/aosp12/packages/modules/NeuralNetworks/common/operations/ |
H A D | SVDF.cpp | 81 const uint32_t batch_size = SizeOfDimension(input, 0); in Prepare() local 97 stateShape->dimensions = {batch_size, memory_size * num_filters}; in Prepare() 103 outputShape->dimensions = {batch_size, num_units}; in Prepare() 168 const int batch_size = SizeOfDimension(input_, 0); in EvalFloat32() local 176 for (int b = 0; b < batch_size; b++) { in EvalFloat32() 185 float scratch[batch_size * num_filters]; in EvalFloat32() 186 std::fill_n(scratch, batch_size * num_filters, 0.0f); in EvalFloat32() 192 for (int i = 0; i < batch_size * num_filters; ++i) { in EvalFloat32() 198 for (int b = 0; b < batch_size; b++) { in EvalFloat32() 214 tflite::tensor_utils::ApplyActivationToVector(outputData, batch_size * num_units, in EvalFloat32() [all …]
|
H A D | Multinomial.cpp | 74 const uint32_t batch_size = SizeOfDimension(input, 0); in Prepare() local 79 outputShape->dimensions = {batch_size, sample_count}; in Prepare() 108 const int batch_size = SizeOfDimension(input_, 0); in EvalFloat32() local 120 random_generator.ReserveRandomOutputs(batch_size * sample_count_aligned, 256); in EvalFloat32() 123 for (uint64_t b = 0; b < batch_size; ++b) { in EvalFloat32()
|
H A D | FullyConnected.cpp | 66 uint32_t batch_size = getSizeOfDimension(outputShape, 0); in fullyConnectedFloat32() local 68 if (batch_size * batch_size == input_n_elements) { in fullyConnectedFloat32() 206 uint32_t batch_size = input_size == 0 ? 0 : input_n_elements / input_size; in validateShapes() local 207 if (batch_size != 0) { in validateShapes() 208 NN_RET_CHECK_EQ(input_size * batch_size, input_n_elements); in validateShapes() 218 output->dimensions = {batch_size, num_units}; in validateShapes()
|
H A D | RNN.cpp | 61 const uint32_t batch_size = SizeOfDimension(input, 0); in Prepare() local 72 hiddenStateShape->dimensions = {batch_size, num_units}; in Prepare() 76 outputShape->dimensions = {batch_size, num_units}; in Prepare() 145 const uint32_t batch_size = inputShape.dimensions[0]; in RNNStep() local 160 for (uint32_t b = 0; b < batch_size; b++) { in RNNStep()
|
H A D | MultinomialTest.cpp | 39 MultinomialOpModel(uint32_t batch_size, uint32_t class_size, uint32_t sample_size) in MultinomialOpModel() argument 40 : batch_size_(batch_size), class_size_(class_size), sample_size_(sample_size) { in MultinomialOpModel()
|
/aosp12/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/ |
H A D | qlstm_projection.mod.py | 22 batch_size = 2 variable 27 InputType = ("TENSOR_QUANT8_ASYMM_SIGNED", [batch_size, input_size], 0.0078125, 0) 58 OutputStateType = ("TENSOR_QUANT8_ASYMM_SIGNED", [batch_size, output_size], 3.05176e-05, 0) 59 CellStateType = ("TENSOR_QUANT16_SYMM", [batch_size, num_units], 3.05176e-05, 0) 134 output_state_in: [ 0 for _ in range(batch_size * output_size) ], 135 cell_state_in: [ 0 for _ in range(batch_size * num_units) ], 191 output_state_in: [ 0 for _ in range(batch_size * output_size) ], 192 cell_state_in: [ 0 for _ in range(batch_size * num_units) ],
|
H A D | qlstm_noprojection.mod.py | 22 batch_size = 2 variable 27 InputType = ("TENSOR_QUANT8_ASYMM_SIGNED", [batch_size, input_size], 0.0078125, 0) 58 OutputStateType = ("TENSOR_QUANT8_ASYMM_SIGNED", [batch_size, output_size], 3.05176e-05, 0) 59 CellStateType = ("TENSOR_QUANT16_SYMM", [batch_size, num_units], 3.05176e-05, 0) 128 output_state_in: [ 0 for _ in range(batch_size * output_size) ], 129 cell_state_in: [ 0 for _ in range(batch_size * num_units) ],
|
/aosp12/system/bt/gd/l2cap/classic/cert/ |
H A D | l2cap_performance_test.py | 57 def _basic_mode_tx_fixed_interval(self, mtu, interval=timedelta(seconds=10), batch_size=20): argument 69 for _ in range(batch_size): 71 packets_sent += batch_size 72 … assertThat(cert_channel).emits(L2capMatchers.Data(b'a' * mtu), at_least_times=batch_size)
|
/aosp12/hardware/interfaces/neuralnetworks/1.0/ |
H A D | types.hal | 930 * A 2-D tensor of shape [batch_size, input_size], where “batch_size” 971 * A 2-D tensor of shape [batch_size, output_size]. 973 * A 2-D tensor of shape [batch_size, num_units]. 993 * [batch_size, num_units * 4] without CIFG. 995 * A 2-D tensor of shape [batch_size, output_size]. 997 * A 2-D tensor of shape [batch_size, num_units]. 1261 * A 2-D tensor of shape [batch_size, input_size], where “batch_size” 1273 * A 2-D tensor of shape [batch_size, num_units]. 1281 * A 2-D tensor of shape [batch_size, num_units]. 1405 * A 2-D tensor of shape [batch_size, input_size], where “batch_size” [all …]
|
/aosp12/hardware/google/camera/devices/EmulatedCamera/hwl/ |
H A D | JpegCompressor.cpp | 348 const uint32_t batch_size = DCTSIZE * max_vsamp_factor; in CompressYUV420Frame() local 354 jpeg_write_raw_data(cinfo.get(), planes, batch_size); in CompressYUV420Frame()
|
/aosp12/hardware/qcom/msm8996/kernel-headers/media/ |
H A D | msmb_pproc.h | 70 uint32_t batch_size; member
|
/aosp12/hardware/qcom/msm8996/original-kernel-headers/media/ |
H A D | msmb_pproc.h | 53 uint32_t batch_size; member
|
/aosp12/hardware/interfaces/neuralnetworks/1.3/ |
H A D | types.hal | 1215 * A 2-D tensor of shape [batch_size, input_size], where “batch_size” 1258 * A 2-D tensor of shape [batch_size, num_units]. 1305 * [batch_size, num_units * 4] without CIFG. 1309 * A 2-D tensor of shape [batch_size, num_units]. 1668 * A 2-D tensor of shape [batch_size, input_size], where “batch_size” 1680 * A 2-D tensor of shape [batch_size, num_units]. 1688 * A 2-D tensor of shape [batch_size, num_units]. 1836 * A 2-D tensor of shape [batch_size, input_size], where “batch_size” 1862 * [batch_size, num_units]. 2640 * [max_time, batch_size, fw_output_size] [all …]
|
/aosp12/hardware/interfaces/neuralnetworks/1.2/ |
H A D | types.hal | 1216 * A 2-D tensor of shape [batch_size, input_size], where “batch_size” 1259 * A 2-D tensor of shape [batch_size, num_units]. 1306 * [batch_size, num_units * 4] without CIFG. 1310 * A 2-D tensor of shape [batch_size, num_units]. 1630 * A 2-D tensor of shape [batch_size, input_size], where “batch_size” 1642 * A 2-D tensor of shape [batch_size, num_units]. 1792 * A 2-D tensor of shape [batch_size, input_size], where “batch_size” 1818 * [batch_size, num_units]. 2458 * A 3-D tensor of shape [max_time, batch_size, input_size], where “batch_size” 2537 * [max_time, batch_size, fw_output_size] [all …]
|
/aosp12/hardware/qcom/msm8994/kernel-headers/media/ |
H A D | msmb_pproc.h | 189 uint32_t batch_size; member
|
/aosp12/hardware/qcom/msm8994/original-kernel-headers/media/ |
H A D | msmb_pproc.h | 187 uint32_t batch_size; member
|
/aosp12/packages/modules/NeuralNetworks/tools/api/ |
H A D | types.spec | 1651 * A 2-D tensor of shape [batch_size, input_size], where “batch_size” 1692 * A 2-D tensor of shape [batch_size, output_size]. 1694 * A 2-D tensor of shape [batch_size, num_units]. 1745 * [batch_size, num_units * 4] without CIFG. 1747 * A 2-D tensor of shape [batch_size, output_size]. 1749 * A 2-D tensor of shape [batch_size, num_units]. 2196 * A 2-D tensor of shape [batch_size, input_size], where “batch_size” 2208 * A 2-D tensor of shape [batch_size, num_units]. 2216 * A 2-D tensor of shape [batch_size, num_units]. 2400 * A 2-D tensor of shape [batch_size, input_size], where “batch_size” [all …]
|
/aosp12/hardware/qcom/camera/msm8998/QCamera2/stack/common/ |
H A D | cam_types.h | 1846 uint8_t batch_size; member
|
/aosp12/hardware/qcom/camera/msm8998/QCamera2/HAL/ |
H A D | QCameraParameters.cpp | 13714 stream_config_info.batch_size = getBufBatchCount(); in setStreamConfigure() 13723 stream_config_info.batch_size); in setStreamConfigure()
|