/aosp12/frameworks/native/vulkan/vkjson/ |
H A D | vkjson.cc | 558 visitor->Visit("logicOp", &features->logicOp) && in Iterate() 561 visitor->Visit("depthClamp", &features->depthClamp) && in Iterate() 564 visitor->Visit("depthBounds", &features->depthBounds) && in Iterate() 565 visitor->Visit("wideLines", &features->wideLines) && in Iterate() 566 visitor->Visit("largePoints", &features->largePoints) && in Iterate() 567 visitor->Visit("alphaToOne", &features->alphaToOne) && in Iterate() 590 visitor->Visit("shaderInt64", &features->shaderInt64) && in Iterate() 591 visitor->Visit("shaderInt16", &features->shaderInt16) && in Iterate() 725 &features->storageInputOutput16); in Iterate() 763 &features->samplerYcbcrConversion); in Iterate() [all …]
|
/aosp12/art/runtime/arch/ |
H A D | instruction_set_features.cc | 190 std::vector<std::string> features; in AddFeaturesFromString() local 191 Split(feature_list, ',', &features); in AddFeaturesFromString() 192 std::transform(std::begin(features), std::end(features), std::begin(features), in AddFeaturesFromString() 194 auto empty_strings_begin = std::copy_if(std::begin(features), std::end(features), in AddFeaturesFromString() 197 features.erase(empty_strings_begin, std::end(features)); in AddFeaturesFromString() 198 if (features.empty()) { in AddFeaturesFromString() 205 for (const std::string& feature : features) { in AddFeaturesFromString() 207 if (features.size() > 1) { in AddFeaturesFromString() 212 features.pop_back(); in AddFeaturesFromString() 215 if (features.size() > 1) { in AddFeaturesFromString() [all …]
|
/aosp12/system/bt/stack/acl/ |
H A D | peer_packet_types.h | 32 PeerPacketTypes(const BD_FEATURES& features) { in PeerPacketTypes() argument 34 if (HCI_3_SLOT_PACKETS_SUPPORTED(features)) in PeerPacketTypes() 37 if (HCI_5_SLOT_PACKETS_SUPPORTED(features)) in PeerPacketTypes() 41 if (!HCI_EDR_ACL_2MPS_SUPPORTED(features)) in PeerPacketTypes() 47 if (!HCI_EDR_ACL_3MPS_SUPPORTED(features)) in PeerPacketTypes() 54 if (HCI_EDR_ACL_2MPS_SUPPORTED(features) || in PeerPacketTypes() 55 HCI_EDR_ACL_3MPS_SUPPORTED(features)) { in PeerPacketTypes() 56 if (!HCI_3_SLOT_EDR_ACL_SUPPORTED(features)) in PeerPacketTypes() 63 if (!HCI_5_SLOT_EDR_ACL_SUPPORTED(features)) in PeerPacketTypes()
|
/aosp12/frameworks/base/telephony/java/android/telephony/ims/compat/ |
H A D | ImsService.java | 191 if (features == null) { in addImsFeature() 193 features = new SparseArray<>(); in addImsFeature() 194 mFeaturesBySlot.put(slotId, features); in addImsFeature() 196 features.put(featureType, f); in addImsFeature() 205 if (features == null) { in addImsFeatureStatusCallback() 210 ImsFeature f = features.get(featureType); in addImsFeatureStatusCallback() 222 if (features == null) { in removeImsFeatureStatusCallback() 227 ImsFeature f = features.get(featureType); in removeImsFeatureStatusCallback() 238 if (features == null) { in removeImsFeature() 243 ImsFeature f = features.get(featureType); in removeImsFeature() [all …]
|
/aosp12/frameworks/compile/libbcc/lib/ |
H A D | CompilerConfig.cpp | 38 llvm::StringMap<bool> features; in AddX86NativeCPUFeatures() local 39 if (llvm::sys::getHostCPUFeatures(features)) { in AddX86NativeCPUFeatures() 40 for (const auto& f : features) in AddX86NativeCPUFeatures() 109 llvm::StringMap<bool> features; in initializeArch() local 110 llvm::sys::getHostCPUFeatures(features); in initializeArch() 132 if (features.count("hwdiv-arm") && features["hwdiv-arm"]) in initializeArch() 135 if (features.count("hwdiv") && features["hwdiv"]) in initializeArch() 142 if (features.count("fp16") && features["fp16"]) in initializeArch() 150 if (features.count("neon") && features["neon"]) in initializeArch()
|
/aosp12/frameworks/opt/telephony/tests/telephonytests/src/com/android/internal/telephony/ims/ |
H A D | ImsResolverTest.java | 426 verify(controller).bind(features); in testCarrierPackageBind() 561 verify(controller).bind(features); in testCarrierPackageBindWithEmergencyCalling() 590 verify(controller).bind(features); in testCarrierPackageBindWithEmergencyButNotMmtel() 614 verify(controller).bind(features); in testCarrierPackageChangeEmergencyCalling() 663 Set<String> features = new HashSet<>(); in testDevicePackageBind() local 1063 convertToHashSet(features, 0); in testAddDeviceFeatureNoCarrier() 1145 convertToHashSet(features, 0); in testAddDeviceFeatureNoCarrierRcsNotSupported() 2136 return features.stream() in convertToHashSet() 2145 int slotId, String... features) { in convertToFeatureSlotPairs() argument 2166 for (String f : features) { in isImsServiceInfoEqual() [all …]
|
/aosp12/packages/apps/DocumentsUI/tests/unit/com/android/documentsui/files/ |
H A D | QuickViewIntentBuilderTest.java | 66 assertEquals(0, features.length); in testSetsNoFeatures_InArchiveDocument() 76 Set<String> features = new HashSet<>( in testSetsFullFeatures_RegularDocument() local 79 assertEquals("Unexpected features set: " + features, 6, features.size()); in testSetsFullFeatures_RegularDocument() 80 assertTrue(features.contains(QuickViewConstants.FEATURE_VIEW)); in testSetsFullFeatures_RegularDocument() 81 assertTrue(features.contains(QuickViewConstants.FEATURE_EDIT)); in testSetsFullFeatures_RegularDocument() 82 assertTrue(features.contains(QuickViewConstants.FEATURE_DELETE)); in testSetsFullFeatures_RegularDocument() 83 assertTrue(features.contains(QuickViewConstants.FEATURE_SEND)); in testSetsFullFeatures_RegularDocument() 85 assertTrue(features.contains(QuickViewConstants.FEATURE_PRINT)); in testSetsFullFeatures_RegularDocument() 96 Set<String> features = new HashSet<>( in testPickerFeatures_RegularDocument() local 99 assertEquals("Unexpected features set: " + features, 1, features.size()); in testPickerFeatures_RegularDocument() [all …]
|
/aosp12/packages/modules/NeuralNetworks/runtime/test/specs/V1_0/ |
H A D | svdf.mod.py | 18 features = 4 variable 20 units = int(features / rank) 27 weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (features, input_size)) 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 …te_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 60 state_in: [0 for _ in range(batches * memory_size * features)], 127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
H A D | svdf2.mod.py | 18 features = 8 variable 20 units = int(features / rank) 27 weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (features, input_size)) 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 …te_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 75 state_in: [0 for _ in range(batches * memory_size * features)], 142 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
H A D | svdf_bias_present.mod.py | 18 features = 4 variable 20 units = int(features / rank) 27 weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (features, input_size)) 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 …te_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 60 state_in: [0 for _ in range(batches * memory_size * features)], 127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
H A D | embedding_lookup.mod.py | 20 features = 4 variable 22 actual_values = [x for x in range(rows * columns * features)] 25 for k in range(features): 26 actual_values[(i * columns + j) * features + k] = i + j / 10. + k / 100. 30 value = Input("value", "TENSOR_FLOAT32", "{%d, %d, %d}" % (rows, columns, features)) 31 output = Output("output", "TENSOR_FLOAT32", "{%d, %d, %d}" % (lookups, columns, features))
|
H A D | hashtable_lookup_float.mod.py | 20 features = 2 variable 22 table = [x for x in range(rows * features)] 24 for j in range(features): 25 table[i * features + j] = i + j / 10. 31 value = Input("value", "TENSOR_FLOAT32", "{%d, %d}" % (rows, features)) 32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (lookups, features))
|
H A D | hashtable_lookup_quant8.mod.py | 20 features = 2 variable 22 table = [x for x in range(rows * features)] 24 for j in range(features): 25 table[i * features + j] = i * 10 + j 31 value = Input("value", "TENSOR_QUANT8_ASYMM", "{%d, %d}, 0.5f, 0" % (rows, features)) 32 output = Output("output", "TENSOR_QUANT8_ASYMM", "{%d, %d}, 0.5f, 0" % (lookups, features))
|
/aosp12/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/ |
H A D | svdf_bias_present_float16.mod.py | 18 features = 4 variable 20 units = int(features / rank) 27 weights_feature = Input("weights_feature", "TENSOR_FLOAT16", "{%d, %d}" % (features, input_size)) 28 weights_time = Input("weights_time", "TENSOR_FLOAT16", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features)) 33 …te_out = IgnoredOutput("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features)) 60 state_in: [0 for _ in range(batches * memory_size * features)], 127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
H A D | svdf_float16.mod.py | 18 features = 4 variable 20 units = int(features / rank) 27 weights_feature = Input("weights_feature", "TENSOR_FLOAT16", "{%d, %d}" % (features, input_size)) 28 weights_time = Input("weights_time", "TENSOR_FLOAT16", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features)) 33 …te_out = IgnoredOutput("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features)) 60 state_in: [0 for _ in range(batches * memory_size * features)], 127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
H A D | embedding_lookup_v1_2.mod.py | 20 features = 4 variable 22 actual_values = [x for x in range(rows * columns * features)] 25 for k in range(features): 26 actual_values[(i * columns + j) * features + k] = i + j / 10. + k / 100. 31 "{%d, %d, %d}" % (rows, columns, features)) 33 "{%d, %d, %d}" % (lookups, columns, features))
|
/aosp12/packages/apps/DocumentsUI/tests/common/com/android/documentsui/testing/ |
H A D | TestEnv.java | 81 public final Features features; field in TestEnv 88 private TestEnv(Context context, Features features, String authority) { in TestEnv() argument 89 this.features = features; in TestEnv() 94 model = new TestModel(userId, authority, features); in TestEnv() 100 features, in TestEnv() 128 public static TestEnv create(Features features) { in create() argument 129 return create(features, TestProvidersAccess.HOME.authority); in create() 136 public static TestEnv create(Features features, String authority) { in create() argument 138 return create(context, features, authority); in create() 144 return create(context, features, authority); in create() [all …]
|
/aosp12/packages/modules/NeuralNetworks/runtime/test/specs/V1_1/ |
H A D | svdf2_relaxed.mod.py | 18 features = 8 variable 20 units = int(features / rank) 27 weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (features, input_size)) 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 …te_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 76 state_in: [0 for _ in range(batches * memory_size * features)], 143 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
H A D | svdf_bias_present_relaxed.mod.py | 18 features = 4 variable 20 units = int(features / rank) 27 weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (features, input_size)) 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 …te_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 61 state_in: [0 for _ in range(batches * memory_size * features)], 128 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
H A D | svdf_relaxed.mod.py | 18 features = 4 variable 20 units = int(features / rank) 27 weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (features, input_size)) 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 …te_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 61 state_in: [0 for _ in range(batches * memory_size * features)], 128 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
H A D | embedding_lookup_relaxed.mod.py | 20 features = 4 variable 22 actual_values = [x for x in range(rows * columns * features)] 25 for k in range(features): 26 actual_values[(i * columns + j) * features + k] = i + j / 10. + k / 100. 30 value = Input("value", "TENSOR_FLOAT32", "{%d, %d, %d}" % (rows, columns, features)) 31 output = Output("output", "TENSOR_FLOAT32", "{%d, %d, %d}" % (lookups, columns, features))
|
H A D | hashtable_lookup_float_relaxed.mod.py | 20 features = 2 variable 22 table = [x for x in range(rows * features)] 24 for j in range(features): 25 table[i * features + j] = i + j / 10. 31 value = Input("value", "TENSOR_FLOAT32", "{%d, %d}" % (rows, features)) 32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (lookups, features))
|
/aosp12/frameworks/base/telephony/java/android/telephony/ims/ |
H A D | ImsService.java | 331 if (features == null) { in addImsFeatureStatusCallback() 336 ImsFeature f = features.get(featureType); in addImsFeatureStatusCallback() 348 if (features == null) { in removeImsFeatureStatusCallback() 353 ImsFeature f = features.get(featureType); in removeImsFeatureStatusCallback() 364 if (features == null) { in addImsFeature() 366 features = new SparseArray<>(); in addImsFeature() 367 mFeaturesBySlot.put(slotId, features); in addImsFeature() 369 features.put(featureType, f); in addImsFeature() 377 if (features == null) { in removeImsFeature() 382 ImsFeature f = features.get(featureType); in removeImsFeature() [all …]
|
/aosp12/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/ |
H A D | embedding_lookup_v1_3.mod.py | 20 features = 4 variable 22 actual_values = [x for x in range(rows * columns * features)] 25 for k in range(features): 26 actual_values[(i * columns + j) * features + k] = i + j / 10. + k / 100. 31 "{%d, %d, %d}" % (rows, columns, features)) 33 "{%d, %d, %d}" % (lookups, columns, features))
|
H A D | embedding_lookup_quant8_signed.mod.py | 20 features = 4 variable 22 actual_values = [x for x in range(rows * columns * features)] 25 for k in range(features): 26 actual_values[(i * columns + j) * features + k] = i + j / 10. + k / 100. 31 "{%d, %d, %d}" % (rows, columns, features)) 33 "{%d, %d, %d}" % (lookups, columns, features))
|