_out… 60 cell_state_out = IgnoredOutput("cell_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 643 scratch_buffer: [ 0 for x in range(n_batch * n_cell * 4) ], 644 cell_state_out: [ 0 for x in range(n_batch * n_cell) ], [all …]
|
H A D | lstm_state2.mod.py | 21 n_batch = 1 variable 27 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, (n_cell *… 59 output_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_out… 60 cell_state_out = IgnoredOutput("cell_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 140 scratch_buffer: [ 0 for x in range(n_batch * n_cell * 4) ], 141 cell_state_out: [ 0 for x in range(n_batch * n_cell) ], [all …]
|
H A D | lstm2_state.mod.py | 21 n_batch = 1 variable 27 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell * … 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 60 cell_state_out = Output("cell_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 132 scratch_buffer: [ 0 for x in range(n_batch * n_cell * 3) ],
|
H A D | lstm.mod.py | 21 n_batch = 1 variable 27 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, (n_cell *… 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 60 cell_state_out = Output("cell_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 140 scratch_buffer: [ 0 for x in range(n_batch * n_cell * 4) ],
|
H A D | lstm3_state.mod.py | 21 n_batch = 2 variable 27 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, (n_cell *… 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 60 cell_state_out = Output("cell_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 643 scratch_buffer: [ 0 for x in range(n_batch * n_cell * 4) ],
|
H A D | lstm3_state2.mod.py | 21 n_batch = 2 variable 27 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, (n_cell *… 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 60 cell_state_out = Output("cell_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 643 scratch_buffer: [ 0 for x in range(n_batch * n_cell * 4) ],
|
/aosp12/packages/modules/NeuralNetworks/runtime/test/specs/V1_1/ |
H A D | lstm2_relaxed.mod.py | 21 n_batch = 1 variable 27 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell * … 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 60 cell_state_out = Output("cell_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 133 scratch_buffer: [ 0 for x in range(n_batch * n_cell * 3) ], 139 input0[output_state_in] = [ 0 for _ in range(n_batch * n_output) ] [all …]
|
H A D | lstm2_state2_relaxed.mod.py | 21 n_batch = 1 variable 27 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell * … 59 output_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_out… 60 cell_state_out = IgnoredOutput("cell_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 133 scratch_buffer: [ 0 for x in range(n_batch * n_cell * 3) ], 134 cell_state_out: [ 0 for x in range(n_batch * n_cell) ], [all …]
|
H A D | lstm_state2_relaxed.mod.py | 21 n_batch = 1 variable 27 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, (n_cell *… 59 output_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_out… 60 cell_state_out = IgnoredOutput("cell_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 141 scratch_buffer: [ 0 for x in range(n_batch * n_cell * 4) ], 142 cell_state_out: [ 0 for x in range(n_batch * n_cell) ], [all …]
|
H A D | lstm3_relaxed.mod.py | 21 n_batch = 2 variable 27 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, (n_cell *… 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 60 cell_state_out = Output("cell_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 621 input0[cell_state_in] = [ 0 for _ in range(n_batch * n_cell) ] 622 input0[output_state_in] = [ 0 for _ in range(n_batch * n_output) ] [all …]
|
H A D | lstm3_state3_relaxed.mod.py | 21 n_batch = 2 variable 27 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_input)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 52 cell_state_in = Input("cell_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 58 scratch_buffer = IgnoredOutput("scratch_buffer", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, (n_cell *… 59 output_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_out… 60 cell_state_out = IgnoredOutput("cell_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_cell)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 644 scratch_buffer: [ 0 for x in range(n_batch * n_cell * 4) ], 645 cell_state_out: [ 0 for x in range(n_batch * n_cell) ], [all …]
|
/aosp12/packages/modules/NeuralNetworks/common/operations/ |
H A D | LSTM.cpp | 348 const uint32_t n_batch = SizeOfDimension(input_, 0); in Prepare() local 376 outputShape->dimensions = {n_batch, n_output}; in Prepare() 381 outputStateShape->dimensions = {n_batch, n_output}; in Prepare() 386 cellStateShape->dimensions = {n_batch, n_cell}; in Prepare() 392 scratchShape->dimensions = {n_batch, n_cell * 3}; in Prepare() 395 scratchShape->dimensions = {n_batch, n_cell * 4}; in Prepare() 788 const uint32_t n_batch = input_shape.dimensions[0]; in LSTMStep() local 806 cell_scratch = input_gate_scratch + n_cell * n_batch; in LSTMStep() 829 std::fill_n(cell_scratch, n_cell * n_batch, 0.0f); in LSTMStep() 853 n_batch, input_gate_scratch); in LSTMStep() [all …]
|
/aosp12/packages/modules/NeuralNetworks/common/ |
H A D | QuantUtils.cpp | 12 int n_batch, int n_input, int16_t* output) { in ApplyLayerNorm() argument 14 for (int i = 0; i < n_batch; ++i) { in ApplyLayerNorm() 87 for (int batch = 0; batch < n_batch; ++batch) { in ApplySigmoid() 101 for (int batch = 0; batch < n_batch; ++batch) { in CwiseMul() 113 int32_t n_batch, int32_t n_input, int32_t output_zp, int8_t* output) { in CwiseMul() argument 114 for (int batch = 0; batch < n_batch; ++batch) { in CwiseMul() 140 for (int batch = 0; batch < n_batch; ++batch) { in CwiseAdd() 151 for (int batch = 0; batch < n_batch; ++batch) { in CwiseClipping() 165 for (int batch = 0; batch < n_batch; ++batch) { in CwiseClipping() 179 const int16_t* batch_vector, int n_batch, in VectorBatchVectorCwiseProductAccumulate() argument [all …]
|