1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18
19 #define LOG_TAG "AudioFlinger"
20 //#define LOG_NDEBUG 0
21 #define ATRACE_TAG ATRACE_TAG_AUDIO
22
23 #include "Configuration.h"
24 #include <math.h>
25 #include <fcntl.h>
26 #include <memory>
27 #include <sstream>
28 #include <string>
29 #include <linux/futex.h>
30 #include <sys/stat.h>
31 #include <sys/syscall.h>
32 #include <cutils/bitops.h>
33 #include <cutils/properties.h>
34 #include <media/AudioContainers.h>
35 #include <media/AudioDeviceTypeAddr.h>
36 #include <media/AudioParameter.h>
37 #include <media/AudioResamplerPublic.h>
38 #include <media/RecordBufferConverter.h>
39 #include <media/TypeConverter.h>
40 #include <utils/Log.h>
41 #include <utils/Trace.h>
42
43 #include <private/media/AudioTrackShared.h>
44 #include <private/android_filesystem_config.h>
45 #include <audio_utils/Balance.h>
46 #include <audio_utils/Metadata.h>
47 #include <audio_utils/channels.h>
48 #include <audio_utils/mono_blend.h>
49 #include <audio_utils/primitives.h>
50 #include <audio_utils/format.h>
51 #include <audio_utils/minifloat.h>
52 #include <audio_utils/safe_math.h>
53 #include <system/audio_effects/effect_aec.h>
54 #include <system/audio_effects/effect_downmix.h>
55 #include <system/audio_effects/effect_ns.h>
56 #include <system/audio_effects/effect_spatializer.h>
57 #include <system/audio.h>
58
59 // NBAIO implementations
60 #include <media/nbaio/AudioStreamInSource.h>
61 #include <media/nbaio/AudioStreamOutSink.h>
62 #include <media/nbaio/MonoPipe.h>
63 #include <media/nbaio/MonoPipeReader.h>
64 #include <media/nbaio/Pipe.h>
65 #include <media/nbaio/PipeReader.h>
66 #include <media/nbaio/SourceAudioBufferProvider.h>
67 #include <mediautils/BatteryNotifier.h>
68
69 #include <audiomanager/AudioManager.h>
70 #include <powermanager/PowerManager.h>
71
72 #include <media/audiohal/EffectsFactoryHalInterface.h>
73 #include <media/audiohal/StreamHalInterface.h>
74
75 #include "AudioFlinger.h"
76 #include "FastMixer.h"
77 #include "FastCapture.h"
78 #include <mediautils/SchedulingPolicyService.h>
79 #include <mediautils/ServiceUtilities.h>
80
81 #ifdef ADD_BATTERY_DATA
82 #include <media/IMediaPlayerService.h>
83 #include <media/IMediaDeathNotifier.h>
84 #endif
85
86 #ifdef DEBUG_CPU_USAGE
87 #include <audio_utils/Statistics.h>
88 #include <cpustats/ThreadCpuUsage.h>
89 #endif
90
91 #include "AutoPark.h"
92
93 #include <pthread.h>
94 #include "TypedLogger.h"
95
96 // ----------------------------------------------------------------------------
97
98 // Note: the following macro is used for extremely verbose logging message. In
99 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
100 // 0; but one side effect of this is to turn all LOGV's as well. Some messages
101 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
102 // turned on. Do not uncomment the #def below unless you really know what you
103 // are doing and want to see all of the extremely verbose messages.
104 //#define VERY_VERY_VERBOSE_LOGGING
105 #ifdef VERY_VERY_VERBOSE_LOGGING
106 #define ALOGVV ALOGV
107 #else
108 #define ALOGVV(a...) do { } while(0)
109 #endif
110
111 // TODO: Move these macro/inlines to a header file.
112 #define max(a, b) ((a) > (b) ? (a) : (b))
113
114 template <typename T>
min(const T & a,const T & b)115 static inline T min(const T& a, const T& b)
116 {
117 return a < b ? a : b;
118 }
119
120 namespace android {
121
122 using media::IEffectClient;
123 using content::AttributionSourceState;
124
125 // retry counts for buffer fill timeout
126 // 50 * ~20msecs = 1 second
127 static const int8_t kMaxTrackRetries = 50;
128 static const int8_t kMaxTrackStartupRetries = 50;
129
130 // allow less retry attempts on direct output thread.
131 // direct outputs can be a scarce resource in audio hardware and should
132 // be released as quickly as possible.
133 // Notes:
134 // 1) The retry duration kMaxTrackRetriesDirectMs may be increased
135 // in case the data write is bursty for the AudioTrack. The application
136 // should endeavor to write at least once every kMaxTrackRetriesDirectMs
137 // to prevent an underrun situation. If the data is bursty, then
138 // the application can also throttle the data sent to be even.
139 // 2) For compressed audio data, any data present in the AudioTrack buffer
140 // will be sent and reset the retry count. This delivers data as
141 // it arrives, with approximately kDirectMinSleepTimeUs = 10ms checking interval.
142 // 3) For linear PCM or proportional PCM, we wait one period for a period's worth
143 // of data to be available, then any remaining data is delivered.
144 // This is required to ensure the last bit of data is delivered before underrun.
145 //
146 // Sleep time per cycle is kDirectMinSleepTimeUs for compressed tracks
147 // or the size of the HAL period for proportional / linear PCM tracks.
148 static const int32_t kMaxTrackRetriesDirectMs = 200;
149
150 // don't warn about blocked writes or record buffer overflows more often than this
151 static const nsecs_t kWarningThrottleNs = seconds(5);
152
153 // RecordThread loop sleep time upon application overrun or audio HAL read error
154 static const int kRecordThreadSleepUs = 5000;
155
156 // maximum time to wait in sendConfigEvent_l() for a status to be received
157 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
158
159 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
160 static const uint32_t kMinThreadSleepTimeUs = 5000;
161 // maximum divider applied to the active sleep time in the mixer thread loop
162 static const uint32_t kMaxThreadSleepTimeShift = 2;
163
164 // minimum normal sink buffer size, expressed in milliseconds rather than frames
165 // FIXME This should be based on experimentally observed scheduling jitter
166 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
167 // maximum normal sink buffer size
168 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
169
170 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread
171 // FIXME This should be based on experimentally observed scheduling jitter
172 static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
173
174 // Offloaded output thread standby delay: allows track transition without going to standby
175 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
176
177 // Direct output thread minimum sleep time in idle or active(underrun) state
178 static const nsecs_t kDirectMinSleepTimeUs = 10000;
179
180 // The universal constant for ubiquitous 20ms value. The value of 20ms seems to provide a good
181 // balance between power consumption and latency, and allows threads to be scheduled reliably
182 // by the CFS scheduler.
183 // FIXME Express other hardcoded references to 20ms with references to this constant and move
184 // it appropriately.
185 #define FMS_20 20
186
187 // Whether to use fast mixer
188 static const enum {
189 FastMixer_Never, // never initialize or use: for debugging only
190 FastMixer_Always, // always initialize and use, even if not needed: for debugging only
191 // normal mixer multiplier is 1
192 FastMixer_Static, // initialize if needed, then use all the time if initialized,
193 // multiplier is calculated based on min & max normal mixer buffer size
194 FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load,
195 // multiplier is calculated based on min & max normal mixer buffer size
196 // FIXME for FastMixer_Dynamic:
197 // Supporting this option will require fixing HALs that can't handle large writes.
198 // For example, one HAL implementation returns an error from a large write,
199 // and another HAL implementation corrupts memory, possibly in the sample rate converter.
200 // We could either fix the HAL implementations, or provide a wrapper that breaks
201 // up large writes into smaller ones, and the wrapper would need to deal with scheduler.
202 } kUseFastMixer = FastMixer_Static;
203
204 // Whether to use fast capture
205 static const enum {
206 FastCapture_Never, // never initialize or use: for debugging only
207 FastCapture_Always, // always initialize and use, even if not needed: for debugging only
208 FastCapture_Static, // initialize if needed, then use all the time if initialized
209 } kUseFastCapture = FastCapture_Static;
210
211 // Priorities for requestPriority
212 static const int kPriorityAudioApp = 2;
213 static const int kPriorityFastMixer = 3;
214 static const int kPriorityFastCapture = 3;
215
216 // IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
217 // track buffer in shared memory. Zero on input means to use a default value. For fast tracks,
218 // AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
219
220 // This is the default value, if not specified by property.
221 static const int kFastTrackMultiplier = 2;
222
223 // The minimum and maximum allowed values
224 static const int kFastTrackMultiplierMin = 1;
225 static const int kFastTrackMultiplierMax = 2;
226
227 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
228 static int sFastTrackMultiplier = kFastTrackMultiplier;
229
230 // See Thread::readOnlyHeap().
231 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
232 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
233 // and that all "fast" AudioRecord clients read from. In either case, the size can be small.
234 static const size_t kRecordThreadReadOnlyHeapSize = 0xD000;
235
236 // ----------------------------------------------------------------------------
237
238 // TODO: move all toString helpers to audio.h
239 // under #ifdef __cplusplus #endif
patchSinksToString(const struct audio_patch * patch)240 static std::string patchSinksToString(const struct audio_patch *patch)
241 {
242 std::stringstream ss;
243 for (size_t i = 0; i < patch->num_sinks; ++i) {
244 if (i > 0) {
245 ss << "|";
246 }
247 ss << "(" << toString(patch->sinks[i].ext.device.type)
248 << ", " << patch->sinks[i].ext.device.address << ")";
249 }
250 return ss.str();
251 }
252
patchSourcesToString(const struct audio_patch * patch)253 static std::string patchSourcesToString(const struct audio_patch *patch)
254 {
255 std::stringstream ss;
256 for (size_t i = 0; i < patch->num_sources; ++i) {
257 if (i > 0) {
258 ss << "|";
259 }
260 ss << "(" << toString(patch->sources[i].ext.device.type)
261 << ", " << patch->sources[i].ext.device.address << ")";
262 }
263 return ss.str();
264 }
265
266 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
267
sFastTrackMultiplierInit()268 static void sFastTrackMultiplierInit()
269 {
270 char value[PROPERTY_VALUE_MAX];
271 if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
272 char *endptr;
273 unsigned long ul = strtoul(value, &endptr, 0);
274 if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
275 sFastTrackMultiplier = (int) ul;
276 }
277 }
278 }
279
280 // ----------------------------------------------------------------------------
281
282 #ifdef ADD_BATTERY_DATA
283 // To collect the amplifier usage
addBatteryData(uint32_t params)284 static void addBatteryData(uint32_t params) {
285 sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
286 if (service == NULL) {
287 // it already logged
288 return;
289 }
290
291 service->addBatteryData(params);
292 }
293 #endif
294
295 // Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
296 struct {
297 // call when you acquire a partial wakelock
acquireandroid::__anon2ea00b180308298 void acquire(const sp<IBinder> &wakeLockToken) {
299 pthread_mutex_lock(&mLock);
300 if (wakeLockToken.get() == nullptr) {
301 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
302 } else {
303 if (mCount == 0) {
304 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
305 }
306 ++mCount;
307 }
308 pthread_mutex_unlock(&mLock);
309 }
310
311 // call when you release a partial wakelock.
releaseandroid::__anon2ea00b180308312 void release(const sp<IBinder> &wakeLockToken) {
313 if (wakeLockToken.get() == nullptr) {
314 return;
315 }
316 pthread_mutex_lock(&mLock);
317 if (--mCount < 0) {
318 ALOGE("negative wakelock count");
319 mCount = 0;
320 }
321 pthread_mutex_unlock(&mLock);
322 }
323
324 // retrieves the boottime timebase offset from monotonic.
getBoottimeOffsetandroid::__anon2ea00b180308325 int64_t getBoottimeOffset() {
326 pthread_mutex_lock(&mLock);
327 int64_t boottimeOffset = mBoottimeOffset;
328 pthread_mutex_unlock(&mLock);
329 return boottimeOffset;
330 }
331
332 // Adjusts the timebase offset between TIMEBASE_MONOTONIC
333 // and the selected timebase.
334 // Currently only TIMEBASE_BOOTTIME is allowed.
335 //
336 // This only needs to be called upon acquiring the first partial wakelock
337 // after all other partial wakelocks are released.
338 //
339 // We do an empirical measurement of the offset rather than parsing
340 // /proc/timer_list since the latter is not a formal kernel ABI.
adjustTimebaseOffsetandroid::__anon2ea00b180308341 static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
342 int clockbase;
343 switch (timebase) {
344 case ExtendedTimestamp::TIMEBASE_BOOTTIME:
345 clockbase = SYSTEM_TIME_BOOTTIME;
346 break;
347 default:
348 LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
349 break;
350 }
351 // try three times to get the clock offset, choose the one
352 // with the minimum gap in measurements.
353 const int tries = 3;
354 nsecs_t bestGap, measured;
355 for (int i = 0; i < tries; ++i) {
356 const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
357 const nsecs_t tbase = systemTime(clockbase);
358 const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
359 const nsecs_t gap = tmono2 - tmono;
360 if (i == 0 || gap < bestGap) {
361 bestGap = gap;
362 measured = tbase - ((tmono + tmono2) >> 1);
363 }
364 }
365
366 // to avoid micro-adjusting, we don't change the timebase
367 // unless it is significantly different.
368 //
369 // Assumption: It probably takes more than toleranceNs to
370 // suspend and resume the device.
371 static int64_t toleranceNs = 10000; // 10 us
372 if (llabs(*offset - measured) > toleranceNs) {
373 ALOGV("Adjusting timebase offset old: %lld new: %lld",
374 (long long)*offset, (long long)measured);
375 *offset = measured;
376 }
377 }
378
379 pthread_mutex_t mLock;
380 int32_t mCount;
381 int64_t mBoottimeOffset;
382 } gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
383
384 // ----------------------------------------------------------------------------
385 // CPU Stats
386 // ----------------------------------------------------------------------------
387
388 class CpuStats {
389 public:
390 CpuStats();
391 void sample(const String8 &title);
392 #ifdef DEBUG_CPU_USAGE
393 private:
394 ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns
395 audio_utils::Statistics<double> mWcStats; // statistics on thread CPU usage in wall clock ns
396
397 audio_utils::Statistics<double> mHzStats; // statistics on thread CPU usage in cycles
398
399 int mCpuNum; // thread's current CPU number
400 int mCpukHz; // frequency of thread's current CPU in kHz
401 #endif
402 };
403
CpuStats()404 CpuStats::CpuStats()
405 #ifdef DEBUG_CPU_USAGE
406 : mCpuNum(-1), mCpukHz(-1)
407 #endif
408 {
409 }
410
sample(const String8 & title __unused)411 void CpuStats::sample(const String8 &title
412 #ifndef DEBUG_CPU_USAGE
413 __unused
414 #endif
415 ) {
416 #ifdef DEBUG_CPU_USAGE
417 // get current thread's delta CPU time in wall clock ns
418 double wcNs;
419 bool valid = mCpuUsage.sampleAndEnable(wcNs);
420
421 // record sample for wall clock statistics
422 if (valid) {
423 mWcStats.add(wcNs);
424 }
425
426 // get the current CPU number
427 int cpuNum = sched_getcpu();
428
429 // get the current CPU frequency in kHz
430 int cpukHz = mCpuUsage.getCpukHz(cpuNum);
431
432 // check if either CPU number or frequency changed
433 if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
434 mCpuNum = cpuNum;
435 mCpukHz = cpukHz;
436 // ignore sample for purposes of cycles
437 valid = false;
438 }
439
440 // if no change in CPU number or frequency, then record sample for cycle statistics
441 if (valid && mCpukHz > 0) {
442 const double cycles = wcNs * cpukHz * 0.000001;
443 mHzStats.add(cycles);
444 }
445
446 const unsigned n = mWcStats.getN();
447 // mCpuUsage.elapsed() is expensive, so don't call it every loop
448 if ((n & 127) == 1) {
449 const long long elapsed = mCpuUsage.elapsed();
450 if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
451 const double perLoop = elapsed / (double) n;
452 const double perLoop100 = perLoop * 0.01;
453 const double perLoop1k = perLoop * 0.001;
454 const double mean = mWcStats.getMean();
455 const double stddev = mWcStats.getStdDev();
456 const double minimum = mWcStats.getMin();
457 const double maximum = mWcStats.getMax();
458 const double meanCycles = mHzStats.getMean();
459 const double stddevCycles = mHzStats.getStdDev();
460 const double minCycles = mHzStats.getMin();
461 const double maxCycles = mHzStats.getMax();
462 mCpuUsage.resetElapsed();
463 mWcStats.reset();
464 mHzStats.reset();
465 ALOGD("CPU usage for %s over past %.1f secs\n"
466 " (%u mixer loops at %.1f mean ms per loop):\n"
467 " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
468 " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
469 " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
470 title.string(),
471 elapsed * .000000001, n, perLoop * .000001,
472 mean * .001,
473 stddev * .001,
474 minimum * .001,
475 maximum * .001,
476 mean / perLoop100,
477 stddev / perLoop100,
478 minimum / perLoop100,
479 maximum / perLoop100,
480 meanCycles / perLoop1k,
481 stddevCycles / perLoop1k,
482 minCycles / perLoop1k,
483 maxCycles / perLoop1k);
484
485 }
486 }
487 #endif
488 };
489
490 // ----------------------------------------------------------------------------
491 // ThreadBase
492 // ----------------------------------------------------------------------------
493
494 // static
threadTypeToString(AudioFlinger::ThreadBase::type_t type)495 const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
496 {
497 switch (type) {
498 case MIXER:
499 return "MIXER";
500 case DIRECT:
501 return "DIRECT";
502 case DUPLICATING:
503 return "DUPLICATING";
504 case RECORD:
505 return "RECORD";
506 case OFFLOAD:
507 return "OFFLOAD";
508 case MMAP_PLAYBACK:
509 return "MMAP_PLAYBACK";
510 case MMAP_CAPTURE:
511 return "MMAP_CAPTURE";
512 case SPATIALIZER:
513 return "SPATIALIZER";
514 default:
515 return "unknown";
516 }
517 }
518
ThreadBase(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,type_t type,bool systemReady,bool isOut)519 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
520 type_t type, bool systemReady, bool isOut)
521 : Thread(false /*canCallJava*/),
522 mType(type),
523 mAudioFlinger(audioFlinger),
524 mThreadMetrics(std::string(AMEDIAMETRICS_KEY_PREFIX_AUDIO_THREAD) + std::to_string(id),
525 isOut),
526 mIsOut(isOut),
527 // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
528 // are set by PlaybackThread::readOutputParameters_l() or
529 // RecordThread::readInputParameters_l()
530 //FIXME: mStandby should be true here. Is this some kind of hack?
531 mStandby(false),
532 mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
533 // mName will be set by concrete (non-virtual) subclass
534 mDeathRecipient(new PMDeathRecipient(this)),
535 mSystemReady(systemReady),
536 mSignalPending(false)
537 {
538 mThreadMetrics.logConstructor(getpid(), threadTypeToString(type), id);
539 memset(&mPatch, 0, sizeof(struct audio_patch));
540 }
541
~ThreadBase()542 AudioFlinger::ThreadBase::~ThreadBase()
543 {
544 // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
545 mConfigEvents.clear();
546
547 // do not lock the mutex in destructor
548 releaseWakeLock_l();
549 if (mPowerManager != 0) {
550 sp<IBinder> binder = IInterface::asBinder(mPowerManager);
551 binder->unlinkToDeath(mDeathRecipient);
552 }
553
554 sendStatistics(true /* force */);
555 }
556
readyToRun()557 status_t AudioFlinger::ThreadBase::readyToRun()
558 {
559 status_t status = initCheck();
560 if (status == NO_ERROR) {
561 ALOGI("AudioFlinger's thread %p tid=%d ready to run", this, getTid());
562 } else {
563 ALOGE("No working audio driver found.");
564 }
565 return status;
566 }
567
exit()568 void AudioFlinger::ThreadBase::exit()
569 {
570 ALOGV("ThreadBase::exit");
571 // do any cleanup required for exit to succeed
572 preExit();
573 {
574 // This lock prevents the following race in thread (uniprocessor for illustration):
575 // if (!exitPending()) {
576 // // context switch from here to exit()
577 // // exit() calls requestExit(), what exitPending() observes
578 // // exit() calls signal(), which is dropped since no waiters
579 // // context switch back from exit() to here
580 // mWaitWorkCV.wait(...);
581 // // now thread is hung
582 // }
583 AutoMutex lock(mLock);
584 requestExit();
585 mWaitWorkCV.broadcast();
586 }
587 // When Thread::requestExitAndWait is made virtual and this method is renamed to
588 // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
589 requestExitAndWait();
590 }
591
setParameters(const String8 & keyValuePairs)592 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
593 {
594 ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
595 Mutex::Autolock _l(mLock);
596
597 return sendSetParameterConfigEvent_l(keyValuePairs);
598 }
599
600 // sendConfigEvent_l() must be called with ThreadBase::mLock held
601 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
sendConfigEvent_l(sp<ConfigEvent> & event)602 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
603 {
604 status_t status = NO_ERROR;
605
606 if (event->mRequiresSystemReady && !mSystemReady) {
607 event->mWaitStatus = false;
608 mPendingConfigEvents.add(event);
609 return status;
610 }
611 mConfigEvents.add(event);
612 ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
613 mWaitWorkCV.signal();
614 mLock.unlock();
615 {
616 Mutex::Autolock _l(event->mLock);
617 while (event->mWaitStatus) {
618 if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
619 event->mStatus = TIMED_OUT;
620 event->mWaitStatus = false;
621 }
622 }
623 status = event->mStatus;
624 }
625 mLock.lock();
626 return status;
627 }
628
sendIoConfigEvent(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)629 void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid,
630 audio_port_handle_t portId)
631 {
632 Mutex::Autolock _l(mLock);
633 sendIoConfigEvent_l(event, pid, portId);
634 }
635
636 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
sendIoConfigEvent_l(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)637 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid,
638 audio_port_handle_t portId)
639 {
640 // The audio statistics history is exponentially weighted to forget events
641 // about five or more seconds in the past. In order to have
642 // crisper statistics for mediametrics, we reset the statistics on
643 // an IoConfigEvent, to reflect different properties for a new device.
644 mIoJitterMs.reset();
645 mLatencyMs.reset();
646 mProcessTimeMs.reset();
647 mTimestampVerifier.discontinuity(mTimestampVerifier.DISCONTINUITY_MODE_CONTINUOUS);
648
649 sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid, portId);
650 sendConfigEvent_l(configEvent);
651 }
652
sendPrioConfigEvent(pid_t pid,pid_t tid,int32_t prio,bool forApp)653 void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio, bool forApp)
654 {
655 Mutex::Autolock _l(mLock);
656 sendPrioConfigEvent_l(pid, tid, prio, forApp);
657 }
658
659 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
sendPrioConfigEvent_l(pid_t pid,pid_t tid,int32_t prio,bool forApp)660 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(
661 pid_t pid, pid_t tid, int32_t prio, bool forApp)
662 {
663 sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio, forApp);
664 sendConfigEvent_l(configEvent);
665 }
666
667 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
sendSetParameterConfigEvent_l(const String8 & keyValuePair)668 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
669 {
670 sp<ConfigEvent> configEvent;
671 AudioParameter param(keyValuePair);
672 int value;
673 if (param.getInt(String8(AudioParameter::keyMonoOutput), value) == NO_ERROR) {
674 setMasterMono_l(value != 0);
675 if (param.size() == 1) {
676 return NO_ERROR; // should be a solo parameter - we don't pass down
677 }
678 param.remove(String8(AudioParameter::keyMonoOutput));
679 configEvent = new SetParameterConfigEvent(param.toString());
680 } else {
681 configEvent = new SetParameterConfigEvent(keyValuePair);
682 }
683 return sendConfigEvent_l(configEvent);
684 }
685
sendCreateAudioPatchConfigEvent(const struct audio_patch * patch,audio_patch_handle_t * handle)686 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
687 const struct audio_patch *patch,
688 audio_patch_handle_t *handle)
689 {
690 Mutex::Autolock _l(mLock);
691 sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
692 status_t status = sendConfigEvent_l(configEvent);
693 if (status == NO_ERROR) {
694 CreateAudioPatchConfigEventData *data =
695 (CreateAudioPatchConfigEventData *)configEvent->mData.get();
696 *handle = data->mHandle;
697 }
698 return status;
699 }
700
sendReleaseAudioPatchConfigEvent(const audio_patch_handle_t handle)701 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
702 const audio_patch_handle_t handle)
703 {
704 Mutex::Autolock _l(mLock);
705 sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
706 return sendConfigEvent_l(configEvent);
707 }
708
sendUpdateOutDeviceConfigEvent(const DeviceDescriptorBaseVector & outDevices)709 status_t AudioFlinger::ThreadBase::sendUpdateOutDeviceConfigEvent(
710 const DeviceDescriptorBaseVector& outDevices)
711 {
712 if (type() != RECORD) {
713 // The update out device operation is only for record thread.
714 return INVALID_OPERATION;
715 }
716 Mutex::Autolock _l(mLock);
717 sp<ConfigEvent> configEvent = (ConfigEvent *)new UpdateOutDevicesConfigEvent(outDevices);
718 return sendConfigEvent_l(configEvent);
719 }
720
sendResizeBufferConfigEvent_l(int32_t maxSharedAudioHistoryMs)721 void AudioFlinger::ThreadBase::sendResizeBufferConfigEvent_l(int32_t maxSharedAudioHistoryMs)
722 {
723 ALOG_ASSERT(type() == RECORD, "sendResizeBufferConfigEvent_l() called on non record thread");
724 sp<ConfigEvent> configEvent =
725 (ConfigEvent *)new ResizeBufferConfigEvent(maxSharedAudioHistoryMs);
726 sendConfigEvent_l(configEvent);
727 }
728
sendCheckOutputStageEffectsEvent()729 void AudioFlinger::ThreadBase::sendCheckOutputStageEffectsEvent()
730 {
731 Mutex::Autolock _l(mLock);
732 sendCheckOutputStageEffectsEvent_l();
733 }
734
sendCheckOutputStageEffectsEvent_l()735 void AudioFlinger::ThreadBase::sendCheckOutputStageEffectsEvent_l()
736 {
737 sp<ConfigEvent> configEvent =
738 (ConfigEvent *)new CheckOutputStageEffectsEvent();
739 sendConfigEvent_l(configEvent);
740 }
741
742 // post condition: mConfigEvents.isEmpty()
processConfigEvents_l()743 void AudioFlinger::ThreadBase::processConfigEvents_l()
744 {
745 bool configChanged = false;
746
747 while (!mConfigEvents.isEmpty()) {
748 ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
749 sp<ConfigEvent> event = mConfigEvents[0];
750 mConfigEvents.removeAt(0);
751 switch (event->mType) {
752 case CFG_EVENT_PRIO: {
753 PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
754 // FIXME Need to understand why this has to be done asynchronously
755 int err = requestPriority(data->mPid, data->mTid, data->mPrio, data->mForApp,
756 true /*asynchronous*/);
757 if (err != 0) {
758 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
759 data->mPrio, data->mPid, data->mTid, err);
760 }
761 } break;
762 case CFG_EVENT_IO: {
763 IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
764 ioConfigChanged(data->mEvent, data->mPid, data->mPortId);
765 } break;
766 case CFG_EVENT_SET_PARAMETER: {
767 SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
768 if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
769 configChanged = true;
770 mLocalLog.log("CFG_EVENT_SET_PARAMETER: (%s) configuration changed",
771 data->mKeyValuePairs.string());
772 }
773 } break;
774 case CFG_EVENT_CREATE_AUDIO_PATCH: {
775 const DeviceTypeSet oldDevices = getDeviceTypes();
776 CreateAudioPatchConfigEventData *data =
777 (CreateAudioPatchConfigEventData *)event->mData.get();
778 event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
779 const DeviceTypeSet newDevices = getDeviceTypes();
780 mLocalLog.log("CFG_EVENT_CREATE_AUDIO_PATCH: old device %s (%s) new device %s (%s)",
781 dumpDeviceTypes(oldDevices).c_str(), toString(oldDevices).c_str(),
782 dumpDeviceTypes(newDevices).c_str(), toString(newDevices).c_str());
783 } break;
784 case CFG_EVENT_RELEASE_AUDIO_PATCH: {
785 const DeviceTypeSet oldDevices = getDeviceTypes();
786 ReleaseAudioPatchConfigEventData *data =
787 (ReleaseAudioPatchConfigEventData *)event->mData.get();
788 event->mStatus = releaseAudioPatch_l(data->mHandle);
789 const DeviceTypeSet newDevices = getDeviceTypes();
790 mLocalLog.log("CFG_EVENT_RELEASE_AUDIO_PATCH: old device %s (%s) new device %s (%s)",
791 dumpDeviceTypes(oldDevices).c_str(), toString(oldDevices).c_str(),
792 dumpDeviceTypes(newDevices).c_str(), toString(newDevices).c_str());
793 } break;
794 case CFG_EVENT_UPDATE_OUT_DEVICE: {
795 UpdateOutDevicesConfigEventData *data =
796 (UpdateOutDevicesConfigEventData *)event->mData.get();
797 updateOutDevices(data->mOutDevices);
798 } break;
799 case CFG_EVENT_RESIZE_BUFFER: {
800 ResizeBufferConfigEventData *data =
801 (ResizeBufferConfigEventData *)event->mData.get();
802 resizeInputBuffer_l(data->mMaxSharedAudioHistoryMs);
803 } break;
804
805 case CFG_EVENT_CHECK_OUTPUT_STAGE_EFFECTS: {
806 setCheckOutputStageEffects();
807 } break;
808
809 default:
810 ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
811 break;
812 }
813 {
814 Mutex::Autolock _l(event->mLock);
815 if (event->mWaitStatus) {
816 event->mWaitStatus = false;
817 event->mCond.signal();
818 }
819 }
820 ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
821 }
822
823 if (configChanged) {
824 cacheParameters_l();
825 }
826 }
827
channelMaskToString(audio_channel_mask_t mask,bool output)828 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
829 String8 s;
830 const audio_channel_representation_t representation =
831 audio_channel_mask_get_representation(mask);
832
833 switch (representation) {
834 // Travel all single bit channel mask to convert channel mask to string.
835 case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
836 if (output) {
837 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
838 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
839 if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
840 if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low-frequency, ");
841 if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
842 if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
843 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
844 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
845 if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
846 if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
847 if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
848 if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
849 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
850 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
851 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
852 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
853 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, ");
854 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, ");
855 if (mask & AUDIO_CHANNEL_OUT_TOP_SIDE_LEFT) s.append("top-side-left, ");
856 if (mask & AUDIO_CHANNEL_OUT_TOP_SIDE_RIGHT) s.append("top-side-right, ");
857 if (mask & AUDIO_CHANNEL_OUT_BOTTOM_FRONT_LEFT) s.append("bottom-front-left, ");
858 if (mask & AUDIO_CHANNEL_OUT_BOTTOM_FRONT_CENTER) s.append("bottom-front-center, ");
859 if (mask & AUDIO_CHANNEL_OUT_BOTTOM_FRONT_RIGHT) s.append("bottom-front-right, ");
860 if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY_2) s.append("low-frequency-2, ");
861 if (mask & AUDIO_CHANNEL_OUT_HAPTIC_B) s.append("haptic-B, ");
862 if (mask & AUDIO_CHANNEL_OUT_HAPTIC_A) s.append("haptic-A, ");
863 if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, ");
864 } else {
865 if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
866 if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
867 if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
868 if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
869 if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
870 if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
871 if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
872 if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
873 if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
874 if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
875 if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
876 if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
877 if (mask & AUDIO_CHANNEL_IN_BACK_LEFT) s.append("back-left, ");
878 if (mask & AUDIO_CHANNEL_IN_BACK_RIGHT) s.append("back-right, ");
879 if (mask & AUDIO_CHANNEL_IN_CENTER) s.append("center, ");
880 if (mask & AUDIO_CHANNEL_IN_LOW_FREQUENCY) s.append("low-frequency, ");
881 if (mask & AUDIO_CHANNEL_IN_TOP_LEFT) s.append("top-left, ");
882 if (mask & AUDIO_CHANNEL_IN_TOP_RIGHT) s.append("top-right, ");
883 if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
884 if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
885 if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, ");
886 }
887 const int len = s.length();
888 if (len > 2) {
889 (void) s.lockBuffer(len); // needed?
890 s.unlockBuffer(len - 2); // remove trailing ", "
891 }
892 return s;
893 }
894 case AUDIO_CHANNEL_REPRESENTATION_INDEX:
895 s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
896 return s;
897 default:
898 s.appendFormat("unknown mask, representation:%d bits:%#x",
899 representation, audio_channel_mask_get_bits(mask));
900 return s;
901 }
902 }
903
dump(int fd,const Vector<String16> & args)904 void AudioFlinger::ThreadBase::dump(int fd, const Vector<String16>& args)
905 {
906 dprintf(fd, "\n%s thread %p, name %s, tid %d, type %d (%s):\n", isOutput() ? "Output" : "Input",
907 this, mThreadName, getTid(), type(), threadTypeToString(type()));
908
909 bool locked = AudioFlinger::dumpTryLock(mLock);
910 if (!locked) {
911 dprintf(fd, " Thread may be deadlocked\n");
912 }
913
914 dumpBase_l(fd, args);
915 dumpInternals_l(fd, args);
916 dumpTracks_l(fd, args);
917 dumpEffectChains_l(fd, args);
918
919 if (locked) {
920 mLock.unlock();
921 }
922
923 dprintf(fd, " Local log:\n");
924 mLocalLog.dump(fd, " " /* prefix */, 40 /* lines */);
925 }
926
dumpBase_l(int fd,const Vector<String16> & args __unused)927 void AudioFlinger::ThreadBase::dumpBase_l(int fd, const Vector<String16>& args __unused)
928 {
929 dprintf(fd, " I/O handle: %d\n", mId);
930 dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no");
931 dprintf(fd, " Sample rate: %u Hz\n", mSampleRate);
932 dprintf(fd, " HAL frame count: %zu\n", mFrameCount);
933 dprintf(fd, " HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat).c_str());
934 dprintf(fd, " HAL buffer size: %zu bytes\n", mBufferSize);
935 dprintf(fd, " Channel count: %u\n", mChannelCount);
936 dprintf(fd, " Channel mask: 0x%08x (%s)\n", mChannelMask,
937 channelMaskToString(mChannelMask, mType != RECORD).string());
938 dprintf(fd, " Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat).c_str());
939 dprintf(fd, " Processing frame size: %zu bytes\n", mFrameSize);
940 dprintf(fd, " Pending config events:");
941 size_t numConfig = mConfigEvents.size();
942 if (numConfig) {
943 const size_t SIZE = 256;
944 char buffer[SIZE];
945 for (size_t i = 0; i < numConfig; i++) {
946 mConfigEvents[i]->dump(buffer, SIZE);
947 dprintf(fd, "\n %s", buffer);
948 }
949 dprintf(fd, "\n");
950 } else {
951 dprintf(fd, " none\n");
952 }
953 // Note: output device may be used by capture threads for effects such as AEC.
954 dprintf(fd, " Output devices: %s (%s)\n",
955 dumpDeviceTypes(outDeviceTypes()).c_str(), toString(outDeviceTypes()).c_str());
956 dprintf(fd, " Input device: %#x (%s)\n",
957 inDeviceType(), toString(inDeviceType()).c_str());
958 dprintf(fd, " Audio source: %d (%s)\n", mAudioSource, toString(mAudioSource).c_str());
959
960 // Dump timestamp statistics for the Thread types that support it.
961 if (mType == RECORD
962 || mType == MIXER
963 || mType == DUPLICATING
964 || mType == DIRECT
965 || mType == OFFLOAD) {
966 dprintf(fd, " Timestamp stats: %s\n", mTimestampVerifier.toString().c_str());
967 dprintf(fd, " Timestamp corrected: %s\n", isTimestampCorrectionEnabled() ? "yes" : "no");
968 }
969
970 if (mLastIoBeginNs > 0) { // MMAP may not set this
971 dprintf(fd, " Last %s occurred (msecs): %lld\n",
972 isOutput() ? "write" : "read",
973 (long long) (systemTime() - mLastIoBeginNs) / NANOS_PER_MILLISECOND);
974 }
975
976 if (mProcessTimeMs.getN() > 0) {
977 dprintf(fd, " Process time ms stats: %s\n", mProcessTimeMs.toString().c_str());
978 }
979
980 if (mIoJitterMs.getN() > 0) {
981 dprintf(fd, " Hal %s jitter ms stats: %s\n",
982 isOutput() ? "write" : "read",
983 mIoJitterMs.toString().c_str());
984 }
985
986 if (mLatencyMs.getN() > 0) {
987 dprintf(fd, " Threadloop %s latency stats: %s\n",
988 isOutput() ? "write" : "read",
989 mLatencyMs.toString().c_str());
990 }
991 }
992
dumpEffectChains_l(int fd,const Vector<String16> & args)993 void AudioFlinger::ThreadBase::dumpEffectChains_l(int fd, const Vector<String16>& args)
994 {
995 const size_t SIZE = 256;
996 char buffer[SIZE];
997
998 size_t numEffectChains = mEffectChains.size();
999 snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains);
1000 write(fd, buffer, strlen(buffer));
1001
1002 for (size_t i = 0; i < numEffectChains; ++i) {
1003 sp<EffectChain> chain = mEffectChains[i];
1004 if (chain != 0) {
1005 chain->dump(fd, args);
1006 }
1007 }
1008 }
1009
acquireWakeLock()1010 void AudioFlinger::ThreadBase::acquireWakeLock()
1011 {
1012 Mutex::Autolock _l(mLock);
1013 acquireWakeLock_l();
1014 }
1015
getWakeLockTag()1016 String16 AudioFlinger::ThreadBase::getWakeLockTag()
1017 {
1018 switch (mType) {
1019 case MIXER:
1020 return String16("AudioMix");
1021 case DIRECT:
1022 return String16("AudioDirectOut");
1023 case DUPLICATING:
1024 return String16("AudioDup");
1025 case RECORD:
1026 return String16("AudioIn");
1027 case OFFLOAD:
1028 return String16("AudioOffload");
1029 case MMAP_PLAYBACK:
1030 return String16("MmapPlayback");
1031 case MMAP_CAPTURE:
1032 return String16("MmapCapture");
1033 case SPATIALIZER:
1034 return String16("AudioSpatial");
1035 default:
1036 ALOG_ASSERT(false);
1037 return String16("AudioUnknown");
1038 }
1039 }
1040
acquireWakeLock_l()1041 void AudioFlinger::ThreadBase::acquireWakeLock_l()
1042 {
1043 getPowerManager_l();
1044 if (mPowerManager != 0) {
1045 sp<IBinder> binder = new BBinder();
1046 // Uses AID_AUDIOSERVER for wakelock. updateWakeLockUids_l() updates with client uids.
1047 binder::Status status = mPowerManager->acquireWakeLockAsync(binder,
1048 POWERMANAGER_PARTIAL_WAKE_LOCK,
1049 getWakeLockTag(),
1050 String16("audioserver"),
1051 {} /* workSource */,
1052 {} /* historyTag */);
1053 if (status.isOk()) {
1054 mWakeLockToken = binder;
1055 }
1056 ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status.exceptionCode());
1057 }
1058
1059 gBoottime.acquire(mWakeLockToken);
1060 mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
1061 gBoottime.getBoottimeOffset();
1062 }
1063
releaseWakeLock()1064 void AudioFlinger::ThreadBase::releaseWakeLock()
1065 {
1066 Mutex::Autolock _l(mLock);
1067 releaseWakeLock_l();
1068 }
1069
releaseWakeLock_l()1070 void AudioFlinger::ThreadBase::releaseWakeLock_l()
1071 {
1072 gBoottime.release(mWakeLockToken);
1073 if (mWakeLockToken != 0) {
1074 ALOGV("releaseWakeLock_l() %s", mThreadName);
1075 if (mPowerManager != 0) {
1076 mPowerManager->releaseWakeLockAsync(mWakeLockToken, 0);
1077 }
1078 mWakeLockToken.clear();
1079 }
1080 }
1081
getPowerManager_l()1082 void AudioFlinger::ThreadBase::getPowerManager_l() {
1083 if (mSystemReady && mPowerManager == 0) {
1084 // use checkService() to avoid blocking if power service is not up yet
1085 sp<IBinder> binder =
1086 defaultServiceManager()->checkService(String16("power"));
1087 if (binder == 0) {
1088 ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1089 } else {
1090 mPowerManager = interface_cast<os::IPowerManager>(binder);
1091 binder->linkToDeath(mDeathRecipient);
1092 }
1093 }
1094 }
1095
updateWakeLockUids_l(const SortedVector<uid_t> & uids)1096 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<uid_t> &uids) {
1097 getPowerManager_l();
1098
1099 #if !LOG_NDEBUG
1100 std::stringstream s;
1101 for (uid_t uid : uids) {
1102 s << uid << " ";
1103 }
1104 ALOGD("updateWakeLockUids_l %s uids:%s", mThreadName, s.str().c_str());
1105 #endif
1106
1107 if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1108 if (mSystemReady) {
1109 ALOGE("no wake lock to update, but system ready!");
1110 } else {
1111 ALOGW("no wake lock to update, system not ready yet");
1112 }
1113 return;
1114 }
1115 if (mPowerManager != 0) {
1116 std::vector<int> uidsAsInt(uids.begin(), uids.end()); // powermanager expects uids as ints
1117 binder::Status status = mPowerManager->updateWakeLockUidsAsync(
1118 mWakeLockToken, uidsAsInt);
1119 ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status.exceptionCode());
1120 }
1121 }
1122
clearPowerManager()1123 void AudioFlinger::ThreadBase::clearPowerManager()
1124 {
1125 Mutex::Autolock _l(mLock);
1126 releaseWakeLock_l();
1127 mPowerManager.clear();
1128 }
1129
updateOutDevices(const DeviceDescriptorBaseVector & outDevices __unused)1130 void AudioFlinger::ThreadBase::updateOutDevices(
1131 const DeviceDescriptorBaseVector& outDevices __unused)
1132 {
1133 ALOGE("%s should only be called in RecordThread", __func__);
1134 }
1135
resizeInputBuffer_l(int32_t maxSharedAudioHistoryMs __unused)1136 void AudioFlinger::ThreadBase::resizeInputBuffer_l(int32_t maxSharedAudioHistoryMs __unused)
1137 {
1138 ALOGE("%s should only be called in RecordThread", __func__);
1139 }
1140
binderDied(const wp<IBinder> & who __unused)1141 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1142 {
1143 sp<ThreadBase> thread = mThread.promote();
1144 if (thread != 0) {
1145 thread->clearPowerManager();
1146 }
1147 ALOGW("power manager service died !!!");
1148 }
1149
setEffectSuspended_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1150 void AudioFlinger::ThreadBase::setEffectSuspended_l(
1151 const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1152 {
1153 sp<EffectChain> chain = getEffectChain_l(sessionId);
1154 if (chain != 0) {
1155 if (type != NULL) {
1156 chain->setEffectSuspended_l(type, suspend);
1157 } else {
1158 chain->setEffectSuspendedAll_l(suspend);
1159 }
1160 }
1161
1162 updateSuspendedSessions_l(type, suspend, sessionId);
1163 }
1164
checkSuspendOnAddEffectChain_l(const sp<EffectChain> & chain)1165 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1166 {
1167 ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1168 if (index < 0) {
1169 return;
1170 }
1171
1172 const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1173 mSuspendedSessions.valueAt(index);
1174
1175 for (size_t i = 0; i < sessionEffects.size(); i++) {
1176 const sp<SuspendedSessionDesc>& desc = sessionEffects.valueAt(i);
1177 for (int j = 0; j < desc->mRefCount; j++) {
1178 if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1179 chain->setEffectSuspendedAll_l(true);
1180 } else {
1181 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1182 desc->mType.timeLow);
1183 chain->setEffectSuspended_l(&desc->mType, true);
1184 }
1185 }
1186 }
1187 }
1188
updateSuspendedSessions_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1189 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1190 bool suspend,
1191 audio_session_t sessionId)
1192 {
1193 ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1194
1195 KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1196
1197 if (suspend) {
1198 if (index >= 0) {
1199 sessionEffects = mSuspendedSessions.valueAt(index);
1200 } else {
1201 mSuspendedSessions.add(sessionId, sessionEffects);
1202 }
1203 } else {
1204 if (index < 0) {
1205 return;
1206 }
1207 sessionEffects = mSuspendedSessions.valueAt(index);
1208 }
1209
1210
1211 int key = EffectChain::kKeyForSuspendAll;
1212 if (type != NULL) {
1213 key = type->timeLow;
1214 }
1215 index = sessionEffects.indexOfKey(key);
1216
1217 sp<SuspendedSessionDesc> desc;
1218 if (suspend) {
1219 if (index >= 0) {
1220 desc = sessionEffects.valueAt(index);
1221 } else {
1222 desc = new SuspendedSessionDesc();
1223 if (type != NULL) {
1224 desc->mType = *type;
1225 }
1226 sessionEffects.add(key, desc);
1227 ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1228 }
1229 desc->mRefCount++;
1230 } else {
1231 if (index < 0) {
1232 return;
1233 }
1234 desc = sessionEffects.valueAt(index);
1235 if (--desc->mRefCount == 0) {
1236 ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1237 sessionEffects.removeItemsAt(index);
1238 if (sessionEffects.isEmpty()) {
1239 ALOGV("updateSuspendedSessions_l() restore removing session %d",
1240 sessionId);
1241 mSuspendedSessions.removeItem(sessionId);
1242 }
1243 }
1244 }
1245 if (!sessionEffects.isEmpty()) {
1246 mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1247 }
1248 }
1249
checkSuspendOnEffectEnabled(bool enabled,audio_session_t sessionId,bool threadLocked)1250 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(bool enabled,
1251 audio_session_t sessionId,
1252 bool threadLocked) {
1253 if (!threadLocked) {
1254 mLock.lock();
1255 }
1256
1257 if (mType != RECORD) {
1258 // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1259 // another session. This gives the priority to well behaved effect control panels
1260 // and applications not using global effects.
1261 // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1262 // global effects
1263 if (!audio_is_global_session(sessionId)) {
1264 setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1265 }
1266 }
1267
1268 if (!threadLocked) {
1269 mLock.unlock();
1270 }
1271 }
1272
1273 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1274 status_t AudioFlinger::RecordThread::checkEffectCompatibility_l(
1275 const effect_descriptor_t *desc, audio_session_t sessionId)
1276 {
1277 // No global output effect sessions on record threads
1278 if (sessionId == AUDIO_SESSION_OUTPUT_MIX
1279 || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1280 ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
1281 desc->name, mThreadName);
1282 return BAD_VALUE;
1283 }
1284 // only pre processing effects on record thread
1285 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) {
1286 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s",
1287 desc->name, mThreadName);
1288 return BAD_VALUE;
1289 }
1290
1291 // always allow effects without processing load or latency
1292 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1293 return NO_ERROR;
1294 }
1295
1296 audio_input_flags_t flags = mInput->flags;
1297 if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) {
1298 if (flags & AUDIO_INPUT_FLAG_RAW) {
1299 ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode",
1300 desc->name, mThreadName);
1301 return BAD_VALUE;
1302 }
1303 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1304 ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode",
1305 desc->name, mThreadName);
1306 return BAD_VALUE;
1307 }
1308 }
1309
1310 if (EffectModule::isHapticGenerator(&desc->type)) {
1311 ALOGE("%s(): HapticGenerator is not supported in RecordThread", __func__);
1312 return BAD_VALUE;
1313 }
1314 return NO_ERROR;
1315 }
1316
1317 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1318 status_t AudioFlinger::PlaybackThread::checkEffectCompatibility_l(
1319 const effect_descriptor_t *desc, audio_session_t sessionId)
1320 {
1321 // no preprocessing on playback threads
1322 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) {
1323 ALOGW("%s: pre processing effect %s created on playback"
1324 " thread %s", __func__, desc->name, mThreadName);
1325 return BAD_VALUE;
1326 }
1327
1328 // always allow effects without processing load or latency
1329 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1330 return NO_ERROR;
1331 }
1332
1333 if (EffectModule::isHapticGenerator(&desc->type) && mHapticChannelCount == 0) {
1334 ALOGW("%s: thread doesn't support haptic playback while the effect is HapticGenerator",
1335 __func__);
1336 return BAD_VALUE;
1337 }
1338
1339 if (memcmp(&desc->type, FX_IID_SPATIALIZER, sizeof(effect_uuid_t)) == 0
1340 && mType != SPATIALIZER) {
1341 ALOGW("%s: attempt to create a spatializer effect on a thread of type %d",
1342 __func__, mType);
1343 return BAD_VALUE;
1344 }
1345
1346 switch (mType) {
1347 case MIXER: {
1348 #ifndef MULTICHANNEL_EFFECT_CHAIN
1349 // Reject any effect on mixer multichannel sinks.
1350 // TODO: fix both format and multichannel issues with effects.
1351 if (mChannelCount != FCC_2) {
1352 ALOGW("%s: effect %s for multichannel(%d) on MIXER thread %s",
1353 __func__, desc->name, mChannelCount, mThreadName);
1354 return BAD_VALUE;
1355 }
1356 #endif
1357 audio_output_flags_t flags = mOutput->flags;
1358 if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) {
1359 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1360 // global effects are applied only to non fast tracks if they are SW
1361 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1362 break;
1363 }
1364 } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1365 // only post processing on output stage session
1366 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1367 ALOGW("%s: non post processing effect %s not allowed on output stage session",
1368 __func__, desc->name);
1369 return BAD_VALUE;
1370 }
1371 } else if (sessionId == AUDIO_SESSION_DEVICE) {
1372 // only post processing on output stage session
1373 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1374 ALOGW("%s: non post processing effect %s not allowed on device session",
1375 __func__, desc->name);
1376 return BAD_VALUE;
1377 }
1378 } else {
1379 // no restriction on effects applied on non fast tracks
1380 if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) {
1381 break;
1382 }
1383 }
1384
1385 if (flags & AUDIO_OUTPUT_FLAG_RAW) {
1386 ALOGW("%s: effect %s on playback thread in raw mode", __func__, desc->name);
1387 return BAD_VALUE;
1388 }
1389 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1390 ALOGW("%s: non HW effect %s on playback thread in fast mode",
1391 __func__, desc->name);
1392 return BAD_VALUE;
1393 }
1394 }
1395 } break;
1396 case OFFLOAD:
1397 // nothing actionable on offload threads, if the effect:
1398 // - is offloadable: the effect can be created
1399 // - is NOT offloadable: the effect should still be created, but EffectHandle::enable()
1400 // will take care of invalidating the tracks of the thread
1401 break;
1402 case DIRECT:
1403 // Reject any effect on Direct output threads for now, since the format of
1404 // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1405 ALOGW("%s: effect %s on DIRECT output thread %s",
1406 __func__, desc->name, mThreadName);
1407 return BAD_VALUE;
1408 case DUPLICATING:
1409 #ifndef MULTICHANNEL_EFFECT_CHAIN
1410 // Reject any effect on mixer multichannel sinks.
1411 // TODO: fix both format and multichannel issues with effects.
1412 if (mChannelCount != FCC_2) {
1413 ALOGW("%s: effect %s for multichannel(%d) on DUPLICATING thread %s",
1414 __func__, desc->name, mChannelCount, mThreadName);
1415 return BAD_VALUE;
1416 }
1417 #endif
1418 if (audio_is_global_session(sessionId)) {
1419 ALOGW("%s: global effect %s on DUPLICATING thread %s",
1420 __func__, desc->name, mThreadName);
1421 return BAD_VALUE;
1422 }
1423 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
1424 ALOGW("%s: post processing effect %s on DUPLICATING thread %s",
1425 __func__, desc->name, mThreadName);
1426 return BAD_VALUE;
1427 }
1428 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
1429 ALOGW("%s: HW tunneled effect %s on DUPLICATING thread %s",
1430 __func__, desc->name, mThreadName);
1431 return BAD_VALUE;
1432 }
1433 break;
1434 case SPATIALIZER:
1435 // Global effects (AUDIO_SESSION_OUTPUT_MIX) are not supported on spatializer mixer
1436 // as there is no common accumulation buffer for sptialized and non sptialized tracks.
1437 // Post processing effects (AUDIO_SESSION_OUTPUT_STAGE or AUDIO_SESSION_DEVICE)
1438 // are supported and added after the spatializer.
1439 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1440 ALOGW("%s: global effect %s not supported on spatializer thread %s",
1441 __func__, desc->name, mThreadName);
1442 return BAD_VALUE;
1443 } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1444 // only post processing , downmixer or spatializer effects on output stage session
1445 if (memcmp(&desc->type, FX_IID_SPATIALIZER, sizeof(effect_uuid_t)) == 0
1446 || memcmp(&desc->type, EFFECT_UIID_DOWNMIX, sizeof(effect_uuid_t)) == 0) {
1447 break;
1448 }
1449 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1450 ALOGW("%s: non post processing effect %s not allowed on output stage session",
1451 __func__, desc->name);
1452 return BAD_VALUE;
1453 }
1454 } else if (sessionId == AUDIO_SESSION_DEVICE) {
1455 // only post processing on output stage session
1456 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1457 ALOGW("%s: non post processing effect %s not allowed on device session",
1458 __func__, desc->name);
1459 return BAD_VALUE;
1460 }
1461 }
1462 break;
1463 default:
1464 LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType);
1465 }
1466
1467 return NO_ERROR;
1468 }
1469
1470 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
createEffect_l(const sp<AudioFlinger::Client> & client,const sp<IEffectClient> & effectClient,int32_t priority,audio_session_t sessionId,effect_descriptor_t * desc,int * enabled,status_t * status,bool pinned,bool probe,bool notifyFramesProcessed)1471 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1472 const sp<AudioFlinger::Client>& client,
1473 const sp<IEffectClient>& effectClient,
1474 int32_t priority,
1475 audio_session_t sessionId,
1476 effect_descriptor_t *desc,
1477 int *enabled,
1478 status_t *status,
1479 bool pinned,
1480 bool probe,
1481 bool notifyFramesProcessed)
1482 {
1483 sp<EffectModule> effect;
1484 sp<EffectHandle> handle;
1485 status_t lStatus;
1486 sp<EffectChain> chain;
1487 bool chainCreated = false;
1488 bool effectCreated = false;
1489 audio_unique_id_t effectId = AUDIO_UNIQUE_ID_USE_UNSPECIFIED;
1490
1491 lStatus = initCheck();
1492 if (lStatus != NO_ERROR) {
1493 ALOGW("createEffect_l() Audio driver not initialized.");
1494 goto Exit;
1495 }
1496
1497 ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1498
1499 { // scope for mLock
1500 Mutex::Autolock _l(mLock);
1501
1502 lStatus = checkEffectCompatibility_l(desc, sessionId);
1503 if (probe || lStatus != NO_ERROR) {
1504 goto Exit;
1505 }
1506
1507 // check for existing effect chain with the requested audio session
1508 chain = getEffectChain_l(sessionId);
1509 if (chain == 0) {
1510 // create a new chain for this session
1511 ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1512 chain = new EffectChain(this, sessionId);
1513 addEffectChain_l(chain);
1514 chain->setStrategy(getStrategyForSession_l(sessionId));
1515 chainCreated = true;
1516 } else {
1517 effect = chain->getEffectFromDesc_l(desc);
1518 }
1519
1520 ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1521
1522 if (effect == 0) {
1523 effectId = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1524 // create a new effect module if none present in the chain
1525 lStatus = chain->createEffect_l(effect, desc, effectId, sessionId, pinned);
1526 if (lStatus != NO_ERROR) {
1527 goto Exit;
1528 }
1529 effectCreated = true;
1530
1531 // FIXME: use vector of device and address when effect interface is ready.
1532 effect->setDevices(outDeviceTypeAddrs());
1533 effect->setInputDevice(inDeviceTypeAddr());
1534 effect->setMode(mAudioFlinger->getMode());
1535 effect->setAudioSource(mAudioSource);
1536 }
1537 if (effect->isHapticGenerator()) {
1538 // TODO(b/184194057): Use the vibrator information from the vibrator that will be used
1539 // for the HapticGenerator.
1540 const std::optional<media::AudioVibratorInfo> defaultVibratorInfo =
1541 std::move(mAudioFlinger->getDefaultVibratorInfo_l());
1542 if (defaultVibratorInfo) {
1543 // Only set the vibrator info when it is a valid one.
1544 effect->setVibratorInfo(*defaultVibratorInfo);
1545 }
1546 }
1547 // create effect handle and connect it to effect module
1548 handle = new EffectHandle(effect, client, effectClient, priority, notifyFramesProcessed);
1549 lStatus = handle->initCheck();
1550 if (lStatus == OK) {
1551 lStatus = effect->addHandle(handle.get());
1552 sendCheckOutputStageEffectsEvent_l();
1553 }
1554 if (enabled != NULL) {
1555 *enabled = (int)effect->isEnabled();
1556 }
1557 }
1558
1559 Exit:
1560 if (!probe && lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1561 Mutex::Autolock _l(mLock);
1562 if (effectCreated) {
1563 chain->removeEffect_l(effect);
1564 }
1565 if (chainCreated) {
1566 removeEffectChain_l(chain);
1567 }
1568 // handle must be cleared by caller to avoid deadlock.
1569 }
1570
1571 *status = lStatus;
1572 return handle;
1573 }
1574
disconnectEffectHandle(EffectHandle * handle,bool unpinIfLast)1575 void AudioFlinger::ThreadBase::disconnectEffectHandle(EffectHandle *handle,
1576 bool unpinIfLast)
1577 {
1578 bool remove = false;
1579 sp<EffectModule> effect;
1580 {
1581 Mutex::Autolock _l(mLock);
1582 sp<EffectBase> effectBase = handle->effect().promote();
1583 if (effectBase == nullptr) {
1584 return;
1585 }
1586 effect = effectBase->asEffectModule();
1587 if (effect == nullptr) {
1588 return;
1589 }
1590 // restore suspended effects if the disconnected handle was enabled and the last one.
1591 remove = (effect->removeHandle(handle) == 0) && (!effect->isPinned() || unpinIfLast);
1592 if (remove) {
1593 removeEffect_l(effect, true);
1594 }
1595 sendCheckOutputStageEffectsEvent_l();
1596 }
1597 if (remove) {
1598 mAudioFlinger->updateOrphanEffectChains(effect);
1599 if (handle->enabled()) {
1600 effect->checkSuspendOnEffectEnabled(false, false /*threadLocked*/);
1601 }
1602 }
1603 }
1604
onEffectEnable(const sp<EffectModule> & effect)1605 void AudioFlinger::ThreadBase::onEffectEnable(const sp<EffectModule>& effect) {
1606 if (isOffloadOrMmap()) {
1607 Mutex::Autolock _l(mLock);
1608 broadcast_l();
1609 }
1610 if (!effect->isOffloadable()) {
1611 if (mType == ThreadBase::OFFLOAD) {
1612 PlaybackThread *t = (PlaybackThread *)this;
1613 t->invalidateTracks(AUDIO_STREAM_MUSIC);
1614 }
1615 if (effect->sessionId() == AUDIO_SESSION_OUTPUT_MIX) {
1616 mAudioFlinger->onNonOffloadableGlobalEffectEnable();
1617 }
1618 }
1619 }
1620
onEffectDisable()1621 void AudioFlinger::ThreadBase::onEffectDisable() {
1622 if (isOffloadOrMmap()) {
1623 Mutex::Autolock _l(mLock);
1624 broadcast_l();
1625 }
1626 }
1627
getEffect(audio_session_t sessionId,int effectId)1628 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1629 int effectId)
1630 {
1631 Mutex::Autolock _l(mLock);
1632 return getEffect_l(sessionId, effectId);
1633 }
1634
getEffect_l(audio_session_t sessionId,int effectId)1635 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1636 int effectId)
1637 {
1638 sp<EffectChain> chain = getEffectChain_l(sessionId);
1639 return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1640 }
1641
getEffectIds_l(audio_session_t sessionId)1642 std::vector<int> AudioFlinger::ThreadBase::getEffectIds_l(audio_session_t sessionId)
1643 {
1644 sp<EffectChain> chain = getEffectChain_l(sessionId);
1645 return chain != nullptr ? chain->getEffectIds() : std::vector<int>{};
1646 }
1647
1648 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1649 // PlaybackThread::mLock held
addEffect_l(const sp<EffectModule> & effect)1650 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1651 {
1652 // check for existing effect chain with the requested audio session
1653 audio_session_t sessionId = effect->sessionId();
1654 sp<EffectChain> chain = getEffectChain_l(sessionId);
1655 bool chainCreated = false;
1656
1657 ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1658 "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %#x",
1659 this, effect->desc().name, effect->desc().flags);
1660
1661 if (chain == 0) {
1662 // create a new chain for this session
1663 ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1664 chain = new EffectChain(this, sessionId);
1665 addEffectChain_l(chain);
1666 chain->setStrategy(getStrategyForSession_l(sessionId));
1667 chainCreated = true;
1668 }
1669 ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1670
1671 if (chain->getEffectFromId_l(effect->id()) != 0) {
1672 ALOGW("addEffect_l() %p effect %s already present in chain %p",
1673 this, effect->desc().name, chain.get());
1674 return BAD_VALUE;
1675 }
1676
1677 effect->setOffloaded(mType == OFFLOAD, mId);
1678
1679 status_t status = chain->addEffect_l(effect);
1680 if (status != NO_ERROR) {
1681 if (chainCreated) {
1682 removeEffectChain_l(chain);
1683 }
1684 return status;
1685 }
1686
1687 effect->setDevices(outDeviceTypeAddrs());
1688 effect->setInputDevice(inDeviceTypeAddr());
1689 effect->setMode(mAudioFlinger->getMode());
1690 effect->setAudioSource(mAudioSource);
1691
1692 return NO_ERROR;
1693 }
1694
removeEffect_l(const sp<EffectModule> & effect,bool release)1695 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect, bool release) {
1696
1697 ALOGV("%s %p effect %p", __FUNCTION__, this, effect.get());
1698 effect_descriptor_t desc = effect->desc();
1699 if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1700 detachAuxEffect_l(effect->id());
1701 }
1702
1703 sp<EffectChain> chain = effect->getCallback()->chain().promote();
1704 if (chain != 0) {
1705 // remove effect chain if removing last effect
1706 if (chain->removeEffect_l(effect, release) == 0) {
1707 removeEffectChain_l(chain);
1708 }
1709 } else {
1710 ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1711 }
1712 }
1713
lockEffectChains_l(Vector<sp<AudioFlinger::EffectChain>> & effectChains)1714 void AudioFlinger::ThreadBase::lockEffectChains_l(
1715 Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1716 {
1717 effectChains = mEffectChains;
1718 for (size_t i = 0; i < mEffectChains.size(); i++) {
1719 mEffectChains[i]->lock();
1720 }
1721 }
1722
unlockEffectChains(const Vector<sp<AudioFlinger::EffectChain>> & effectChains)1723 void AudioFlinger::ThreadBase::unlockEffectChains(
1724 const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1725 {
1726 for (size_t i = 0; i < effectChains.size(); i++) {
1727 effectChains[i]->unlock();
1728 }
1729 }
1730
getEffectChain(audio_session_t sessionId)1731 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1732 {
1733 Mutex::Autolock _l(mLock);
1734 return getEffectChain_l(sessionId);
1735 }
1736
getEffectChain_l(audio_session_t sessionId) const1737 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1738 const
1739 {
1740 size_t size = mEffectChains.size();
1741 for (size_t i = 0; i < size; i++) {
1742 if (mEffectChains[i]->sessionId() == sessionId) {
1743 return mEffectChains[i];
1744 }
1745 }
1746 return 0;
1747 }
1748
setMode(audio_mode_t mode)1749 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1750 {
1751 Mutex::Autolock _l(mLock);
1752 size_t size = mEffectChains.size();
1753 for (size_t i = 0; i < size; i++) {
1754 mEffectChains[i]->setMode_l(mode);
1755 }
1756 }
1757
toAudioPortConfig(struct audio_port_config * config)1758 void AudioFlinger::ThreadBase::toAudioPortConfig(struct audio_port_config *config)
1759 {
1760 config->type = AUDIO_PORT_TYPE_MIX;
1761 config->ext.mix.handle = mId;
1762 config->sample_rate = mSampleRate;
1763 config->format = mFormat;
1764 config->channel_mask = mChannelMask;
1765 config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1766 AUDIO_PORT_CONFIG_FORMAT;
1767 }
1768
systemReady()1769 void AudioFlinger::ThreadBase::systemReady()
1770 {
1771 Mutex::Autolock _l(mLock);
1772 if (mSystemReady) {
1773 return;
1774 }
1775 mSystemReady = true;
1776
1777 for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1778 sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1779 }
1780 mPendingConfigEvents.clear();
1781 }
1782
1783 template <typename T>
add(const sp<T> & track)1784 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::add(const sp<T> &track) {
1785 ssize_t index = mActiveTracks.indexOf(track);
1786 if (index >= 0) {
1787 ALOGW("ActiveTracks<T>::add track %p already there", track.get());
1788 return index;
1789 }
1790 logTrack("add", track);
1791 mActiveTracksGeneration++;
1792 mLatestActiveTrack = track;
1793 ++mBatteryCounter[track->uid()].second;
1794 mHasChanged = true;
1795 return mActiveTracks.add(track);
1796 }
1797
1798 template <typename T>
remove(const sp<T> & track)1799 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::remove(const sp<T> &track) {
1800 ssize_t index = mActiveTracks.remove(track);
1801 if (index < 0) {
1802 ALOGW("ActiveTracks<T>::remove nonexistent track %p", track.get());
1803 return index;
1804 }
1805 logTrack("remove", track);
1806 mActiveTracksGeneration++;
1807 --mBatteryCounter[track->uid()].second;
1808 // mLatestActiveTrack is not cleared even if is the same as track.
1809 mHasChanged = true;
1810 #ifdef TEE_SINK
1811 track->dumpTee(-1 /* fd */, "_REMOVE");
1812 #endif
1813 track->logEndInterval(); // log to MediaMetrics
1814 return index;
1815 }
1816
1817 template <typename T>
clear()1818 void AudioFlinger::ThreadBase::ActiveTracks<T>::clear() {
1819 for (const sp<T> &track : mActiveTracks) {
1820 BatteryNotifier::getInstance().noteStopAudio(track->uid());
1821 logTrack("clear", track);
1822 }
1823 mLastActiveTracksGeneration = mActiveTracksGeneration;
1824 if (!mActiveTracks.empty()) { mHasChanged = true; }
1825 mActiveTracks.clear();
1826 mLatestActiveTrack.clear();
1827 mBatteryCounter.clear();
1828 }
1829
1830 template <typename T>
updatePowerState(sp<ThreadBase> thread,bool force)1831 void AudioFlinger::ThreadBase::ActiveTracks<T>::updatePowerState(
1832 sp<ThreadBase> thread, bool force) {
1833 // Updates ActiveTracks client uids to the thread wakelock.
1834 if (mActiveTracksGeneration != mLastActiveTracksGeneration || force) {
1835 thread->updateWakeLockUids_l(getWakeLockUids());
1836 mLastActiveTracksGeneration = mActiveTracksGeneration;
1837 }
1838
1839 // Updates BatteryNotifier uids
1840 for (auto it = mBatteryCounter.begin(); it != mBatteryCounter.end();) {
1841 const uid_t uid = it->first;
1842 ssize_t &previous = it->second.first;
1843 ssize_t ¤t = it->second.second;
1844 if (current > 0) {
1845 if (previous == 0) {
1846 BatteryNotifier::getInstance().noteStartAudio(uid);
1847 }
1848 previous = current;
1849 ++it;
1850 } else if (current == 0) {
1851 if (previous > 0) {
1852 BatteryNotifier::getInstance().noteStopAudio(uid);
1853 }
1854 it = mBatteryCounter.erase(it); // std::map<> is stable on iterator erase.
1855 } else /* (current < 0) */ {
1856 LOG_ALWAYS_FATAL("negative battery count %zd", current);
1857 }
1858 }
1859 }
1860
1861 template <typename T>
readAndClearHasChanged()1862 bool AudioFlinger::ThreadBase::ActiveTracks<T>::readAndClearHasChanged() {
1863 bool hasChanged = mHasChanged;
1864 mHasChanged = false;
1865
1866 for (const sp<T> &track : mActiveTracks) {
1867 // Do not short-circuit as all hasChanged states must be reset
1868 // as all the metadata are going to be sent
1869 hasChanged |= track->readAndClearHasChanged();
1870 }
1871 return hasChanged;
1872 }
1873
1874 template <typename T>
logTrack(const char * funcName,const sp<T> & track) const1875 void AudioFlinger::ThreadBase::ActiveTracks<T>::logTrack(
1876 const char *funcName, const sp<T> &track) const {
1877 if (mLocalLog != nullptr) {
1878 String8 result;
1879 track->appendDump(result, false /* active */);
1880 mLocalLog->log("AT::%-10s(%p) %s", funcName, track.get(), result.string());
1881 }
1882 }
1883
broadcast_l()1884 void AudioFlinger::ThreadBase::broadcast_l()
1885 {
1886 // Thread could be blocked waiting for async
1887 // so signal it to handle state changes immediately
1888 // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1889 // be lost so we also flag to prevent it blocking on mWaitWorkCV
1890 mSignalPending = true;
1891 mWaitWorkCV.broadcast();
1892 }
1893
1894 // Call only from threadLoop() or when it is idle.
1895 // Do not call from high performance code as this may do binder rpc to the MediaMetrics service.
sendStatistics(bool force)1896 void AudioFlinger::ThreadBase::sendStatistics(bool force)
1897 {
1898 // Do not log if we have no stats.
1899 // We choose the timestamp verifier because it is the most likely item to be present.
1900 const int64_t nstats = mTimestampVerifier.getN() - mLastRecordedTimestampVerifierN;
1901 if (nstats == 0) {
1902 return;
1903 }
1904
1905 // Don't log more frequently than once per 12 hours.
1906 // We use BOOTTIME to include suspend time.
1907 const int64_t timeNs = systemTime(SYSTEM_TIME_BOOTTIME);
1908 const int64_t sinceNs = timeNs - mLastRecordedTimeNs; // ok if mLastRecordedTimeNs = 0
1909 if (!force && sinceNs <= 12 * NANOS_PER_HOUR) {
1910 return;
1911 }
1912
1913 mLastRecordedTimestampVerifierN = mTimestampVerifier.getN();
1914 mLastRecordedTimeNs = timeNs;
1915
1916 std::unique_ptr<mediametrics::Item> item(mediametrics::Item::create("audiothread"));
1917
1918 #define MM_PREFIX "android.media.audiothread." // avoid cut-n-paste errors.
1919
1920 // thread configuration
1921 item->setInt32(MM_PREFIX "id", (int32_t)mId); // IO handle
1922 // item->setInt32(MM_PREFIX "portId", (int32_t)mPortId);
1923 item->setCString(MM_PREFIX "type", threadTypeToString(mType));
1924 item->setInt32(MM_PREFIX "sampleRate", (int32_t)mSampleRate);
1925 item->setInt64(MM_PREFIX "channelMask", (int64_t)mChannelMask);
1926 item->setCString(MM_PREFIX "encoding", toString(mFormat).c_str());
1927 item->setInt32(MM_PREFIX "frameCount", (int32_t)mFrameCount);
1928 item->setCString(MM_PREFIX "outDevice", toString(outDeviceTypes()).c_str());
1929 item->setCString(MM_PREFIX "inDevice", toString(inDeviceType()).c_str());
1930
1931 // thread statistics
1932 if (mIoJitterMs.getN() > 0) {
1933 item->setDouble(MM_PREFIX "ioJitterMs.mean", mIoJitterMs.getMean());
1934 item->setDouble(MM_PREFIX "ioJitterMs.std", mIoJitterMs.getStdDev());
1935 }
1936 if (mProcessTimeMs.getN() > 0) {
1937 item->setDouble(MM_PREFIX "processTimeMs.mean", mProcessTimeMs.getMean());
1938 item->setDouble(MM_PREFIX "processTimeMs.std", mProcessTimeMs.getStdDev());
1939 }
1940 const auto tsjitter = mTimestampVerifier.getJitterMs();
1941 if (tsjitter.getN() > 0) {
1942 item->setDouble(MM_PREFIX "timestampJitterMs.mean", tsjitter.getMean());
1943 item->setDouble(MM_PREFIX "timestampJitterMs.std", tsjitter.getStdDev());
1944 }
1945 if (mLatencyMs.getN() > 0) {
1946 item->setDouble(MM_PREFIX "latencyMs.mean", mLatencyMs.getMean());
1947 item->setDouble(MM_PREFIX "latencyMs.std", mLatencyMs.getStdDev());
1948 }
1949
1950 item->selfrecord();
1951 }
1952
getStrategyForStream(audio_stream_type_t stream) const1953 product_strategy_t AudioFlinger::ThreadBase::getStrategyForStream(audio_stream_type_t stream) const
1954 {
1955 if (!mAudioFlinger->isAudioPolicyReady()) {
1956 return PRODUCT_STRATEGY_NONE;
1957 }
1958 return AudioSystem::getStrategyForStream(stream);
1959 }
1960
1961 // ----------------------------------------------------------------------------
1962 // Playback
1963 // ----------------------------------------------------------------------------
1964
PlaybackThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,type_t type,bool systemReady,audio_config_base_t * mixerConfig)1965 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1966 AudioStreamOut* output,
1967 audio_io_handle_t id,
1968 type_t type,
1969 bool systemReady,
1970 audio_config_base_t *mixerConfig)
1971 : ThreadBase(audioFlinger, id, type, systemReady, true /* isOut */),
1972 mNormalFrameCount(0), mSinkBuffer(NULL),
1973 mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision || type == SPATIALIZER),
1974 mMixerBuffer(NULL),
1975 mMixerBufferSize(0),
1976 mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1977 mMixerBufferValid(false),
1978 mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision || type == SPATIALIZER),
1979 mEffectBuffer(NULL),
1980 mEffectBufferSize(0),
1981 mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1982 mEffectBufferValid(false),
1983 mSuspended(0), mBytesWritten(0),
1984 mFramesWritten(0),
1985 mSuspendedFrames(0),
1986 mActiveTracks(&this->mLocalLog),
1987 // mStreamTypes[] initialized in constructor body
1988 mTracks(type == MIXER),
1989 mOutput(output),
1990 mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1991 mMixerStatus(MIXER_IDLE),
1992 mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1993 mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1994 mBytesRemaining(0),
1995 mCurrentWriteLength(0),
1996 mUseAsyncWrite(false),
1997 mWriteAckSequence(0),
1998 mDrainSequence(0),
1999 mScreenState(AudioFlinger::mScreenState),
2000 // index 0 is reserved for normal mixer's submix
2001 mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
2002 mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
2003 mLeftVolFloat(-1.0), mRightVolFloat(-1.0),
2004 mDownStreamPatch{}
2005 {
2006 snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
2007 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
2008
2009 // Assumes constructor is called by AudioFlinger with it's mLock held, but
2010 // it would be safer to explicitly pass initial masterVolume/masterMute as
2011 // parameter.
2012 //
2013 // If the HAL we are using has support for master volume or master mute,
2014 // then do not attenuate or mute during mixing (just leave the volume at 1.0
2015 // and the mute set to false).
2016 mMasterVolume = audioFlinger->masterVolume_l();
2017 mMasterMute = audioFlinger->masterMute_l();
2018 if (mOutput->audioHwDev) {
2019 if (mOutput->audioHwDev->canSetMasterVolume()) {
2020 mMasterVolume = 1.0;
2021 }
2022
2023 if (mOutput->audioHwDev->canSetMasterMute()) {
2024 mMasterMute = false;
2025 }
2026 mIsMsdDevice = strcmp(
2027 mOutput->audioHwDev->moduleName(), AUDIO_HARDWARE_MODULE_ID_MSD) == 0;
2028 }
2029
2030 if (mixerConfig != nullptr && mixerConfig->channel_mask != AUDIO_CHANNEL_NONE) {
2031 mMixerChannelMask = mixerConfig->channel_mask;
2032 }
2033
2034 readOutputParameters_l();
2035
2036 if (mType != SPATIALIZER
2037 && mMixerChannelMask != mChannelMask) {
2038 LOG_ALWAYS_FATAL("HAL channel mask %#x does not match mixer channel mask %#x",
2039 mChannelMask, mMixerChannelMask);
2040 }
2041
2042 // TODO: We may also match on address as well as device type for
2043 // AUDIO_DEVICE_OUT_BUS, AUDIO_DEVICE_OUT_ALL_A2DP, AUDIO_DEVICE_OUT_REMOTE_SUBMIX
2044 if (type == MIXER || type == DIRECT || type == OFFLOAD) {
2045 // TODO: This property should be ensure that only contains one single device type.
2046 mTimestampCorrectedDevice = (audio_devices_t)property_get_int64(
2047 "audio.timestamp.corrected_output_device",
2048 (int64_t)(mIsMsdDevice ? AUDIO_DEVICE_OUT_BUS // turn on by default for MSD
2049 : AUDIO_DEVICE_NONE));
2050 }
2051
2052 for (int i = AUDIO_STREAM_MIN; i < AUDIO_STREAM_FOR_POLICY_CNT; ++i) {
2053 const audio_stream_type_t stream{static_cast<audio_stream_type_t>(i)};
2054 mStreamTypes[stream].volume = 0.0f;
2055 mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
2056 }
2057 // Audio patch and call assistant volume are always max
2058 mStreamTypes[AUDIO_STREAM_PATCH].volume = 1.0f;
2059 mStreamTypes[AUDIO_STREAM_PATCH].mute = false;
2060 mStreamTypes[AUDIO_STREAM_CALL_ASSISTANT].volume = 1.0f;
2061 mStreamTypes[AUDIO_STREAM_CALL_ASSISTANT].mute = false;
2062 }
2063
~PlaybackThread()2064 AudioFlinger::PlaybackThread::~PlaybackThread()
2065 {
2066 mAudioFlinger->unregisterWriter(mNBLogWriter);
2067 free(mSinkBuffer);
2068 free(mMixerBuffer);
2069 free(mEffectBuffer);
2070 free(mPostSpatializerBuffer);
2071 }
2072
2073 // Thread virtuals
2074
onFirstRef()2075 void AudioFlinger::PlaybackThread::onFirstRef()
2076 {
2077 if (!isStreamInitialized()) {
2078 ALOGE("The stream is not open yet"); // This should not happen.
2079 } else {
2080 // setEventCallback will need a strong pointer as a parameter. Calling it
2081 // here instead of constructor of PlaybackThread so that the onFirstRef
2082 // callback would not be made on an incompletely constructed object.
2083 if (mOutput->stream->setEventCallback(this) != OK) {
2084 ALOGD("Failed to add event callback");
2085 }
2086 }
2087 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
2088 }
2089
2090 // ThreadBase virtuals
preExit()2091 void AudioFlinger::PlaybackThread::preExit()
2092 {
2093 ALOGV(" preExit()");
2094 // FIXME this is using hard-coded strings but in the future, this functionality will be
2095 // converted to use audio HAL extensions required to support tunneling
2096 status_t result = mOutput->stream->setParameters(String8("exiting=1"));
2097 ALOGE_IF(result != OK, "Error when setting parameters on exit: %d", result);
2098 }
2099
dumpTracks_l(int fd,const Vector<String16> & args __unused)2100 void AudioFlinger::PlaybackThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
2101 {
2102 String8 result;
2103
2104 result.appendFormat(" Stream volumes in dB: ");
2105 for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
2106 const stream_type_t *st = &mStreamTypes[i];
2107 if (i > 0) {
2108 result.appendFormat(", ");
2109 }
2110 result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
2111 if (st->mute) {
2112 result.append("M");
2113 }
2114 }
2115 result.append("\n");
2116 write(fd, result.string(), result.length());
2117 result.clear();
2118
2119 // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way.
2120 FastTrackUnderruns underruns = getFastTrackUnderruns(0);
2121 dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n",
2122 underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
2123
2124 size_t numtracks = mTracks.size();
2125 size_t numactive = mActiveTracks.size();
2126 dprintf(fd, " %zu Tracks", numtracks);
2127 size_t numactiveseen = 0;
2128 const char *prefix = " ";
2129 if (numtracks) {
2130 dprintf(fd, " of which %zu are active\n", numactive);
2131 result.append(prefix);
2132 mTracks[0]->appendDumpHeader(result);
2133 for (size_t i = 0; i < numtracks; ++i) {
2134 sp<Track> track = mTracks[i];
2135 if (track != 0) {
2136 bool active = mActiveTracks.indexOf(track) >= 0;
2137 if (active) {
2138 numactiveseen++;
2139 }
2140 result.append(prefix);
2141 track->appendDump(result, active);
2142 }
2143 }
2144 } else {
2145 result.append("\n");
2146 }
2147 if (numactiveseen != numactive) {
2148 // some tracks in the active list were not in the tracks list
2149 result.append(" The following tracks are in the active list but"
2150 " not in the track list\n");
2151 result.append(prefix);
2152 mActiveTracks[0]->appendDumpHeader(result);
2153 for (size_t i = 0; i < numactive; ++i) {
2154 sp<Track> track = mActiveTracks[i];
2155 if (mTracks.indexOf(track) < 0) {
2156 result.append(prefix);
2157 track->appendDump(result, true /* active */);
2158 }
2159 }
2160 }
2161
2162 write(fd, result.string(), result.size());
2163 }
2164
dumpInternals_l(int fd,const Vector<String16> & args)2165 void AudioFlinger::PlaybackThread::dumpInternals_l(int fd, const Vector<String16>& args)
2166 {
2167 dprintf(fd, " Master volume: %f\n", mMasterVolume);
2168 dprintf(fd, " Master mute: %s\n", mMasterMute ? "on" : "off");
2169 dprintf(fd, " Mixer channel Mask: %#x (%s)\n",
2170 mMixerChannelMask, channelMaskToString(mMixerChannelMask, true /* output */).c_str());
2171 if (mHapticChannelMask != AUDIO_CHANNEL_NONE) {
2172 dprintf(fd, " Haptic channel mask: %#x (%s)\n", mHapticChannelMask,
2173 channelMaskToString(mHapticChannelMask, true /* output */).c_str());
2174 }
2175 dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount);
2176 dprintf(fd, " Total writes: %d\n", mNumWrites);
2177 dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites);
2178 dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no");
2179 dprintf(fd, " Suspend count: %d\n", mSuspended);
2180 dprintf(fd, " Sink buffer : %p\n", mSinkBuffer);
2181 dprintf(fd, " Mixer buffer: %p\n", mMixerBuffer);
2182 dprintf(fd, " Effect buffer: %p\n", mEffectBuffer);
2183 dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask);
2184 dprintf(fd, " Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
2185 AudioStreamOut *output = mOutput;
2186 audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
2187 dprintf(fd, " AudioStreamOut: %p flags %#x (%s)\n",
2188 output, flags, toString(flags).c_str());
2189 dprintf(fd, " Frames written: %lld\n", (long long)mFramesWritten);
2190 dprintf(fd, " Suspended frames: %lld\n", (long long)mSuspendedFrames);
2191 if (mPipeSink.get() != nullptr) {
2192 dprintf(fd, " PipeSink frames written: %lld\n", (long long)mPipeSink->framesWritten());
2193 }
2194 if (output != nullptr) {
2195 dprintf(fd, " Hal stream dump:\n");
2196 (void)output->stream->dump(fd, args);
2197 }
2198 }
2199
2200 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
createTrack_l(const sp<AudioFlinger::Client> & client,audio_stream_type_t streamType,const audio_attributes_t & attr,uint32_t * pSampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,size_t * pNotificationFrameCount,uint32_t notificationsPerBuffer,float speed,const sp<IMemory> & sharedBuffer,audio_session_t sessionId,audio_output_flags_t * flags,pid_t creatorPid,const AttributionSourceState & attributionSource,pid_t tid,status_t * status,audio_port_handle_t portId,const sp<media::IAudioTrackCallback> & callback)2201 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
2202 const sp<AudioFlinger::Client>& client,
2203 audio_stream_type_t streamType,
2204 const audio_attributes_t& attr,
2205 uint32_t *pSampleRate,
2206 audio_format_t format,
2207 audio_channel_mask_t channelMask,
2208 size_t *pFrameCount,
2209 size_t *pNotificationFrameCount,
2210 uint32_t notificationsPerBuffer,
2211 float speed,
2212 const sp<IMemory>& sharedBuffer,
2213 audio_session_t sessionId,
2214 audio_output_flags_t *flags,
2215 pid_t creatorPid,
2216 const AttributionSourceState& attributionSource,
2217 pid_t tid,
2218 status_t *status,
2219 audio_port_handle_t portId,
2220 const sp<media::IAudioTrackCallback>& callback)
2221 {
2222 size_t frameCount = *pFrameCount;
2223 size_t notificationFrameCount = *pNotificationFrameCount;
2224 sp<Track> track;
2225 status_t lStatus;
2226 audio_output_flags_t outputFlags = mOutput->flags;
2227 audio_output_flags_t requestedFlags = *flags;
2228 uint32_t sampleRate;
2229
2230 if (sharedBuffer != 0 && checkIMemory(sharedBuffer) != NO_ERROR) {
2231 lStatus = BAD_VALUE;
2232 goto Exit;
2233 }
2234
2235 if (*pSampleRate == 0) {
2236 *pSampleRate = mSampleRate;
2237 }
2238 sampleRate = *pSampleRate;
2239
2240 // special case for FAST flag considered OK if fast mixer is present
2241 if (hasFastMixer()) {
2242 outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST);
2243 }
2244
2245 // Check if requested flags are compatible with output stream flags
2246 if ((*flags & outputFlags) != *flags) {
2247 ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)",
2248 *flags, outputFlags);
2249 *flags = (audio_output_flags_t)(*flags & outputFlags);
2250 }
2251
2252 // client expresses a preference for FAST, but we get the final say
2253 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2254 if (
2255 // PCM data
2256 audio_is_linear_pcm(format) &&
2257 // TODO: extract as a data library function that checks that a computationally
2258 // expensive downmixer is not required: isFastOutputChannelConversion()
2259 (channelMask == (mChannelMask | mHapticChannelMask) ||
2260 mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
2261 (channelMask == AUDIO_CHANNEL_OUT_MONO
2262 /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
2263 // hardware sample rate
2264 (sampleRate == mSampleRate) &&
2265 // normal mixer has an associated fast mixer
2266 hasFastMixer() &&
2267 // there are sufficient fast track slots available
2268 (mFastTrackAvailMask != 0)
2269 // FIXME test that MixerThread for this fast track has a capable output HAL
2270 // FIXME add a permission test also?
2271 ) {
2272 // static tracks can have any nonzero framecount, streaming tracks check against minimum.
2273 if (sharedBuffer == 0) {
2274 // read the fast track multiplier property the first time it is needed
2275 int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
2276 if (ok != 0) {
2277 ALOGE("%s pthread_once failed: %d", __func__, ok);
2278 }
2279 frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
2280 }
2281
2282 // check compatibility with audio effects.
2283 { // scope for mLock
2284 Mutex::Autolock _l(mLock);
2285 for (audio_session_t session : {
2286 AUDIO_SESSION_DEVICE,
2287 AUDIO_SESSION_OUTPUT_STAGE,
2288 AUDIO_SESSION_OUTPUT_MIX,
2289 sessionId,
2290 }) {
2291 sp<EffectChain> chain = getEffectChain_l(session);
2292 if (chain.get() != nullptr) {
2293 audio_output_flags_t old = *flags;
2294 chain->checkOutputFlagCompatibility(flags);
2295 if (old != *flags) {
2296 ALOGV("AUDIO_OUTPUT_FLAGS denied by effect, session=%d old=%#x new=%#x",
2297 (int)session, (int)old, (int)*flags);
2298 }
2299 }
2300 }
2301 }
2302 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0,
2303 "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
2304 frameCount, mFrameCount);
2305 } else {
2306 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
2307 "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
2308 "sampleRate=%u mSampleRate=%u "
2309 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
2310 sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
2311 audio_is_linear_pcm(format), channelMask, sampleRate,
2312 mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
2313 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
2314 }
2315 }
2316
2317 if (!audio_has_proportional_frames(format)) {
2318 if (sharedBuffer != 0) {
2319 // Same comment as below about ignoring frameCount parameter for set()
2320 frameCount = sharedBuffer->size();
2321 } else if (frameCount == 0) {
2322 frameCount = mNormalFrameCount;
2323 }
2324 if (notificationFrameCount != frameCount) {
2325 notificationFrameCount = frameCount;
2326 }
2327 } else if (sharedBuffer != 0) {
2328 // FIXME: Ensure client side memory buffers need
2329 // not have additional alignment beyond sample
2330 // (e.g. 16 bit stereo accessed as 32 bit frame).
2331 size_t alignment = audio_bytes_per_sample(format);
2332 if (alignment & 1) {
2333 // for AUDIO_FORMAT_PCM_24_BIT_PACKED (not exposed through Java).
2334 alignment = 1;
2335 }
2336 uint32_t channelCount = audio_channel_count_from_out_mask(channelMask);
2337 size_t frameSize = channelCount * audio_bytes_per_sample(format);
2338 if (channelCount > 1) {
2339 // More than 2 channels does not require stronger alignment than stereo
2340 alignment <<= 1;
2341 }
2342 if (((uintptr_t)sharedBuffer->unsecurePointer() & (alignment - 1)) != 0) {
2343 ALOGE("Invalid buffer alignment: address %p, channel count %u",
2344 sharedBuffer->unsecurePointer(), channelCount);
2345 lStatus = BAD_VALUE;
2346 goto Exit;
2347 }
2348
2349 // When initializing a shared buffer AudioTrack via constructors,
2350 // there's no frameCount parameter.
2351 // But when initializing a shared buffer AudioTrack via set(),
2352 // there _is_ a frameCount parameter. We silently ignore it.
2353 frameCount = sharedBuffer->size() / frameSize;
2354 } else {
2355 size_t minFrameCount = 0;
2356 // For fast tracks we try to respect the application's request for notifications per buffer.
2357 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2358 if (notificationsPerBuffer > 0) {
2359 // Avoid possible arithmetic overflow during multiplication.
2360 if (notificationsPerBuffer > SIZE_MAX / mFrameCount) {
2361 ALOGE("Requested notificationPerBuffer=%u ignored for HAL frameCount=%zu",
2362 notificationsPerBuffer, mFrameCount);
2363 } else {
2364 minFrameCount = mFrameCount * notificationsPerBuffer;
2365 }
2366 }
2367 } else {
2368 // For normal PCM streaming tracks, update minimum frame count.
2369 // Buffer depth is forced to be at least 2 x the normal mixer frame count and
2370 // cover audio hardware latency.
2371 // This is probably too conservative, but legacy application code may depend on it.
2372 // If you change this calculation, also review the start threshold which is related.
2373 uint32_t latencyMs = latency_l();
2374 if (latencyMs == 0) {
2375 ALOGE("Error when retrieving output stream latency");
2376 lStatus = UNKNOWN_ERROR;
2377 goto Exit;
2378 }
2379
2380 minFrameCount = AudioSystem::calculateMinFrameCount(latencyMs, mNormalFrameCount,
2381 mSampleRate, sampleRate, speed /*, 0 mNotificationsPerBufferReq*/);
2382
2383 }
2384 if (frameCount < minFrameCount) {
2385 frameCount = minFrameCount;
2386 }
2387 }
2388
2389 // Make sure that application is notified with sufficient margin before underrun.
2390 // The client can divide the AudioTrack buffer into sub-buffers,
2391 // and expresses its desire to server as the notification frame count.
2392 if (sharedBuffer == 0 && audio_is_linear_pcm(format)) {
2393 size_t maxNotificationFrames;
2394 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2395 // notify every HAL buffer, regardless of the size of the track buffer
2396 maxNotificationFrames = mFrameCount;
2397 } else {
2398 // Triple buffer the notification period for a triple buffered mixer period;
2399 // otherwise, double buffering for the notification period is fine.
2400 //
2401 // TODO: This should be moved to AudioTrack to modify the notification period
2402 // on AudioTrack::setBufferSizeInFrames() changes.
2403 const int nBuffering =
2404 (uint64_t{frameCount} * mSampleRate)
2405 / (uint64_t{mNormalFrameCount} * sampleRate) == 3 ? 3 : 2;
2406
2407 maxNotificationFrames = frameCount / nBuffering;
2408 // If client requested a fast track but this was denied, then use the smaller maximum.
2409 if (requestedFlags & AUDIO_OUTPUT_FLAG_FAST) {
2410 size_t maxNotificationFramesFastDenied = FMS_20 * sampleRate / 1000;
2411 if (maxNotificationFrames > maxNotificationFramesFastDenied) {
2412 maxNotificationFrames = maxNotificationFramesFastDenied;
2413 }
2414 }
2415 }
2416 if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) {
2417 if (notificationFrameCount == 0) {
2418 ALOGD("Client defaulted notificationFrames to %zu for frameCount %zu",
2419 maxNotificationFrames, frameCount);
2420 } else {
2421 ALOGW("Client adjusted notificationFrames from %zu to %zu for frameCount %zu",
2422 notificationFrameCount, maxNotificationFrames, frameCount);
2423 }
2424 notificationFrameCount = maxNotificationFrames;
2425 }
2426 }
2427
2428 *pFrameCount = frameCount;
2429 *pNotificationFrameCount = notificationFrameCount;
2430
2431 switch (mType) {
2432
2433 case DIRECT:
2434 if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
2435 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2436 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
2437 "for output %p with format %#x",
2438 sampleRate, format, channelMask, mOutput, mFormat);
2439 lStatus = BAD_VALUE;
2440 goto Exit;
2441 }
2442 }
2443 break;
2444
2445 case OFFLOAD:
2446 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2447 ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
2448 "for output %p with format %#x",
2449 sampleRate, format, channelMask, mOutput, mFormat);
2450 lStatus = BAD_VALUE;
2451 goto Exit;
2452 }
2453 break;
2454
2455 default:
2456 if (!audio_is_linear_pcm(format)) {
2457 ALOGE("createTrack_l() Bad parameter: format %#x \""
2458 "for output %p with format %#x",
2459 format, mOutput, mFormat);
2460 lStatus = BAD_VALUE;
2461 goto Exit;
2462 }
2463 if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
2464 ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
2465 lStatus = BAD_VALUE;
2466 goto Exit;
2467 }
2468 break;
2469
2470 }
2471
2472 lStatus = initCheck();
2473 if (lStatus != NO_ERROR) {
2474 ALOGE("createTrack_l() audio driver not initialized");
2475 goto Exit;
2476 }
2477
2478 { // scope for mLock
2479 Mutex::Autolock _l(mLock);
2480
2481 // all tracks in same audio session must share the same routing strategy otherwise
2482 // conflicts will happen when tracks are moved from one output to another by audio policy
2483 // manager
2484 product_strategy_t strategy = getStrategyForStream(streamType);
2485 for (size_t i = 0; i < mTracks.size(); ++i) {
2486 sp<Track> t = mTracks[i];
2487 if (t != 0 && t->isExternalTrack()) {
2488 product_strategy_t actual = getStrategyForStream(t->streamType());
2489 if (sessionId == t->sessionId() && strategy != actual) {
2490 ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
2491 strategy, actual);
2492 lStatus = BAD_VALUE;
2493 goto Exit;
2494 }
2495 }
2496 }
2497
2498 // Set DIRECT flag if current thread is DirectOutputThread. This can
2499 // happen when the playback is rerouted to direct output thread by
2500 // dynamic audio policy.
2501 // Do NOT report the flag changes back to client, since the client
2502 // doesn't explicitly request a direct flag.
2503 audio_output_flags_t trackFlags = *flags;
2504 if (mType == DIRECT) {
2505 trackFlags = static_cast<audio_output_flags_t>(trackFlags | AUDIO_OUTPUT_FLAG_DIRECT);
2506 }
2507
2508 track = new Track(this, client, streamType, attr, sampleRate, format,
2509 channelMask, frameCount,
2510 nullptr /* buffer */, (size_t)0 /* bufferSize */, sharedBuffer,
2511 sessionId, creatorPid, attributionSource, trackFlags,
2512 TrackBase::TYPE_DEFAULT, portId, SIZE_MAX /*frameCountToBeReady*/, speed);
2513
2514 lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
2515 if (lStatus != NO_ERROR) {
2516 ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
2517 // track must be cleared from the caller as the caller has the AF lock
2518 goto Exit;
2519 }
2520 mTracks.add(track);
2521 {
2522 Mutex::Autolock _atCbL(mAudioTrackCbLock);
2523 if (callback.get() != nullptr) {
2524 mAudioTrackCallbacks.emplace(track, callback);
2525 }
2526 }
2527
2528 sp<EffectChain> chain = getEffectChain_l(sessionId);
2529 if (chain != 0) {
2530 ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
2531 track->setMainBuffer(chain->inBuffer());
2532 chain->setStrategy(getStrategyForStream(track->streamType()));
2533 chain->incTrackCnt();
2534 }
2535
2536 if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) {
2537 pid_t callingPid = IPCThreadState::self()->getCallingPid();
2538 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
2539 // so ask activity manager to do this on our behalf
2540 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
2541 }
2542 }
2543
2544 lStatus = NO_ERROR;
2545
2546 Exit:
2547 *status = lStatus;
2548 return track;
2549 }
2550
2551 template<typename T>
remove(const sp<T> & track)2552 ssize_t AudioFlinger::PlaybackThread::Tracks<T>::remove(const sp<T> &track)
2553 {
2554 const int trackId = track->id();
2555 const ssize_t index = mTracks.remove(track);
2556 if (index >= 0) {
2557 if (mSaveDeletedTrackIds) {
2558 // We can't directly access mAudioMixer since the caller may be outside of threadLoop.
2559 // Instead, we add to mDeletedTrackIds which is solely used for mAudioMixer update,
2560 // to be handled when MixerThread::prepareTracks_l() next changes mAudioMixer.
2561 mDeletedTrackIds.emplace(trackId);
2562 }
2563 }
2564 return index;
2565 }
2566
correctLatency_l(uint32_t latency) const2567 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
2568 {
2569 return latency;
2570 }
2571
latency() const2572 uint32_t AudioFlinger::PlaybackThread::latency() const
2573 {
2574 Mutex::Autolock _l(mLock);
2575 return latency_l();
2576 }
latency_l() const2577 uint32_t AudioFlinger::PlaybackThread::latency_l() const
2578 {
2579 uint32_t latency;
2580 if (initCheck() == NO_ERROR && mOutput->stream->getLatency(&latency) == OK) {
2581 return correctLatency_l(latency);
2582 }
2583 return 0;
2584 }
2585
setMasterVolume(float value)2586 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
2587 {
2588 Mutex::Autolock _l(mLock);
2589 // Don't apply master volume in SW if our HAL can do it for us.
2590 if (mOutput && mOutput->audioHwDev &&
2591 mOutput->audioHwDev->canSetMasterVolume()) {
2592 mMasterVolume = 1.0;
2593 } else {
2594 mMasterVolume = value;
2595 }
2596 }
2597
setMasterBalance(float balance)2598 void AudioFlinger::PlaybackThread::setMasterBalance(float balance)
2599 {
2600 mMasterBalance.store(balance);
2601 }
2602
setMasterMute(bool muted)2603 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
2604 {
2605 if (isDuplicating()) {
2606 return;
2607 }
2608 Mutex::Autolock _l(mLock);
2609 // Don't apply master mute in SW if our HAL can do it for us.
2610 if (mOutput && mOutput->audioHwDev &&
2611 mOutput->audioHwDev->canSetMasterMute()) {
2612 mMasterMute = false;
2613 } else {
2614 mMasterMute = muted;
2615 }
2616 }
2617
setStreamVolume(audio_stream_type_t stream,float value)2618 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2619 {
2620 Mutex::Autolock _l(mLock);
2621 mStreamTypes[stream].volume = value;
2622 broadcast_l();
2623 }
2624
setStreamMute(audio_stream_type_t stream,bool muted)2625 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2626 {
2627 Mutex::Autolock _l(mLock);
2628 mStreamTypes[stream].mute = muted;
2629 broadcast_l();
2630 }
2631
streamVolume(audio_stream_type_t stream) const2632 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2633 {
2634 Mutex::Autolock _l(mLock);
2635 return mStreamTypes[stream].volume;
2636 }
2637
setVolumeForOutput_l(float left,float right) const2638 void AudioFlinger::PlaybackThread::setVolumeForOutput_l(float left, float right) const
2639 {
2640 mOutput->stream->setVolume(left, right);
2641 }
2642
2643 // addTrack_l() must be called with ThreadBase::mLock held
addTrack_l(const sp<Track> & track)2644 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2645 {
2646 status_t status = ALREADY_EXISTS;
2647
2648 if (mActiveTracks.indexOf(track) < 0) {
2649 // the track is newly added, make sure it fills up all its
2650 // buffers before playing. This is to ensure the client will
2651 // effectively get the latency it requested.
2652 if (track->isExternalTrack()) {
2653 TrackBase::track_state state = track->mState;
2654 mLock.unlock();
2655 status = AudioSystem::startOutput(track->portId());
2656 mLock.lock();
2657 // abort track was stopped/paused while we released the lock
2658 if (state != track->mState) {
2659 if (status == NO_ERROR) {
2660 mLock.unlock();
2661 AudioSystem::stopOutput(track->portId());
2662 mLock.lock();
2663 }
2664 return INVALID_OPERATION;
2665 }
2666 // abort if start is rejected by audio policy manager
2667 if (status != NO_ERROR) {
2668 return PERMISSION_DENIED;
2669 }
2670 #ifdef ADD_BATTERY_DATA
2671 // to track the speaker usage
2672 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2673 #endif
2674 sendIoConfigEvent_l(AUDIO_CLIENT_STARTED, track->creatorPid(), track->portId());
2675 }
2676
2677 // set retry count for buffer fill
2678 if (track->isOffloaded()) {
2679 if (track->isStopping_1()) {
2680 track->mRetryCount = kMaxTrackStopRetriesOffload;
2681 } else {
2682 track->mRetryCount = kMaxTrackStartupRetriesOffload;
2683 }
2684 track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
2685 } else {
2686 track->mRetryCount = kMaxTrackStartupRetries;
2687 track->mFillingUpStatus =
2688 track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2689 }
2690
2691 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2692 if (mHapticChannelMask != AUDIO_CHANNEL_NONE
2693 && ((track->channelMask() & AUDIO_CHANNEL_HAPTIC_ALL) != AUDIO_CHANNEL_NONE
2694 || (chain != nullptr && chain->containsHapticGeneratingEffect_l()))) {
2695 // Unlock due to VibratorService will lock for this call and will
2696 // call Tracks.mute/unmute which also require thread's lock.
2697 mLock.unlock();
2698 const int intensity = AudioFlinger::onExternalVibrationStart(
2699 track->getExternalVibration());
2700 std::optional<media::AudioVibratorInfo> vibratorInfo;
2701 {
2702 // TODO(b/184194780): Use the vibrator information from the vibrator that will be
2703 // used to play this track.
2704 Mutex::Autolock _l(mAudioFlinger->mLock);
2705 vibratorInfo = std::move(mAudioFlinger->getDefaultVibratorInfo_l());
2706 }
2707 mLock.lock();
2708 track->setHapticIntensity(static_cast<os::HapticScale>(intensity));
2709 if (vibratorInfo) {
2710 track->setHapticMaxAmplitude(vibratorInfo->maxAmplitude);
2711 }
2712
2713 // Haptic playback should be enabled by vibrator service.
2714 if (track->getHapticPlaybackEnabled()) {
2715 // Disable haptic playback of all active track to ensure only
2716 // one track playing haptic if current track should play haptic.
2717 for (const auto &t : mActiveTracks) {
2718 t->setHapticPlaybackEnabled(false);
2719 }
2720 }
2721
2722 // Set haptic intensity for effect
2723 if (chain != nullptr) {
2724 chain->setHapticIntensity_l(track->id(), intensity);
2725 }
2726 }
2727
2728 track->mResetDone = false;
2729 track->resetPresentationComplete();
2730 mActiveTracks.add(track);
2731 if (chain != 0) {
2732 ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2733 track->sessionId());
2734 chain->incActiveTrackCnt();
2735 }
2736
2737 track->logBeginInterval(patchSinksToString(&mPatch)); // log to MediaMetrics
2738 status = NO_ERROR;
2739 }
2740
2741 onAddNewTrack_l();
2742 return status;
2743 }
2744
destroyTrack_l(const sp<Track> & track)2745 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2746 {
2747 track->terminate();
2748 // active tracks are removed by threadLoop()
2749 bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2750 track->mState = TrackBase::STOPPED;
2751 if (!trackActive) {
2752 removeTrack_l(track);
2753 } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2754 track->mState = TrackBase::STOPPING_1;
2755 }
2756
2757 return trackActive;
2758 }
2759
removeTrack_l(const sp<Track> & track)2760 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2761 {
2762 track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2763
2764 String8 result;
2765 track->appendDump(result, false /* active */);
2766 mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.string());
2767
2768 mTracks.remove(track);
2769 {
2770 Mutex::Autolock _atCbL(mAudioTrackCbLock);
2771 mAudioTrackCallbacks.erase(track);
2772 }
2773 if (track->isFastTrack()) {
2774 int index = track->mFastIndex;
2775 ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
2776 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2777 mFastTrackAvailMask |= 1 << index;
2778 // redundant as track is about to be destroyed, for dumpsys only
2779 track->mFastIndex = -1;
2780 }
2781 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2782 if (chain != 0) {
2783 chain->decTrackCnt();
2784 }
2785 }
2786
getParameters(const String8 & keys)2787 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2788 {
2789 Mutex::Autolock _l(mLock);
2790 String8 out_s8;
2791 if (initCheck() == NO_ERROR && mOutput->stream->getParameters(keys, &out_s8) == OK) {
2792 return out_s8;
2793 }
2794 return String8();
2795 }
2796
selectPresentation(int presentationId,int programId)2797 status_t AudioFlinger::DirectOutputThread::selectPresentation(int presentationId, int programId) {
2798 Mutex::Autolock _l(mLock);
2799 if (!isStreamInitialized()) {
2800 return NO_INIT;
2801 }
2802 return mOutput->stream->selectPresentation(presentationId, programId);
2803 }
2804
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)2805 void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
2806 audio_port_handle_t portId) {
2807 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2808 ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2809
2810 desc->mIoHandle = mId;
2811 struct audio_patch patch = mPatch;
2812 if (isMsdDevice()) {
2813 patch = mDownStreamPatch;
2814 }
2815
2816 switch (event) {
2817 case AUDIO_OUTPUT_OPENED:
2818 case AUDIO_OUTPUT_REGISTERED:
2819 case AUDIO_OUTPUT_CONFIG_CHANGED:
2820 desc->mPatch = patch;
2821 desc->mChannelMask = mChannelMask;
2822 desc->mSamplingRate = mSampleRate;
2823 desc->mFormat = mFormat;
2824 desc->mFrameCount = mNormalFrameCount; // FIXME see
2825 // AudioFlinger::frameCount(audio_io_handle_t)
2826 desc->mFrameCountHAL = mFrameCount;
2827 desc->mLatency = latency_l();
2828 break;
2829 case AUDIO_CLIENT_STARTED:
2830 desc->mPatch = patch;
2831 desc->mPortId = portId;
2832 break;
2833 case AUDIO_OUTPUT_CLOSED:
2834 default:
2835 break;
2836 }
2837 mAudioFlinger->ioConfigChanged(event, desc, pid);
2838 }
2839
onWriteReady()2840 void AudioFlinger::PlaybackThread::onWriteReady()
2841 {
2842 mCallbackThread->resetWriteBlocked();
2843 }
2844
onDrainReady()2845 void AudioFlinger::PlaybackThread::onDrainReady()
2846 {
2847 mCallbackThread->resetDraining();
2848 }
2849
onError()2850 void AudioFlinger::PlaybackThread::onError()
2851 {
2852 mCallbackThread->setAsyncError();
2853 }
2854
onCodecFormatChanged(const std::basic_string<uint8_t> & metadataBs)2855 void AudioFlinger::PlaybackThread::onCodecFormatChanged(
2856 const std::basic_string<uint8_t>& metadataBs)
2857 {
2858 std::thread([this, metadataBs]() {
2859 audio_utils::metadata::Data metadata =
2860 audio_utils::metadata::dataFromByteString(metadataBs);
2861 if (metadata.empty()) {
2862 ALOGW("Can not transform the buffer to audio metadata, %s, %d",
2863 reinterpret_cast<char*>(const_cast<uint8_t*>(metadataBs.data())),
2864 (int)metadataBs.size());
2865 return;
2866 }
2867
2868 audio_utils::metadata::ByteString metaDataStr =
2869 audio_utils::metadata::byteStringFromData(metadata);
2870 std::vector metadataVec(metaDataStr.begin(), metaDataStr.end());
2871 Mutex::Autolock _l(mAudioTrackCbLock);
2872 for (const auto& callbackPair : mAudioTrackCallbacks) {
2873 callbackPair.second->onCodecFormatChanged(metadataVec);
2874 }
2875 }).detach();
2876 }
2877
resetWriteBlocked(uint32_t sequence)2878 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2879 {
2880 Mutex::Autolock _l(mLock);
2881 // reject out of sequence requests
2882 if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2883 mWriteAckSequence &= ~1;
2884 mWaitWorkCV.signal();
2885 }
2886 }
2887
resetDraining(uint32_t sequence)2888 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2889 {
2890 Mutex::Autolock _l(mLock);
2891 // reject out of sequence requests
2892 if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2893 // Register discontinuity when HW drain is completed because that can cause
2894 // the timestamp frame position to reset to 0 for direct and offload threads.
2895 // (Out of sequence requests are ignored, since the discontinuity would be handled
2896 // elsewhere, e.g. in flush).
2897 mTimestampVerifier.discontinuity(mTimestampVerifier.DISCONTINUITY_MODE_ZERO);
2898 mDrainSequence &= ~1;
2899 mWaitWorkCV.signal();
2900 }
2901 }
2902
readOutputParameters_l()2903 void AudioFlinger::PlaybackThread::readOutputParameters_l()
2904 {
2905 // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2906 const audio_config_base_t audioConfig = mOutput->getAudioProperties();
2907 mSampleRate = audioConfig.sample_rate;
2908 mChannelMask = audioConfig.channel_mask;
2909 if (!audio_is_output_channel(mChannelMask)) {
2910 LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2911 }
2912 if (hasMixer() && !isValidPcmSinkChannelMask(mChannelMask)) {
2913 LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2914 mChannelMask);
2915 }
2916
2917 if (mMixerChannelMask == AUDIO_CHANNEL_NONE) {
2918 mMixerChannelMask = mChannelMask;
2919 }
2920
2921 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2922 mBalance.setChannelMask(mChannelMask);
2923
2924 uint32_t mixerChannelCount = audio_channel_count_from_out_mask(mMixerChannelMask);
2925
2926 // Get actual HAL format.
2927 status_t result = mOutput->stream->getAudioProperties(nullptr, nullptr, &mHALFormat);
2928 LOG_ALWAYS_FATAL_IF(result != OK, "Error when retrieving output stream format: %d", result);
2929 // Get format from the shim, which will be different than the HAL format
2930 // if playing compressed audio over HDMI passthrough.
2931 mFormat = audioConfig.format;
2932 if (!audio_is_valid_format(mFormat)) {
2933 LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2934 }
2935 if (hasMixer() && !isValidPcmSinkFormat(mFormat)) {
2936 LOG_FATAL("HAL format %#x not supported for mixed output",
2937 mFormat);
2938 }
2939 mFrameSize = mOutput->getFrameSize();
2940 result = mOutput->stream->getBufferSize(&mBufferSize);
2941 LOG_ALWAYS_FATAL_IF(result != OK,
2942 "Error when retrieving output stream buffer size: %d", result);
2943 mFrameCount = mBufferSize / mFrameSize;
2944 if (hasMixer() && (mFrameCount & 15)) {
2945 ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2946 mFrameCount);
2947 }
2948
2949 if (mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) {
2950 if (mOutput->stream->setCallback(this) == OK) {
2951 mUseAsyncWrite = true;
2952 mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2953 }
2954 }
2955
2956 mHwSupportsPause = false;
2957 if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2958 bool supportsPause = false, supportsResume = false;
2959 if (mOutput->stream->supportsPauseAndResume(&supportsPause, &supportsResume) == OK) {
2960 if (supportsPause && supportsResume) {
2961 mHwSupportsPause = true;
2962 } else if (supportsPause) {
2963 ALOGW("direct output implements pause but not resume");
2964 } else if (supportsResume) {
2965 ALOGW("direct output implements resume but not pause");
2966 }
2967 }
2968 }
2969 if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2970 LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2971 }
2972
2973 if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2974 // For best precision, we use float instead of the associated output
2975 // device format (typically PCM 16 bit).
2976
2977 mFormat = AUDIO_FORMAT_PCM_FLOAT;
2978 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2979 mBufferSize = mFrameSize * mFrameCount;
2980
2981 // TODO: We currently use the associated output device channel mask and sample rate.
2982 // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2983 // (if a valid mask) to avoid premature downmix.
2984 // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2985 // instead of the output device sample rate to avoid loss of high frequency information.
2986 // This may need to be updated as MixerThread/OutputTracks are added and not here.
2987 }
2988
2989 // Calculate size of normal sink buffer relative to the HAL output buffer size
2990 double multiplier = 1.0;
2991 if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2992 kUseFastMixer == FastMixer_Dynamic)) {
2993 size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2994 size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2995
2996 // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2997 minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2998 maxNormalFrameCount = maxNormalFrameCount & ~15;
2999 if (maxNormalFrameCount < minNormalFrameCount) {
3000 maxNormalFrameCount = minNormalFrameCount;
3001 }
3002 multiplier = (double) minNormalFrameCount / (double) mFrameCount;
3003 if (multiplier <= 1.0) {
3004 multiplier = 1.0;
3005 } else if (multiplier <= 2.0) {
3006 if (2 * mFrameCount <= maxNormalFrameCount) {
3007 multiplier = 2.0;
3008 } else {
3009 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
3010 }
3011 } else {
3012 multiplier = floor(multiplier);
3013 }
3014 }
3015 mNormalFrameCount = multiplier * mFrameCount;
3016 // round up to nearest 16 frames to satisfy AudioMixer
3017 if (hasMixer()) {
3018 mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
3019 }
3020 ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
3021 mNormalFrameCount);
3022
3023 // Check if we want to throttle the processing to no more than 2x normal rate
3024 mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
3025 mThreadThrottleTimeMs = 0;
3026 mThreadThrottleEndMs = 0;
3027 mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
3028
3029 // mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames.
3030 // Originally this was int16_t[] array, need to remove legacy implications.
3031 free(mSinkBuffer);
3032 mSinkBuffer = NULL;
3033
3034 // For sink buffer size, we use the frame size from the downstream sink to avoid problems
3035 // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
3036 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3037 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3038
3039 // We resize the mMixerBuffer according to the requirements of the sink buffer which
3040 // drives the output.
3041 free(mMixerBuffer);
3042 mMixerBuffer = NULL;
3043 if (mMixerBufferEnabled) {
3044 mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // no longer valid: AUDIO_FORMAT_PCM_16_BIT.
3045 mMixerBufferSize = mNormalFrameCount * mixerChannelCount
3046 * audio_bytes_per_sample(mMixerBufferFormat);
3047 (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
3048 }
3049 free(mEffectBuffer);
3050 mEffectBuffer = NULL;
3051 if (mEffectBufferEnabled) {
3052 mEffectBufferFormat = EFFECT_BUFFER_FORMAT;
3053 mEffectBufferSize = mNormalFrameCount * mixerChannelCount
3054 * audio_bytes_per_sample(mEffectBufferFormat);
3055 (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
3056 }
3057
3058 if (mType == SPATIALIZER) {
3059 free(mPostSpatializerBuffer);
3060 mPostSpatializerBuffer = nullptr;
3061 mPostSpatializerBufferSize = mNormalFrameCount * mChannelCount
3062 * audio_bytes_per_sample(mEffectBufferFormat);
3063 (void)posix_memalign(&mPostSpatializerBuffer, 32, mPostSpatializerBufferSize);
3064 }
3065
3066 mHapticChannelMask = static_cast<audio_channel_mask_t>(mChannelMask & AUDIO_CHANNEL_HAPTIC_ALL);
3067 mChannelMask = static_cast<audio_channel_mask_t>(mChannelMask & ~mHapticChannelMask);
3068 mHapticChannelCount = audio_channel_count_from_out_mask(mHapticChannelMask);
3069 mChannelCount -= mHapticChannelCount;
3070 mMixerChannelMask = static_cast<audio_channel_mask_t>(mMixerChannelMask & ~mHapticChannelMask);
3071
3072 // force reconfiguration of effect chains and engines to take new buffer size and audio
3073 // parameters into account
3074 // Note that mLock is not held when readOutputParameters_l() is called from the constructor
3075 // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
3076 // matter.
3077 // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
3078 Vector< sp<EffectChain> > effectChains = mEffectChains;
3079 for (size_t i = 0; i < effectChains.size(); i ++) {
3080 mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(),
3081 this/* srcThread */, this/* dstThread */);
3082 }
3083
3084 audio_output_flags_t flags = mOutput->flags;
3085 mediametrics::LogItem item(mThreadMetrics.getMetricsId()); // TODO: method in ThreadMetrics?
3086 item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS)
3087 .set(AMEDIAMETRICS_PROP_ENCODING, formatToString(mFormat).c_str())
3088 .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate)
3089 .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask)
3090 .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount)
3091 .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mNormalFrameCount)
3092 .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str())
3093 .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELMASK,
3094 (int32_t)mHapticChannelMask)
3095 .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELCOUNT,
3096 (int32_t)mHapticChannelCount)
3097 .set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_ENCODING,
3098 formatToString(mHALFormat).c_str())
3099 .set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_FRAMECOUNT,
3100 (int32_t)mFrameCount) // sic - added HAL
3101 ;
3102 uint32_t latencyMs;
3103 if (mOutput->stream->getLatency(&latencyMs) == NO_ERROR) {
3104 item.set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_LATENCYMS, (double)latencyMs);
3105 }
3106 item.record();
3107 }
3108
updateMetadata_l()3109 void AudioFlinger::PlaybackThread::updateMetadata_l()
3110 {
3111 if (!isStreamInitialized() || !mActiveTracks.readAndClearHasChanged()) {
3112 return; // nothing to do
3113 }
3114 StreamOutHalInterface::SourceMetadata metadata;
3115 auto backInserter = std::back_inserter(metadata.tracks);
3116 for (const sp<Track> &track : mActiveTracks) {
3117 // No track is invalid as this is called after prepareTrack_l in the same critical section
3118 // Do not forward metadata for PatchTrack with unspecified stream type
3119 if (track->streamType() != AUDIO_STREAM_PATCH) {
3120 track->copyMetadataTo(backInserter);
3121 }
3122 }
3123 sendMetadataToBackend_l(metadata);
3124 }
3125
sendMetadataToBackend_l(const StreamOutHalInterface::SourceMetadata & metadata)3126 void AudioFlinger::PlaybackThread::sendMetadataToBackend_l(
3127 const StreamOutHalInterface::SourceMetadata& metadata)
3128 {
3129 mOutput->stream->updateSourceMetadata(metadata);
3130 };
3131
getRenderPosition(uint32_t * halFrames,uint32_t * dspFrames)3132 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
3133 {
3134 if (halFrames == NULL || dspFrames == NULL) {
3135 return BAD_VALUE;
3136 }
3137 Mutex::Autolock _l(mLock);
3138 if (initCheck() != NO_ERROR) {
3139 return INVALID_OPERATION;
3140 }
3141 int64_t framesWritten = mBytesWritten / mFrameSize;
3142 *halFrames = framesWritten;
3143
3144 if (isSuspended()) {
3145 // return an estimation of rendered frames when the output is suspended
3146 size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
3147 *dspFrames = (uint32_t)
3148 (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
3149 return NO_ERROR;
3150 } else {
3151 status_t status;
3152 uint32_t frames;
3153 status = mOutput->getRenderPosition(&frames);
3154 *dspFrames = (size_t)frames;
3155 return status;
3156 }
3157 }
3158
getStrategyForSession_l(audio_session_t sessionId)3159 product_strategy_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
3160 {
3161 // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
3162 // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
3163 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
3164 return getStrategyForStream(AUDIO_STREAM_MUSIC);
3165 }
3166 for (size_t i = 0; i < mTracks.size(); i++) {
3167 sp<Track> track = mTracks[i];
3168 if (sessionId == track->sessionId() && !track->isInvalid()) {
3169 return getStrategyForStream(track->streamType());
3170 }
3171 }
3172 return getStrategyForStream(AUDIO_STREAM_MUSIC);
3173 }
3174
3175
getOutput() const3176 AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
3177 {
3178 Mutex::Autolock _l(mLock);
3179 return mOutput;
3180 }
3181
clearOutput()3182 AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
3183 {
3184 Mutex::Autolock _l(mLock);
3185 AudioStreamOut *output = mOutput;
3186 mOutput = NULL;
3187 // FIXME FastMixer might also have a raw ptr to mOutputSink;
3188 // must push a NULL and wait for ack
3189 mOutputSink.clear();
3190 mPipeSink.clear();
3191 mNormalSink.clear();
3192 return output;
3193 }
3194
3195 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const3196 sp<StreamHalInterface> AudioFlinger::PlaybackThread::stream() const
3197 {
3198 if (mOutput == NULL) {
3199 return NULL;
3200 }
3201 return mOutput->stream;
3202 }
3203
activeSleepTimeUs() const3204 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
3205 {
3206 return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
3207 }
3208
setSyncEvent(const sp<SyncEvent> & event)3209 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
3210 {
3211 if (!isValidSyncEvent(event)) {
3212 return BAD_VALUE;
3213 }
3214
3215 Mutex::Autolock _l(mLock);
3216
3217 for (size_t i = 0; i < mTracks.size(); ++i) {
3218 sp<Track> track = mTracks[i];
3219 if (event->triggerSession() == track->sessionId()) {
3220 (void) track->setSyncEvent(event);
3221 return NO_ERROR;
3222 }
3223 }
3224
3225 return NAME_NOT_FOUND;
3226 }
3227
isValidSyncEvent(const sp<SyncEvent> & event) const3228 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
3229 {
3230 return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
3231 }
3232
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)3233 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
3234 const Vector< sp<Track> >& tracksToRemove)
3235 {
3236 // Miscellaneous track cleanup when removed from the active list,
3237 // called without Thread lock but synchronized with threadLoop processing.
3238 #ifdef ADD_BATTERY_DATA
3239 for (const auto& track : tracksToRemove) {
3240 if (track->isExternalTrack()) {
3241 // to track the speaker usage
3242 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
3243 }
3244 }
3245 #else
3246 (void)tracksToRemove; // suppress unused warning
3247 #endif
3248 }
3249
checkSilentMode_l()3250 void AudioFlinger::PlaybackThread::checkSilentMode_l()
3251 {
3252 if (!mMasterMute) {
3253 char value[PROPERTY_VALUE_MAX];
3254 if (mOutDeviceTypeAddrs.empty()) {
3255 ALOGD("ro.audio.silent is ignored since no output device is set");
3256 return;
3257 }
3258 if (isSingleDeviceType(outDeviceTypes(), AUDIO_DEVICE_OUT_REMOTE_SUBMIX)) {
3259 ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
3260 return;
3261 }
3262 if (property_get("ro.audio.silent", value, "0") > 0) {
3263 char *endptr;
3264 unsigned long ul = strtoul(value, &endptr, 0);
3265 if (*endptr == '\0' && ul != 0) {
3266 ALOGD("Silence is golden");
3267 // The setprop command will not allow a property to be changed after
3268 // the first time it is set, so we don't have to worry about un-muting.
3269 setMasterMute_l(true);
3270 }
3271 }
3272 }
3273 }
3274
3275 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_write()3276 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
3277 {
3278 LOG_HIST_TS();
3279 mInWrite = true;
3280 ssize_t bytesWritten;
3281 const size_t offset = mCurrentWriteLength - mBytesRemaining;
3282
3283 // If an NBAIO sink is present, use it to write the normal mixer's submix
3284 if (mNormalSink != 0) {
3285
3286 const size_t count = mBytesRemaining / mFrameSize;
3287
3288 ATRACE_BEGIN("write");
3289 // update the setpoint when AudioFlinger::mScreenState changes
3290 uint32_t screenState = AudioFlinger::mScreenState;
3291 if (screenState != mScreenState) {
3292 mScreenState = screenState;
3293 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3294 if (pipe != NULL) {
3295 pipe->setAvgFrames((mScreenState & 1) ?
3296 (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3297 }
3298 }
3299 ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
3300 ATRACE_END();
3301 if (framesWritten > 0) {
3302 bytesWritten = framesWritten * mFrameSize;
3303 #ifdef TEE_SINK
3304 mTee.write((char *)mSinkBuffer + offset, framesWritten);
3305 #endif
3306 } else {
3307 bytesWritten = framesWritten;
3308 }
3309 // otherwise use the HAL / AudioStreamOut directly
3310 } else {
3311 // Direct output and offload threads
3312
3313 if (mUseAsyncWrite) {
3314 ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
3315 mWriteAckSequence += 2;
3316 mWriteAckSequence |= 1;
3317 ALOG_ASSERT(mCallbackThread != 0);
3318 mCallbackThread->setWriteBlocked(mWriteAckSequence);
3319 }
3320 ATRACE_BEGIN("write");
3321 // FIXME We should have an implementation of timestamps for direct output threads.
3322 // They are used e.g for multichannel PCM playback over HDMI.
3323 bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
3324 ATRACE_END();
3325
3326 if (mUseAsyncWrite &&
3327 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
3328 // do not wait for async callback in case of error of full write
3329 mWriteAckSequence &= ~1;
3330 ALOG_ASSERT(mCallbackThread != 0);
3331 mCallbackThread->setWriteBlocked(mWriteAckSequence);
3332 }
3333 }
3334
3335 mNumWrites++;
3336 mInWrite = false;
3337 if (mStandby) {
3338 mThreadMetrics.logBeginInterval();
3339 mStandby = false;
3340 }
3341 return bytesWritten;
3342 }
3343
threadLoop_drain()3344 void AudioFlinger::PlaybackThread::threadLoop_drain()
3345 {
3346 bool supportsDrain = false;
3347 if (mOutput->stream->supportsDrain(&supportsDrain) == OK && supportsDrain) {
3348 ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
3349 if (mUseAsyncWrite) {
3350 ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
3351 mDrainSequence |= 1;
3352 ALOG_ASSERT(mCallbackThread != 0);
3353 mCallbackThread->setDraining(mDrainSequence);
3354 }
3355 status_t result = mOutput->stream->drain(mMixerStatus == MIXER_DRAIN_TRACK);
3356 ALOGE_IF(result != OK, "Error when draining stream: %d", result);
3357 }
3358 }
3359
threadLoop_exit()3360 void AudioFlinger::PlaybackThread::threadLoop_exit()
3361 {
3362 {
3363 Mutex::Autolock _l(mLock);
3364 for (size_t i = 0; i < mTracks.size(); i++) {
3365 sp<Track> track = mTracks[i];
3366 track->invalidate();
3367 }
3368 // Clear ActiveTracks to update BatteryNotifier in case active tracks remain.
3369 // After we exit there are no more track changes sent to BatteryNotifier
3370 // because that requires an active threadLoop.
3371 // TODO: should we decActiveTrackCnt() of the cleared track effect chain?
3372 mActiveTracks.clear();
3373 }
3374 }
3375
3376 /*
3377 The derived values that are cached:
3378 - mSinkBufferSize from frame count * frame size
3379 - mActiveSleepTimeUs from activeSleepTimeUs()
3380 - mIdleSleepTimeUs from idleSleepTimeUs()
3381 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
3382 kDefaultStandbyTimeInNsecs when connected to an A2DP device.
3383 - maxPeriod from frame count and sample rate (MIXER only)
3384
3385 The parameters that affect these derived values are:
3386 - frame count
3387 - frame size
3388 - sample rate
3389 - device type: A2DP or not
3390 - device latency
3391 - format: PCM or not
3392 - active sleep time
3393 - idle sleep time
3394 */
3395
cacheParameters_l()3396 void AudioFlinger::PlaybackThread::cacheParameters_l()
3397 {
3398 mSinkBufferSize = mNormalFrameCount * mFrameSize;
3399 mActiveSleepTimeUs = activeSleepTimeUs();
3400 mIdleSleepTimeUs = idleSleepTimeUs();
3401
3402 // make sure standby delay is not too short when connected to an A2DP sink to avoid
3403 // truncating audio when going to standby.
3404 mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
3405 if (!Intersection(outDeviceTypes(), getAudioDeviceOutAllA2dpSet()).empty()) {
3406 if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
3407 mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
3408 }
3409 }
3410 }
3411
invalidateTracks_l(audio_stream_type_t streamType)3412 bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
3413 {
3414 ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
3415 this, streamType, mTracks.size());
3416 bool trackMatch = false;
3417 size_t size = mTracks.size();
3418 for (size_t i = 0; i < size; i++) {
3419 sp<Track> t = mTracks[i];
3420 if (t->streamType() == streamType && t->isExternalTrack()) {
3421 t->invalidate();
3422 trackMatch = true;
3423 }
3424 }
3425 return trackMatch;
3426 }
3427
invalidateTracks(audio_stream_type_t streamType)3428 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
3429 {
3430 Mutex::Autolock _l(mLock);
3431 invalidateTracks_l(streamType);
3432 }
3433
3434 // getTrackById_l must be called with holding thread lock
getTrackById_l(audio_port_handle_t trackPortId)3435 AudioFlinger::PlaybackThread::Track* AudioFlinger::PlaybackThread::getTrackById_l(
3436 audio_port_handle_t trackPortId) {
3437 for (size_t i = 0; i < mTracks.size(); i++) {
3438 if (mTracks[i]->portId() == trackPortId) {
3439 return mTracks[i].get();
3440 }
3441 }
3442 return nullptr;
3443 }
3444
addEffectChain_l(const sp<EffectChain> & chain)3445 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
3446 {
3447 audio_session_t session = chain->sessionId();
3448 sp<EffectBufferHalInterface> halInBuffer, halOutBuffer;
3449 effect_buffer_t *buffer = nullptr; // only used for non global sessions
3450
3451 if (mType == SPATIALIZER ) {
3452 if (!audio_is_global_session(session)) {
3453 // player sessions on a spatializer output will use a dedicated input buffer and
3454 // will either output multi channel to mEffectBuffer if the track is spatilaized
3455 // or stereo to mPostSpatializerBuffer if not spatialized.
3456 uint32_t channelMask;
3457 bool isSessionSpatialized =
3458 (hasAudioSession_l(session) & ThreadBase::SPATIALIZED_SESSION) != 0;
3459 if (isSessionSpatialized) {
3460 channelMask = mMixerChannelMask;
3461 } else {
3462 channelMask = mChannelMask;
3463 }
3464 size_t numSamples = mNormalFrameCount
3465 * (audio_channel_count_from_out_mask(channelMask) + mHapticChannelCount);
3466 status_t result = mAudioFlinger->mEffectsFactoryHal->allocateBuffer(
3467 numSamples * sizeof(effect_buffer_t),
3468 &halInBuffer);
3469 if (result != OK) return result;
3470
3471 result = mAudioFlinger->mEffectsFactoryHal->mirrorBuffer(
3472 isSessionSpatialized ? mEffectBuffer : mPostSpatializerBuffer,
3473 isSessionSpatialized ? mEffectBufferSize : mPostSpatializerBufferSize,
3474 &halOutBuffer);
3475 if (result != OK) return result;
3476
3477 #ifdef FLOAT_EFFECT_CHAIN
3478 buffer = halInBuffer->audioBuffer()->f32;
3479 #else
3480 buffer = halInBuffer->audioBuffer()->s16;
3481 #endif
3482 ALOGV("addEffectChain_l() creating new input buffer %p session %d",
3483 buffer, session);
3484 } else {
3485 // A global session on a SPATIALIZER thread is either OUTPUT_STAGE or DEVICE
3486 // - OUTPUT_STAGE session uses the mEffectBuffer as input buffer and
3487 // mPostSpatializerBuffer as output buffer
3488 // - DEVICE session uses the mPostSpatializerBuffer as input and output buffer.
3489 status_t result = mAudioFlinger->mEffectsFactoryHal->mirrorBuffer(
3490 mEffectBuffer, mEffectBufferSize, &halInBuffer);
3491 if (result != OK) return result;
3492 result = mAudioFlinger->mEffectsFactoryHal->mirrorBuffer(
3493 mPostSpatializerBuffer, mPostSpatializerBufferSize, &halOutBuffer);
3494 if (result != OK) return result;
3495
3496 if (session == AUDIO_SESSION_DEVICE) {
3497 halInBuffer = halOutBuffer;
3498 }
3499 }
3500 } else {
3501 status_t result = mAudioFlinger->mEffectsFactoryHal->mirrorBuffer(
3502 mEffectBufferEnabled ? mEffectBuffer : mSinkBuffer,
3503 mEffectBufferEnabled ? mEffectBufferSize : mSinkBufferSize,
3504 &halInBuffer);
3505 if (result != OK) return result;
3506 halOutBuffer = halInBuffer;
3507 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
3508 if (!audio_is_global_session(session)) {
3509 buffer = reinterpret_cast<effect_buffer_t*>(halInBuffer->externalData());
3510 // Only one effect chain can be present in direct output thread and it uses
3511 // the sink buffer as input
3512 if (mType != DIRECT) {
3513 size_t numSamples = mNormalFrameCount
3514 * (audio_channel_count_from_out_mask(mMixerChannelMask)
3515 + mHapticChannelCount);
3516 status_t result = mAudioFlinger->mEffectsFactoryHal->allocateBuffer(
3517 numSamples * sizeof(effect_buffer_t),
3518 &halInBuffer);
3519 if (result != OK) return result;
3520 #ifdef FLOAT_EFFECT_CHAIN
3521 buffer = halInBuffer->audioBuffer()->f32;
3522 #else
3523 buffer = halInBuffer->audioBuffer()->s16;
3524 #endif
3525 ALOGV("addEffectChain_l() creating new input buffer %p session %d",
3526 buffer, session);
3527 }
3528 }
3529 }
3530
3531 if (!audio_is_global_session(session)) {
3532 // Attach all tracks with same session ID to this chain.
3533 for (size_t i = 0; i < mTracks.size(); ++i) {
3534 sp<Track> track = mTracks[i];
3535 if (session == track->sessionId()) {
3536 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p",
3537 track.get(), buffer);
3538 track->setMainBuffer(buffer);
3539 chain->incTrackCnt();
3540 }
3541 }
3542
3543 // indicate all active tracks in the chain
3544 for (const sp<Track> &track : mActiveTracks) {
3545 if (session == track->sessionId()) {
3546 ALOGV("addEffectChain_l() activating track %p on session %d",
3547 track.get(), session);
3548 chain->incActiveTrackCnt();
3549 }
3550 }
3551 }
3552
3553 chain->setThread(this);
3554 chain->setInBuffer(halInBuffer);
3555 chain->setOutBuffer(halOutBuffer);
3556 // Effect chain for session AUDIO_SESSION_DEVICE is inserted at end of effect
3557 // chains list in order to be processed last as it contains output device effects.
3558 // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted just before to apply post
3559 // processing effects specific to an output stream before effects applied to all streams
3560 // routed to a given device.
3561 // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
3562 // session AUDIO_SESSION_OUTPUT_STAGE to be processed
3563 // after track specific effects and before output stage.
3564 // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
3565 // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
3566 // Effect chain for other sessions are inserted at beginning of effect
3567 // chains list to be processed before output mix effects. Relative order between other
3568 // sessions is not important.
3569 static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
3570 AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX &&
3571 AUDIO_SESSION_DEVICE < AUDIO_SESSION_OUTPUT_STAGE,
3572 "audio_session_t constants misdefined");
3573 size_t size = mEffectChains.size();
3574 size_t i = 0;
3575 for (i = 0; i < size; i++) {
3576 if (mEffectChains[i]->sessionId() < session) {
3577 break;
3578 }
3579 }
3580 mEffectChains.insertAt(chain, i);
3581 checkSuspendOnAddEffectChain_l(chain);
3582
3583 return NO_ERROR;
3584 }
3585
removeEffectChain_l(const sp<EffectChain> & chain)3586 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
3587 {
3588 audio_session_t session = chain->sessionId();
3589
3590 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
3591
3592 for (size_t i = 0; i < mEffectChains.size(); i++) {
3593 if (chain == mEffectChains[i]) {
3594 mEffectChains.removeAt(i);
3595 // detach all active tracks from the chain
3596 for (const sp<Track> &track : mActiveTracks) {
3597 if (session == track->sessionId()) {
3598 ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
3599 chain.get(), session);
3600 chain->decActiveTrackCnt();
3601 }
3602 }
3603
3604 // detach all tracks with same session ID from this chain
3605 for (size_t i = 0; i < mTracks.size(); ++i) {
3606 sp<Track> track = mTracks[i];
3607 if (session == track->sessionId()) {
3608 track->setMainBuffer(reinterpret_cast<effect_buffer_t*>(mSinkBuffer));
3609 chain->decTrackCnt();
3610 }
3611 }
3612 break;
3613 }
3614 }
3615 return mEffectChains.size();
3616 }
3617
attachAuxEffect(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)3618 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
3619 const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
3620 {
3621 Mutex::Autolock _l(mLock);
3622 return attachAuxEffect_l(track, EffectId);
3623 }
3624
attachAuxEffect_l(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)3625 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
3626 const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
3627 {
3628 status_t status = NO_ERROR;
3629
3630 if (EffectId == 0) {
3631 track->setAuxBuffer(0, NULL);
3632 } else {
3633 // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
3634 sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
3635 if (effect != 0) {
3636 if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
3637 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
3638 } else {
3639 status = INVALID_OPERATION;
3640 }
3641 } else {
3642 status = BAD_VALUE;
3643 }
3644 }
3645 return status;
3646 }
3647
detachAuxEffect_l(int effectId)3648 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
3649 {
3650 for (size_t i = 0; i < mTracks.size(); ++i) {
3651 sp<Track> track = mTracks[i];
3652 if (track->auxEffectId() == effectId) {
3653 attachAuxEffect_l(track, 0);
3654 }
3655 }
3656 }
3657
threadLoop()3658 bool AudioFlinger::PlaybackThread::threadLoop()
3659 {
3660 tlNBLogWriter = mNBLogWriter.get();
3661
3662 Vector< sp<Track> > tracksToRemove;
3663
3664 mStandbyTimeNs = systemTime();
3665 int64_t lastLoopCountWritten = -2; // never matches "previous" loop, when loopCount = 0.
3666
3667 // MIXER
3668 nsecs_t lastWarning = 0;
3669
3670 // DUPLICATING
3671 // FIXME could this be made local to while loop?
3672 writeFrames = 0;
3673
3674 cacheParameters_l();
3675 mSleepTimeUs = mIdleSleepTimeUs;
3676
3677 if (mType == MIXER) {
3678 sleepTimeShift = 0;
3679 }
3680
3681 CpuStats cpuStats;
3682 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
3683
3684 acquireWakeLock();
3685
3686 // mNBLogWriter logging APIs can only be called by a single thread, typically the
3687 // thread associated with this PlaybackThread.
3688 // If you want to share the mNBLogWriter with other threads (for example, binder threads)
3689 // then all such threads must agree to hold a common mutex before logging.
3690 // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
3691 // and then that string will be logged at the next convenient opportunity.
3692 // See reference to logString below.
3693 const char *logString = NULL;
3694
3695 // Estimated time for next buffer to be written to hal. This is used only on
3696 // suspended mode (for now) to help schedule the wait time until next iteration.
3697 nsecs_t timeLoopNextNs = 0;
3698
3699 checkSilentMode_l();
3700
3701 audio_patch_handle_t lastDownstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3702
3703 sendCheckOutputStageEffectsEvent();
3704
3705 // loopCount is used for statistics and diagnostics.
3706 for (int64_t loopCount = 0; !exitPending(); ++loopCount)
3707 {
3708 // Log merge requests are performed during AudioFlinger binder transactions, but
3709 // that does not cover audio playback. It's requested here for that reason.
3710 mAudioFlinger->requestLogMerge();
3711
3712 cpuStats.sample(myName);
3713
3714 Vector< sp<EffectChain> > effectChains;
3715 audio_session_t activeHapticSessionId = AUDIO_SESSION_NONE;
3716 bool isHapticSessionSpatialized = false;
3717 std::vector<sp<Track>> activeTracks;
3718
3719 // If the device is AUDIO_DEVICE_OUT_BUS, check for downstream latency.
3720 //
3721 // Note: we access outDeviceTypes() outside of mLock.
3722 if (isMsdDevice() && outDeviceTypes().count(AUDIO_DEVICE_OUT_BUS) != 0) {
3723 // Here, we try for the AF lock, but do not block on it as the latency
3724 // is more informational.
3725 if (mAudioFlinger->mLock.tryLock() == NO_ERROR) {
3726 std::vector<PatchPanel::SoftwarePatch> swPatches;
3727 double latencyMs;
3728 status_t status = INVALID_OPERATION;
3729 audio_patch_handle_t downstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3730 if (mAudioFlinger->mPatchPanel.getDownstreamSoftwarePatches(id(), &swPatches) == OK
3731 && swPatches.size() > 0) {
3732 status = swPatches[0].getLatencyMs_l(&latencyMs);
3733 downstreamPatchHandle = swPatches[0].getPatchHandle();
3734 }
3735 if (downstreamPatchHandle != lastDownstreamPatchHandle) {
3736 mDownstreamLatencyStatMs.reset();
3737 lastDownstreamPatchHandle = downstreamPatchHandle;
3738 }
3739 if (status == OK) {
3740 // verify downstream latency (we assume a max reasonable
3741 // latency of 5 seconds).
3742 const double minLatency = 0., maxLatency = 5000.;
3743 if (latencyMs >= minLatency && latencyMs <= maxLatency) {
3744 ALOGVV("new downstream latency %lf ms", latencyMs);
3745 } else {
3746 ALOGD("out of range downstream latency %lf ms", latencyMs);
3747 if (latencyMs < minLatency) latencyMs = minLatency;
3748 else if (latencyMs > maxLatency) latencyMs = maxLatency;
3749 }
3750 mDownstreamLatencyStatMs.add(latencyMs);
3751 }
3752 mAudioFlinger->mLock.unlock();
3753 }
3754 } else {
3755 if (lastDownstreamPatchHandle != AUDIO_PATCH_HANDLE_NONE) {
3756 // our device is no longer AUDIO_DEVICE_OUT_BUS, reset patch handle and stats.
3757 mDownstreamLatencyStatMs.reset();
3758 lastDownstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3759 }
3760 }
3761
3762 if (mCheckOutputStageEffects.exchange(false)) {
3763 checkOutputStageEffects();
3764 }
3765
3766 { // scope for mLock
3767
3768 Mutex::Autolock _l(mLock);
3769
3770 processConfigEvents_l();
3771 if (mCheckOutputStageEffects.load()) {
3772 continue;
3773 }
3774
3775 // See comment at declaration of logString for why this is done under mLock
3776 if (logString != NULL) {
3777 mNBLogWriter->logTimestamp();
3778 mNBLogWriter->log(logString);
3779 logString = NULL;
3780 }
3781
3782 collectTimestamps_l();
3783
3784 saveOutputTracks();
3785 if (mSignalPending) {
3786 // A signal was raised while we were unlocked
3787 mSignalPending = false;
3788 } else if (waitingAsyncCallback_l()) {
3789 if (exitPending()) {
3790 break;
3791 }
3792 bool released = false;
3793 if (!keepWakeLock()) {
3794 releaseWakeLock_l();
3795 released = true;
3796 }
3797
3798 const int64_t waitNs = computeWaitTimeNs_l();
3799 ALOGV("wait async completion (wait time: %lld)", (long long)waitNs);
3800 status_t status = mWaitWorkCV.waitRelative(mLock, waitNs);
3801 if (status == TIMED_OUT) {
3802 mSignalPending = true; // if timeout recheck everything
3803 }
3804 ALOGV("async completion/wake");
3805 if (released) {
3806 acquireWakeLock_l();
3807 }
3808 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3809 mSleepTimeUs = 0;
3810
3811 continue;
3812 }
3813 if ((mActiveTracks.isEmpty() && systemTime() > mStandbyTimeNs) ||
3814 isSuspended()) {
3815 // put audio hardware into standby after short delay
3816 if (shouldStandby_l()) {
3817
3818 threadLoop_standby();
3819
3820 // This is where we go into standby
3821 if (!mStandby) {
3822 LOG_AUDIO_STATE();
3823 mThreadMetrics.logEndInterval();
3824 mStandby = true;
3825 }
3826 sendStatistics(false /* force */);
3827 }
3828
3829 if (mActiveTracks.isEmpty() && mConfigEvents.isEmpty()) {
3830 // we're about to wait, flush the binder command buffer
3831 IPCThreadState::self()->flushCommands();
3832
3833 clearOutputTracks();
3834
3835 if (exitPending()) {
3836 break;
3837 }
3838
3839 releaseWakeLock_l();
3840 // wait until we have something to do...
3841 ALOGV("%s going to sleep", myName.string());
3842 mWaitWorkCV.wait(mLock);
3843 ALOGV("%s waking up", myName.string());
3844 acquireWakeLock_l();
3845
3846 mMixerStatus = MIXER_IDLE;
3847 mMixerStatusIgnoringFastTracks = MIXER_IDLE;
3848 mBytesWritten = 0;
3849 mBytesRemaining = 0;
3850 checkSilentMode_l();
3851
3852 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3853 mSleepTimeUs = mIdleSleepTimeUs;
3854 if (mType == MIXER) {
3855 sleepTimeShift = 0;
3856 }
3857
3858 continue;
3859 }
3860 }
3861 // mMixerStatusIgnoringFastTracks is also updated internally
3862 mMixerStatus = prepareTracks_l(&tracksToRemove);
3863
3864 mActiveTracks.updatePowerState(this);
3865
3866 updateMetadata_l();
3867
3868 // prevent any changes in effect chain list and in each effect chain
3869 // during mixing and effect process as the audio buffers could be deleted
3870 // or modified if an effect is created or deleted
3871 lockEffectChains_l(effectChains);
3872
3873 // Determine which session to pick up haptic data.
3874 // This must be done under the same lock as prepareTracks_l().
3875 // The haptic data from the effect is at a higher priority than the one from track.
3876 // TODO: Write haptic data directly to sink buffer when mixing.
3877 if (mHapticChannelCount > 0) {
3878 for (const auto& track : mActiveTracks) {
3879 sp<EffectChain> effectChain = getEffectChain_l(track->sessionId());
3880 if (effectChain != nullptr
3881 && effectChain->containsHapticGeneratingEffect_l()) {
3882 activeHapticSessionId = track->sessionId();
3883 isHapticSessionSpatialized =
3884 mType == SPATIALIZER && track->canBeSpatialized();
3885 break;
3886 }
3887 if (activeHapticSessionId == AUDIO_SESSION_NONE
3888 && track->getHapticPlaybackEnabled()) {
3889 activeHapticSessionId = track->sessionId();
3890 isHapticSessionSpatialized =
3891 mType == SPATIALIZER && track->canBeSpatialized();
3892 }
3893 }
3894 }
3895
3896 // Acquire a local copy of active tracks with lock (release w/o lock).
3897 //
3898 // Control methods on the track acquire the ThreadBase lock (e.g. start()
3899 // stop(), pause(), etc.), but the threadLoop is entitled to call audio
3900 // data / buffer methods on tracks from activeTracks without the ThreadBase lock.
3901 activeTracks.insert(activeTracks.end(), mActiveTracks.begin(), mActiveTracks.end());
3902 } // mLock scope ends
3903
3904 if (mBytesRemaining == 0) {
3905 mCurrentWriteLength = 0;
3906 if (mMixerStatus == MIXER_TRACKS_READY) {
3907 // threadLoop_mix() sets mCurrentWriteLength
3908 threadLoop_mix();
3909 } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3910 && (mMixerStatus != MIXER_DRAIN_ALL)) {
3911 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3912 // must be written to HAL
3913 threadLoop_sleepTime();
3914 if (mSleepTimeUs == 0) {
3915 mCurrentWriteLength = mSinkBufferSize;
3916
3917 // Tally underrun frames as we are inserting 0s here.
3918 for (const auto& track : activeTracks) {
3919 if (track->mFillingUpStatus == Track::FS_ACTIVE
3920 && !track->isStopped()
3921 && !track->isPaused()
3922 && !track->isTerminated()) {
3923 ALOGV("%s: track(%d) %s underrun due to thread sleep of %zu frames",
3924 __func__, track->id(), track->getTrackStateAsString(),
3925 mNormalFrameCount);
3926 track->mAudioTrackServerProxy->tallyUnderrunFrames(mNormalFrameCount);
3927 }
3928 }
3929 }
3930 }
3931 // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3932 // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3933 // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3934 // or mSinkBuffer (if there are no effects).
3935 //
3936 // This is done pre-effects computation; if effects change to
3937 // support higher precision, this needs to move.
3938 //
3939 // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3940 // TODO use mSleepTimeUs == 0 as an additional condition.
3941 uint32_t mixerChannelCount = mEffectBufferValid ?
3942 audio_channel_count_from_out_mask(mMixerChannelMask) : mChannelCount;
3943 if (mMixerBufferValid) {
3944 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3945 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3946
3947 // mono blend occurs for mixer threads only (not direct or offloaded)
3948 // and is handled here if we're going directly to the sink.
3949 if (requireMonoBlend() && !mEffectBufferValid) {
3950 mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3951 true /*limit*/);
3952 }
3953
3954 if (!hasFastMixer()) {
3955 // Balance must take effect after mono conversion.
3956 // We do it here if there is no FastMixer.
3957 // mBalance detects zero balance within the class for speed (not needed here).
3958 mBalance.setBalance(mMasterBalance.load());
3959 mBalance.process((float *)mMixerBuffer, mNormalFrameCount);
3960 }
3961
3962 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3963 mNormalFrameCount * (mixerChannelCount + mHapticChannelCount));
3964
3965 // If we're going directly to the sink and there are haptic channels,
3966 // we should adjust channels as the sample data is partially interleaved
3967 // in this case.
3968 if (!mEffectBufferValid && mHapticChannelCount > 0) {
3969 adjust_channels_non_destructive(buffer, mChannelCount, buffer,
3970 mChannelCount + mHapticChannelCount,
3971 audio_bytes_per_sample(format),
3972 audio_bytes_per_frame(mChannelCount, format) * mNormalFrameCount);
3973 }
3974 }
3975
3976 mBytesRemaining = mCurrentWriteLength;
3977 if (isSuspended()) {
3978 // Simulate write to HAL when suspended (e.g. BT SCO phone call).
3979 mSleepTimeUs = suspendSleepTimeUs(); // assumes full buffer.
3980 const size_t framesRemaining = mBytesRemaining / mFrameSize;
3981 mBytesWritten += mBytesRemaining;
3982 mFramesWritten += framesRemaining;
3983 mSuspendedFrames += framesRemaining; // to adjust kernel HAL position
3984 mBytesRemaining = 0;
3985 }
3986
3987 // only process effects if we're going to write
3988 if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3989 for (size_t i = 0; i < effectChains.size(); i ++) {
3990 effectChains[i]->process_l();
3991 // TODO: Write haptic data directly to sink buffer when mixing.
3992 if (activeHapticSessionId != AUDIO_SESSION_NONE
3993 && activeHapticSessionId == effectChains[i]->sessionId()) {
3994 // Haptic data is active in this case, copy it directly from
3995 // in buffer to out buffer.
3996 uint32_t hapticSessionChannelCount = mEffectBufferValid ?
3997 audio_channel_count_from_out_mask(mMixerChannelMask) :
3998 mChannelCount;
3999 if (mType == SPATIALIZER && !isHapticSessionSpatialized) {
4000 hapticSessionChannelCount = mChannelCount;
4001 }
4002
4003 const size_t audioBufferSize = mNormalFrameCount
4004 * audio_bytes_per_frame(hapticSessionChannelCount,
4005 EFFECT_BUFFER_FORMAT);
4006 memcpy_by_audio_format(
4007 (uint8_t*)effectChains[i]->outBuffer() + audioBufferSize,
4008 EFFECT_BUFFER_FORMAT,
4009 (const uint8_t*)effectChains[i]->inBuffer() + audioBufferSize,
4010 EFFECT_BUFFER_FORMAT, mNormalFrameCount * mHapticChannelCount);
4011 }
4012 }
4013 }
4014 }
4015 // Process effect chains for offloaded thread even if no audio
4016 // was read from audio track: process only updates effect state
4017 // and thus does have to be synchronized with audio writes but may have
4018 // to be called while waiting for async write callback
4019 if (mType == OFFLOAD) {
4020 for (size_t i = 0; i < effectChains.size(); i ++) {
4021 effectChains[i]->process_l();
4022 }
4023 }
4024
4025 // Only if the Effects buffer is enabled and there is data in the
4026 // Effects buffer (buffer valid), we need to
4027 // copy into the sink buffer.
4028 // TODO use mSleepTimeUs == 0 as an additional condition.
4029 if (mEffectBufferValid) {
4030 //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
4031 void *effectBuffer = (mType == SPATIALIZER) ? mPostSpatializerBuffer : mEffectBuffer;
4032 if (requireMonoBlend()) {
4033 mono_blend(effectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
4034 true /*limit*/);
4035 }
4036
4037 if (!hasFastMixer()) {
4038 // Balance must take effect after mono conversion.
4039 // We do it here if there is no FastMixer.
4040 // mBalance detects zero balance within the class for speed (not needed here).
4041 mBalance.setBalance(mMasterBalance.load());
4042 mBalance.process((float *)effectBuffer, mNormalFrameCount);
4043 }
4044
4045 // for SPATIALIZER thread, Move haptics channels from mEffectBuffer to
4046 // mPostSpatializerBuffer if the haptics track is spatialized.
4047 // Otherwise, the haptics channels are already in mPostSpatializerBuffer.
4048 // For other thread types, the haptics channels are already in mEffectBuffer.
4049 if (mType == SPATIALIZER && isHapticSessionSpatialized) {
4050 const size_t srcBufferSize = mNormalFrameCount *
4051 audio_bytes_per_frame(audio_channel_count_from_out_mask(mMixerChannelMask),
4052 mEffectBufferFormat);
4053 const size_t dstBufferSize = mNormalFrameCount
4054 * audio_bytes_per_frame(mChannelCount, mEffectBufferFormat);
4055
4056 memcpy_by_audio_format((uint8_t*)mPostSpatializerBuffer + dstBufferSize,
4057 mEffectBufferFormat,
4058 (uint8_t*)mEffectBuffer + srcBufferSize,
4059 mEffectBufferFormat,
4060 mNormalFrameCount * mHapticChannelCount);
4061 }
4062
4063 memcpy_by_audio_format(mSinkBuffer, mFormat, effectBuffer, mEffectBufferFormat,
4064 mNormalFrameCount * (mChannelCount + mHapticChannelCount));
4065
4066 // The sample data is partially interleaved when haptic channels exist,
4067 // we need to adjust channels here.
4068 if (mHapticChannelCount > 0) {
4069 adjust_channels_non_destructive(mSinkBuffer, mChannelCount, mSinkBuffer,
4070 mChannelCount + mHapticChannelCount,
4071 audio_bytes_per_sample(mFormat),
4072 audio_bytes_per_frame(mChannelCount, mFormat) * mNormalFrameCount);
4073 }
4074 }
4075
4076 // enable changes in effect chain
4077 unlockEffectChains(effectChains);
4078
4079 if (!waitingAsyncCallback()) {
4080 // mSleepTimeUs == 0 means we must write to audio hardware
4081 if (mSleepTimeUs == 0) {
4082 ssize_t ret = 0;
4083 // writePeriodNs is updated >= 0 when ret > 0.
4084 int64_t writePeriodNs = -1;
4085 if (mBytesRemaining) {
4086 // FIXME rewrite to reduce number of system calls
4087 const int64_t lastIoBeginNs = systemTime();
4088 ret = threadLoop_write();
4089 const int64_t lastIoEndNs = systemTime();
4090 if (ret < 0) {
4091 mBytesRemaining = 0;
4092 } else if (ret > 0) {
4093 mBytesWritten += ret;
4094 mBytesRemaining -= ret;
4095 const int64_t frames = ret / mFrameSize;
4096 mFramesWritten += frames;
4097
4098 writePeriodNs = lastIoEndNs - mLastIoEndNs;
4099 // process information relating to write time.
4100 if (audio_has_proportional_frames(mFormat)) {
4101 // we are in a continuous mixing cycle
4102 if (mMixerStatus == MIXER_TRACKS_READY &&
4103 loopCount == lastLoopCountWritten + 1) {
4104
4105 const double jitterMs =
4106 TimestampVerifier<int64_t, int64_t>::computeJitterMs(
4107 {frames, writePeriodNs},
4108 {0, 0} /* lastTimestamp */, mSampleRate);
4109 const double processMs =
4110 (lastIoBeginNs - mLastIoEndNs) * 1e-6;
4111
4112 Mutex::Autolock _l(mLock);
4113 mIoJitterMs.add(jitterMs);
4114 mProcessTimeMs.add(processMs);
4115 }
4116
4117 // write blocked detection
4118 const int64_t deltaWriteNs = lastIoEndNs - lastIoBeginNs;
4119 if (mType == MIXER && deltaWriteNs > maxPeriod) {
4120 mNumDelayedWrites++;
4121 if ((lastIoEndNs - lastWarning) > kWarningThrottleNs) {
4122 ATRACE_NAME("underrun");
4123 ALOGW("write blocked for %lld msecs, "
4124 "%d delayed writes, thread %d",
4125 (long long)deltaWriteNs / NANOS_PER_MILLISECOND,
4126 mNumDelayedWrites, mId);
4127 lastWarning = lastIoEndNs;
4128 }
4129 }
4130 }
4131 // update timing info.
4132 mLastIoBeginNs = lastIoBeginNs;
4133 mLastIoEndNs = lastIoEndNs;
4134 lastLoopCountWritten = loopCount;
4135 }
4136 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
4137 (mMixerStatus == MIXER_DRAIN_ALL)) {
4138 threadLoop_drain();
4139 }
4140 if (mType == MIXER && !mStandby) {
4141
4142 if (mThreadThrottle
4143 && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
4144 && writePeriodNs > 0) { // we have write period info
4145 // Limit MixerThread data processing to no more than twice the
4146 // expected processing rate.
4147 //
4148 // This helps prevent underruns with NuPlayer and other applications
4149 // which may set up buffers that are close to the minimum size, or use
4150 // deep buffers, and rely on a double-buffering sleep strategy to fill.
4151 //
4152 // The throttle smooths out sudden large data drains from the device,
4153 // e.g. when it comes out of standby, which often causes problems with
4154 // (1) mixer threads without a fast mixer (which has its own warm-up)
4155 // (2) minimum buffer sized tracks (even if the track is full,
4156 // the app won't fill fast enough to handle the sudden draw).
4157 //
4158 // Total time spent in last processing cycle equals time spent in
4159 // 1. threadLoop_write, as well as time spent in
4160 // 2. threadLoop_mix (significant for heavy mixing, especially
4161 // on low tier processors)
4162
4163 // it's OK if deltaMs is an overestimate.
4164
4165 const int32_t deltaMs = writePeriodNs / NANOS_PER_MILLISECOND;
4166
4167 const int32_t throttleMs = (int32_t)mHalfBufferMs - deltaMs;
4168 if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
4169 mThreadMetrics.logThrottleMs((double)throttleMs);
4170
4171 usleep(throttleMs * 1000);
4172 // notify of throttle start on verbose log
4173 ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
4174 "mixer(%p) throttle begin:"
4175 " ret(%zd) deltaMs(%d) requires sleep %d ms",
4176 this, ret, deltaMs, throttleMs);
4177 mThreadThrottleTimeMs += throttleMs;
4178 // Throttle must be attributed to the previous mixer loop's write time
4179 // to allow back-to-back throttling.
4180 // This also ensures proper timing statistics.
4181 mLastIoEndNs = systemTime(); // we fetch the write end time again.
4182 } else {
4183 uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
4184 if (diff > 0) {
4185 // notify of throttle end on debug log
4186 // but prevent spamming for bluetooth
4187 ALOGD_IF(!isSingleDeviceType(
4188 outDeviceTypes(), audio_is_a2dp_out_device) &&
4189 !isSingleDeviceType(
4190 outDeviceTypes(), audio_is_hearing_aid_out_device),
4191 "mixer(%p) throttle end: throttle time(%u)", this, diff);
4192 mThreadThrottleEndMs = mThreadThrottleTimeMs;
4193 }
4194 }
4195 }
4196 }
4197
4198 } else {
4199 ATRACE_BEGIN("sleep");
4200 Mutex::Autolock _l(mLock);
4201 // suspended requires accurate metering of sleep time.
4202 if (isSuspended()) {
4203 // advance by expected sleepTime
4204 timeLoopNextNs += microseconds((nsecs_t)mSleepTimeUs);
4205 const nsecs_t nowNs = systemTime();
4206
4207 // compute expected next time vs current time.
4208 // (negative deltas are treated as delays).
4209 nsecs_t deltaNs = timeLoopNextNs - nowNs;
4210 if (deltaNs < -kMaxNextBufferDelayNs) {
4211 // Delays longer than the max allowed trigger a reset.
4212 ALOGV("DelayNs: %lld, resetting timeLoopNextNs", (long long) deltaNs);
4213 deltaNs = microseconds((nsecs_t)mSleepTimeUs);
4214 timeLoopNextNs = nowNs + deltaNs;
4215 } else if (deltaNs < 0) {
4216 // Delays within the max delay allowed: zero the delta/sleepTime
4217 // to help the system catch up in the next iteration(s)
4218 ALOGV("DelayNs: %lld, catching-up", (long long) deltaNs);
4219 deltaNs = 0;
4220 }
4221 // update sleep time (which is >= 0)
4222 mSleepTimeUs = deltaNs / 1000;
4223 }
4224 if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
4225 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
4226 }
4227 ATRACE_END();
4228 }
4229 }
4230
4231 // Finally let go of removed track(s), without the lock held
4232 // since we can't guarantee the destructors won't acquire that
4233 // same lock. This will also mutate and push a new fast mixer state.
4234 threadLoop_removeTracks(tracksToRemove);
4235 tracksToRemove.clear();
4236
4237 // FIXME I don't understand the need for this here;
4238 // it was in the original code but maybe the
4239 // assignment in saveOutputTracks() makes this unnecessary?
4240 clearOutputTracks();
4241
4242 // Effect chains will be actually deleted here if they were removed from
4243 // mEffectChains list during mixing or effects processing
4244 effectChains.clear();
4245
4246 // FIXME Note that the above .clear() is no longer necessary since effectChains
4247 // is now local to this block, but will keep it for now (at least until merge done).
4248 }
4249
4250 threadLoop_exit();
4251
4252 if (!mStandby) {
4253 threadLoop_standby();
4254 mStandby = true;
4255 }
4256
4257 releaseWakeLock();
4258
4259 ALOGV("Thread %p type %d exiting", this, mType);
4260 return false;
4261 }
4262
collectTimestamps_l()4263 void AudioFlinger::PlaybackThread::collectTimestamps_l()
4264 {
4265 // Collect timestamp statistics for the Playback Thread types that support it.
4266 if (mType != MIXER
4267 && mType != DUPLICATING
4268 && mType != DIRECT
4269 && mType != OFFLOAD) {
4270 return;
4271 }
4272 if (mStandby) {
4273 mTimestampVerifier.discontinuity(discontinuityForStandbyOrFlush());
4274 return;
4275 } else if (mHwPaused) {
4276 mTimestampVerifier.discontinuity(mTimestampVerifier.DISCONTINUITY_MODE_CONTINUOUS);
4277 return;
4278 }
4279
4280 // Gather the framesReleased counters for all active tracks,
4281 // and associate with the sink frames written out. We need
4282 // this to convert the sink timestamp to the track timestamp.
4283 bool kernelLocationUpdate = false;
4284 ExtendedTimestamp timestamp; // use private copy to fetch
4285
4286 // Always query HAL timestamp and update timestamp verifier. In standby or pause,
4287 // HAL may be draining some small duration buffered data for fade out.
4288 if (threadloop_getHalTimestamp_l(×tamp) == OK) {
4289 mTimestampVerifier.add(timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL],
4290 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
4291 mSampleRate);
4292
4293 if (isTimestampCorrectionEnabled()) {
4294 ALOGVV("TS_BEFORE: %d %lld %lld", id(),
4295 (long long)timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
4296 (long long)timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]);
4297 auto correctedTimestamp = mTimestampVerifier.getLastCorrectedTimestamp();
4298 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
4299 = correctedTimestamp.mFrames;
4300 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]
4301 = correctedTimestamp.mTimeNs;
4302 ALOGVV("TS_AFTER: %d %lld %lld", id(),
4303 (long long)timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
4304 (long long)timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]);
4305
4306 // Note: Downstream latency only added if timestamp correction enabled.
4307 if (mDownstreamLatencyStatMs.getN() > 0) { // we have latency info.
4308 const int64_t newPosition =
4309 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
4310 - int64_t(mDownstreamLatencyStatMs.getMean() * mSampleRate * 1e-3);
4311 // prevent retrograde
4312 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = max(
4313 newPosition,
4314 (mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
4315 - mSuspendedFrames));
4316 }
4317 }
4318
4319 // We always fetch the timestamp here because often the downstream
4320 // sink will block while writing.
4321
4322 // We keep track of the last valid kernel position in case we are in underrun
4323 // and the normal mixer period is the same as the fast mixer period, or there
4324 // is some error from the HAL.
4325 if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
4326 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
4327 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
4328 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
4329 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
4330
4331 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
4332 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
4333 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
4334 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
4335 }
4336
4337 if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
4338 kernelLocationUpdate = true;
4339 } else {
4340 ALOGVV("getTimestamp error - no valid kernel position");
4341 }
4342
4343 // copy over kernel info
4344 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
4345 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
4346 + mSuspendedFrames; // add frames discarded when suspended
4347 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
4348 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
4349 } else {
4350 mTimestampVerifier.error();
4351 }
4352
4353 // mFramesWritten for non-offloaded tracks are contiguous
4354 // even after standby() is called. This is useful for the track frame
4355 // to sink frame mapping.
4356 bool serverLocationUpdate = false;
4357 if (mFramesWritten != mLastFramesWritten) {
4358 serverLocationUpdate = true;
4359 mLastFramesWritten = mFramesWritten;
4360 }
4361 // Only update timestamps if there is a meaningful change.
4362 // Either the kernel timestamp must be valid or we have written something.
4363 if (kernelLocationUpdate || serverLocationUpdate) {
4364 if (serverLocationUpdate) {
4365 // use the time before we called the HAL write - it is a bit more accurate
4366 // to when the server last read data than the current time here.
4367 //
4368 // If we haven't written anything, mLastIoBeginNs will be -1
4369 // and we use systemTime().
4370 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
4371 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastIoBeginNs == -1
4372 ? systemTime() : mLastIoBeginNs;
4373 }
4374
4375 for (const sp<Track> &t : mActiveTracks) {
4376 if (!t->isFastTrack()) {
4377 t->updateTrackFrameInfo(
4378 t->mAudioTrackServerProxy->framesReleased(),
4379 mFramesWritten,
4380 mSampleRate,
4381 mTimestamp);
4382 }
4383 }
4384 }
4385
4386 if (audio_has_proportional_frames(mFormat)) {
4387 const double latencyMs = mTimestamp.getOutputServerLatencyMs(mSampleRate);
4388 if (latencyMs != 0.) { // note 0. means timestamp is empty.
4389 mLatencyMs.add(latencyMs);
4390 }
4391 }
4392 #if 0
4393 // logFormat example
4394 if (z % 100 == 0) {
4395 timespec ts;
4396 clock_gettime(CLOCK_MONOTONIC, &ts);
4397 LOGT("This is an integer %d, this is a float %f, this is my "
4398 "pid %p %% %s %t", 42, 3.14, "and this is a timestamp", ts);
4399 LOGT("A deceptive null-terminated string %\0");
4400 }
4401 ++z;
4402 #endif
4403 }
4404
4405 // removeTracks_l() must be called with ThreadBase::mLock held
removeTracks_l(const Vector<sp<Track>> & tracksToRemove)4406 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
4407 {
4408 for (const auto& track : tracksToRemove) {
4409 mActiveTracks.remove(track);
4410 ALOGV("%s(%d): removing track on session %d", __func__, track->id(), track->sessionId());
4411 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
4412 if (chain != 0) {
4413 ALOGV("%s(%d): stopping track on chain %p for session Id: %d",
4414 __func__, track->id(), chain.get(), track->sessionId());
4415 chain->decActiveTrackCnt();
4416 }
4417 // If an external client track, inform APM we're no longer active, and remove if needed.
4418 // We do this under lock so that the state is consistent if the Track is destroyed.
4419 if (track->isExternalTrack()) {
4420 AudioSystem::stopOutput(track->portId());
4421 if (track->isTerminated()) {
4422 AudioSystem::releaseOutput(track->portId());
4423 }
4424 }
4425 if (track->isTerminated()) {
4426 // remove from our tracks vector
4427 removeTrack_l(track);
4428 }
4429 if (mHapticChannelCount > 0 &&
4430 ((track->channelMask() & AUDIO_CHANNEL_HAPTIC_ALL) != AUDIO_CHANNEL_NONE
4431 || (chain != nullptr && chain->containsHapticGeneratingEffect_l()))) {
4432 mLock.unlock();
4433 // Unlock due to VibratorService will lock for this call and will
4434 // call Tracks.mute/unmute which also require thread's lock.
4435 AudioFlinger::onExternalVibrationStop(track->getExternalVibration());
4436 mLock.lock();
4437
4438 // When the track is stop, set the haptic intensity as MUTE
4439 // for the HapticGenerator effect.
4440 if (chain != nullptr) {
4441 chain->setHapticIntensity_l(track->id(), static_cast<int>(os::HapticScale::MUTE));
4442 }
4443 }
4444 }
4445 }
4446
getTimestamp_l(AudioTimestamp & timestamp)4447 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
4448 {
4449 if (mNormalSink != 0) {
4450 ExtendedTimestamp ets;
4451 status_t status = mNormalSink->getTimestamp(ets);
4452 if (status == NO_ERROR) {
4453 status = ets.getBestTimestamp(×tamp);
4454 }
4455 return status;
4456 }
4457 if ((mType == OFFLOAD || mType == DIRECT) && mOutput != NULL) {
4458 collectTimestamps_l();
4459 if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] <= 0) {
4460 return INVALID_OPERATION;
4461 }
4462 timestamp.mPosition = mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
4463 const int64_t timeNs = mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
4464 timestamp.mTime.tv_sec = timeNs / NANOS_PER_SECOND;
4465 timestamp.mTime.tv_nsec = timeNs - (timestamp.mTime.tv_sec * NANOS_PER_SECOND);
4466 return NO_ERROR;
4467 }
4468 return INVALID_OPERATION;
4469 }
4470
4471 // For dedicated VoIP outputs, let the HAL apply the stream volume. Track volume is
4472 // still applied by the mixer.
4473 // All tracks attached to a mixer with flag VOIP_RX are tied to the same
4474 // stream type STREAM_VOICE_CALL so this will only change the HAL volume once even
4475 // if more than one track are active
handleVoipVolume_l(float * volume)4476 status_t AudioFlinger::PlaybackThread::handleVoipVolume_l(float *volume)
4477 {
4478 status_t result = NO_ERROR;
4479 if ((mOutput->flags & AUDIO_OUTPUT_FLAG_VOIP_RX) != 0) {
4480 if (*volume != mLeftVolFloat) {
4481 result = mOutput->stream->setVolume(*volume, *volume);
4482 ALOGE_IF(result != OK,
4483 "Error when setting output stream volume: %d", result);
4484 if (result == NO_ERROR) {
4485 mLeftVolFloat = *volume;
4486 }
4487 }
4488 // if stream volume was successfully sent to the HAL, mLeftVolFloat == v here and we
4489 // remove stream volume contribution from software volume.
4490 if (mLeftVolFloat == *volume) {
4491 *volume = 1.0f;
4492 }
4493 }
4494 return result;
4495 }
4496
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)4497 status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
4498 audio_patch_handle_t *handle)
4499 {
4500 status_t status;
4501 if (property_get_bool("af.patch_park", false /* default_value */)) {
4502 // Park FastMixer to avoid potential DOS issues with writing to the HAL
4503 // or if HAL does not properly lock against access.
4504 AutoPark<FastMixer> park(mFastMixer);
4505 status = PlaybackThread::createAudioPatch_l(patch, handle);
4506 } else {
4507 status = PlaybackThread::createAudioPatch_l(patch, handle);
4508 }
4509 return status;
4510 }
4511
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)4512 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
4513 audio_patch_handle_t *handle)
4514 {
4515 status_t status = NO_ERROR;
4516
4517 // store new device and send to effects
4518 audio_devices_t type = AUDIO_DEVICE_NONE;
4519 AudioDeviceTypeAddrVector deviceTypeAddrs;
4520 for (unsigned int i = 0; i < patch->num_sinks; i++) {
4521 LOG_ALWAYS_FATAL_IF(popcount(patch->sinks[i].ext.device.type) > 1
4522 && !mOutput->audioHwDev->supportsAudioPatches(),
4523 "Enumerated device type(%#x) must not be used "
4524 "as it does not support audio patches",
4525 patch->sinks[i].ext.device.type);
4526 type = static_cast<audio_devices_t>(type | patch->sinks[i].ext.device.type);
4527 deviceTypeAddrs.push_back(AudioDeviceTypeAddr(patch->sinks[i].ext.device.type,
4528 patch->sinks[i].ext.device.address));
4529 }
4530
4531 audio_port_handle_t sinkPortId = patch->sinks[0].id;
4532 #ifdef ADD_BATTERY_DATA
4533 // when changing the audio output device, call addBatteryData to notify
4534 // the change
4535 if (outDeviceTypes() != deviceTypes) {
4536 uint32_t params = 0;
4537 // check whether speaker is on
4538 if (deviceTypes.count(AUDIO_DEVICE_OUT_SPEAKER) > 0) {
4539 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4540 }
4541
4542 // check if any other device (except speaker) is on
4543 if (!isSingleDeviceType(deviceTypes, AUDIO_DEVICE_OUT_SPEAKER)) {
4544 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4545 }
4546
4547 if (params != 0) {
4548 addBatteryData(params);
4549 }
4550 }
4551 #endif
4552
4553 for (size_t i = 0; i < mEffectChains.size(); i++) {
4554 mEffectChains[i]->setDevices_l(deviceTypeAddrs);
4555 }
4556
4557 // mPatch.num_sinks is not set when the thread is created so that
4558 // the first patch creation triggers an ioConfigChanged callback
4559 bool configChanged = (mPatch.num_sinks == 0) ||
4560 (mPatch.sinks[0].id != sinkPortId);
4561 mPatch = *patch;
4562 mOutDeviceTypeAddrs = deviceTypeAddrs;
4563 checkSilentMode_l();
4564
4565 if (mOutput->audioHwDev->supportsAudioPatches()) {
4566 sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
4567 status = hwDevice->createAudioPatch(patch->num_sources,
4568 patch->sources,
4569 patch->num_sinks,
4570 patch->sinks,
4571 handle);
4572 } else {
4573 char *address;
4574 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
4575 //FIXME: we only support address on first sink with HAL version < 3.0
4576 address = audio_device_address_to_parameter(
4577 patch->sinks[0].ext.device.type,
4578 patch->sinks[0].ext.device.address);
4579 } else {
4580 address = (char *)calloc(1, 1);
4581 }
4582 AudioParameter param = AudioParameter(String8(address));
4583 free(address);
4584 param.addInt(String8(AudioParameter::keyRouting), (int)type);
4585 status = mOutput->stream->setParameters(param.toString());
4586 *handle = AUDIO_PATCH_HANDLE_NONE;
4587 }
4588 const std::string patchSinksAsString = patchSinksToString(patch);
4589
4590 mThreadMetrics.logEndInterval();
4591 mThreadMetrics.logCreatePatch(/* inDevices */ {}, patchSinksAsString);
4592 mThreadMetrics.logBeginInterval();
4593 // also dispatch to active AudioTracks for MediaMetrics
4594 for (const auto &track : mActiveTracks) {
4595 track->logEndInterval();
4596 track->logBeginInterval(patchSinksAsString);
4597 }
4598
4599 if (configChanged) {
4600 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4601 }
4602 return status;
4603 }
4604
releaseAudioPatch_l(const audio_patch_handle_t handle)4605 status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
4606 {
4607 status_t status;
4608 if (property_get_bool("af.patch_park", false /* default_value */)) {
4609 // Park FastMixer to avoid potential DOS issues with writing to the HAL
4610 // or if HAL does not properly lock against access.
4611 AutoPark<FastMixer> park(mFastMixer);
4612 status = PlaybackThread::releaseAudioPatch_l(handle);
4613 } else {
4614 status = PlaybackThread::releaseAudioPatch_l(handle);
4615 }
4616 return status;
4617 }
4618
releaseAudioPatch_l(const audio_patch_handle_t handle)4619 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
4620 {
4621 status_t status = NO_ERROR;
4622
4623 mPatch = audio_patch{};
4624 mOutDeviceTypeAddrs.clear();
4625
4626 if (mOutput->audioHwDev->supportsAudioPatches()) {
4627 sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
4628 status = hwDevice->releaseAudioPatch(handle);
4629 } else {
4630 AudioParameter param;
4631 param.addInt(String8(AudioParameter::keyRouting), 0);
4632 status = mOutput->stream->setParameters(param.toString());
4633 }
4634 return status;
4635 }
4636
addPatchTrack(const sp<PatchTrack> & track)4637 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
4638 {
4639 Mutex::Autolock _l(mLock);
4640 mTracks.add(track);
4641 }
4642
deletePatchTrack(const sp<PatchTrack> & track)4643 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
4644 {
4645 Mutex::Autolock _l(mLock);
4646 destroyTrack_l(track);
4647 }
4648
toAudioPortConfig(struct audio_port_config * config)4649 void AudioFlinger::PlaybackThread::toAudioPortConfig(struct audio_port_config *config)
4650 {
4651 ThreadBase::toAudioPortConfig(config);
4652 config->role = AUDIO_PORT_ROLE_SOURCE;
4653 config->ext.mix.hw_module = mOutput->audioHwDev->handle();
4654 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
4655 if (mOutput && mOutput->flags != AUDIO_OUTPUT_FLAG_NONE) {
4656 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
4657 config->flags.output = mOutput->flags;
4658 }
4659 }
4660
4661 // ----------------------------------------------------------------------------
4662
MixerThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,bool systemReady,type_t type,audio_config_base_t * mixerConfig)4663 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
4664 audio_io_handle_t id, bool systemReady, type_t type, audio_config_base_t *mixerConfig)
4665 : PlaybackThread(audioFlinger, output, id, type, systemReady, mixerConfig),
4666 // mAudioMixer below
4667 // mFastMixer below
4668 mFastMixerFutex(0),
4669 mMasterMono(false)
4670 // mOutputSink below
4671 // mPipeSink below
4672 // mNormalSink below
4673 {
4674 setMasterBalance(audioFlinger->getMasterBalance_l());
4675 ALOGV("MixerThread() id=%d type=%d", id, type);
4676 ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%#x, mFrameSize=%zu, "
4677 "mFrameCount=%zu, mNormalFrameCount=%zu",
4678 mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
4679 mNormalFrameCount);
4680 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4681
4682 if (type == DUPLICATING) {
4683 // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
4684 // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
4685 // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
4686 return;
4687 }
4688 // create an NBAIO sink for the HAL output stream, and negotiate
4689 mOutputSink = new AudioStreamOutSink(output->stream);
4690 size_t numCounterOffers = 0;
4691 const NBAIO_Format offers[1] = {Format_from_SR_C(
4692 mSampleRate, mChannelCount + mHapticChannelCount, mFormat)};
4693 #if !LOG_NDEBUG
4694 ssize_t index =
4695 #else
4696 (void)
4697 #endif
4698 mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
4699 ALOG_ASSERT(index == 0);
4700
4701 // initialize fast mixer depending on configuration
4702 bool initFastMixer;
4703 if (mType == SPATIALIZER) {
4704 initFastMixer = false;
4705 } else {
4706 switch (kUseFastMixer) {
4707 case FastMixer_Never:
4708 initFastMixer = false;
4709 break;
4710 case FastMixer_Always:
4711 initFastMixer = true;
4712 break;
4713 case FastMixer_Static:
4714 case FastMixer_Dynamic:
4715 // FastMixer was designed to operate with a HAL that pulls at a regular rate,
4716 // where the period is less than an experimentally determined threshold that can be
4717 // scheduled reliably with CFS. However, the BT A2DP HAL is
4718 // bursty (does not pull at a regular rate) and so cannot operate with FastMixer.
4719 initFastMixer = mFrameCount < mNormalFrameCount
4720 && Intersection(outDeviceTypes(), getAudioDeviceOutAllA2dpSet()).empty();
4721 break;
4722 }
4723 ALOGW_IF(initFastMixer == false && mFrameCount < mNormalFrameCount,
4724 "FastMixer is preferred for this sink as frameCount %zu is less than threshold %zu",
4725 mFrameCount, mNormalFrameCount);
4726 }
4727 if (initFastMixer) {
4728 audio_format_t fastMixerFormat;
4729 if (mMixerBufferEnabled && mEffectBufferEnabled) {
4730 fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
4731 } else {
4732 fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
4733 }
4734 if (mFormat != fastMixerFormat) {
4735 // change our Sink format to accept our intermediate precision
4736 mFormat = fastMixerFormat;
4737 free(mSinkBuffer);
4738 mFrameSize = audio_bytes_per_frame(mChannelCount + mHapticChannelCount, mFormat);
4739 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
4740 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
4741 }
4742
4743 // create a MonoPipe to connect our submix to FastMixer
4744 NBAIO_Format format = mOutputSink->format();
4745
4746 // adjust format to match that of the Fast Mixer
4747 ALOGV("format changed from %#x to %#x", format.mFormat, fastMixerFormat);
4748 format.mFormat = fastMixerFormat;
4749 format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
4750
4751 // This pipe depth compensates for scheduling latency of the normal mixer thread.
4752 // When it wakes up after a maximum latency, it runs a few cycles quickly before
4753 // finally blocking. Note the pipe implementation rounds up the request to a power of 2.
4754 MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
4755 const NBAIO_Format offers[1] = {format};
4756 size_t numCounterOffers = 0;
4757 #if !LOG_NDEBUG
4758 ssize_t index =
4759 #else
4760 (void)
4761 #endif
4762 monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
4763 ALOG_ASSERT(index == 0);
4764 monoPipe->setAvgFrames((mScreenState & 1) ?
4765 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
4766 mPipeSink = monoPipe;
4767
4768 // create fast mixer and configure it initially with just one fast track for our submix
4769 mFastMixer = new FastMixer(mId);
4770 FastMixerStateQueue *sq = mFastMixer->sq();
4771 #ifdef STATE_QUEUE_DUMP
4772 sq->setObserverDump(&mStateQueueObserverDump);
4773 sq->setMutatorDump(&mStateQueueMutatorDump);
4774 #endif
4775 FastMixerState *state = sq->begin();
4776 FastTrack *fastTrack = &state->mFastTracks[0];
4777 // wrap the source side of the MonoPipe to make it an AudioBufferProvider
4778 fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
4779 fastTrack->mVolumeProvider = NULL;
4780 fastTrack->mChannelMask = static_cast<audio_channel_mask_t>(
4781 mChannelMask | mHapticChannelMask); // mPipeSink channel mask for
4782 // audio to FastMixer
4783 fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
4784 fastTrack->mHapticPlaybackEnabled = mHapticChannelMask != AUDIO_CHANNEL_NONE;
4785 fastTrack->mHapticIntensity = os::HapticScale::NONE;
4786 fastTrack->mHapticMaxAmplitude = NAN;
4787 fastTrack->mGeneration++;
4788 state->mFastTracksGen++;
4789 state->mTrackMask = 1;
4790 // fast mixer will use the HAL output sink
4791 state->mOutputSink = mOutputSink.get();
4792 state->mOutputSinkGen++;
4793 state->mFrameCount = mFrameCount;
4794 // specify sink channel mask when haptic channel mask present as it can not
4795 // be calculated directly from channel count
4796 state->mSinkChannelMask = mHapticChannelMask == AUDIO_CHANNEL_NONE
4797 ? AUDIO_CHANNEL_NONE
4798 : static_cast<audio_channel_mask_t>(mChannelMask | mHapticChannelMask);
4799 state->mCommand = FastMixerState::COLD_IDLE;
4800 // already done in constructor initialization list
4801 //mFastMixerFutex = 0;
4802 state->mColdFutexAddr = &mFastMixerFutex;
4803 state->mColdGen++;
4804 state->mDumpState = &mFastMixerDumpState;
4805 mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
4806 state->mNBLogWriter = mFastMixerNBLogWriter.get();
4807 sq->end();
4808 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4809
4810 NBLog::thread_info_t info;
4811 info.id = mId;
4812 info.type = NBLog::FASTMIXER;
4813 mFastMixerNBLogWriter->log<NBLog::EVENT_THREAD_INFO>(info);
4814
4815 // start the fast mixer
4816 mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
4817 pid_t tid = mFastMixer->getTid();
4818 sendPrioConfigEvent(getpid(), tid, kPriorityFastMixer, false /*forApp*/);
4819 stream()->setHalThreadPriority(kPriorityFastMixer);
4820
4821 #ifdef AUDIO_WATCHDOG
4822 // create and start the watchdog
4823 mAudioWatchdog = new AudioWatchdog();
4824 mAudioWatchdog->setDump(&mAudioWatchdogDump);
4825 mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
4826 tid = mAudioWatchdog->getTid();
4827 sendPrioConfigEvent(getpid(), tid, kPriorityFastMixer, false /*forApp*/);
4828 #endif
4829 } else {
4830 #ifdef TEE_SINK
4831 // Only use the MixerThread tee if there is no FastMixer.
4832 mTee.set(mOutputSink->format(), NBAIO_Tee::TEE_FLAG_OUTPUT_THREAD);
4833 mTee.setId(std::string("_") + std::to_string(mId) + "_M");
4834 #endif
4835 }
4836
4837 switch (kUseFastMixer) {
4838 case FastMixer_Never:
4839 case FastMixer_Dynamic:
4840 mNormalSink = mOutputSink;
4841 break;
4842 case FastMixer_Always:
4843 mNormalSink = mPipeSink;
4844 break;
4845 case FastMixer_Static:
4846 mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
4847 break;
4848 }
4849 }
4850
~MixerThread()4851 AudioFlinger::MixerThread::~MixerThread()
4852 {
4853 if (mFastMixer != 0) {
4854 FastMixerStateQueue *sq = mFastMixer->sq();
4855 FastMixerState *state = sq->begin();
4856 if (state->mCommand == FastMixerState::COLD_IDLE) {
4857 int32_t old = android_atomic_inc(&mFastMixerFutex);
4858 if (old == -1) {
4859 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
4860 }
4861 }
4862 state->mCommand = FastMixerState::EXIT;
4863 sq->end();
4864 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4865 mFastMixer->join();
4866 // Though the fast mixer thread has exited, it's state queue is still valid.
4867 // We'll use that extract the final state which contains one remaining fast track
4868 // corresponding to our sub-mix.
4869 state = sq->begin();
4870 ALOG_ASSERT(state->mTrackMask == 1);
4871 FastTrack *fastTrack = &state->mFastTracks[0];
4872 ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
4873 delete fastTrack->mBufferProvider;
4874 sq->end(false /*didModify*/);
4875 mFastMixer.clear();
4876 #ifdef AUDIO_WATCHDOG
4877 if (mAudioWatchdog != 0) {
4878 mAudioWatchdog->requestExit();
4879 mAudioWatchdog->requestExitAndWait();
4880 mAudioWatchdog.clear();
4881 }
4882 #endif
4883 }
4884 mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
4885 delete mAudioMixer;
4886 }
4887
4888
correctLatency_l(uint32_t latency) const4889 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
4890 {
4891 if (mFastMixer != 0) {
4892 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
4893 latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
4894 }
4895 return latency;
4896 }
4897
threadLoop_write()4898 ssize_t AudioFlinger::MixerThread::threadLoop_write()
4899 {
4900 // FIXME we should only do one push per cycle; confirm this is true
4901 // Start the fast mixer if it's not already running
4902 if (mFastMixer != 0) {
4903 FastMixerStateQueue *sq = mFastMixer->sq();
4904 FastMixerState *state = sq->begin();
4905 if (state->mCommand != FastMixerState::MIX_WRITE &&
4906 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
4907 if (state->mCommand == FastMixerState::COLD_IDLE) {
4908
4909 // FIXME workaround for first HAL write being CPU bound on some devices
4910 ATRACE_BEGIN("write");
4911 mOutput->write((char *)mSinkBuffer, 0);
4912 ATRACE_END();
4913
4914 int32_t old = android_atomic_inc(&mFastMixerFutex);
4915 if (old == -1) {
4916 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
4917 }
4918 #ifdef AUDIO_WATCHDOG
4919 if (mAudioWatchdog != 0) {
4920 mAudioWatchdog->resume();
4921 }
4922 #endif
4923 }
4924 state->mCommand = FastMixerState::MIX_WRITE;
4925 #ifdef FAST_THREAD_STATISTICS
4926 mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
4927 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
4928 #endif
4929 sq->end();
4930 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4931 if (kUseFastMixer == FastMixer_Dynamic) {
4932 mNormalSink = mPipeSink;
4933 }
4934 } else {
4935 sq->end(false /*didModify*/);
4936 }
4937 }
4938 return PlaybackThread::threadLoop_write();
4939 }
4940
threadLoop_standby()4941 void AudioFlinger::MixerThread::threadLoop_standby()
4942 {
4943 // Idle the fast mixer if it's currently running
4944 if (mFastMixer != 0) {
4945 FastMixerStateQueue *sq = mFastMixer->sq();
4946 FastMixerState *state = sq->begin();
4947 if (!(state->mCommand & FastMixerState::IDLE)) {
4948 // Report any frames trapped in the Monopipe
4949 MonoPipe *monoPipe = (MonoPipe *)mPipeSink.get();
4950 const long long pipeFrames = monoPipe->maxFrames() - monoPipe->availableToWrite();
4951 mLocalLog.log("threadLoop_standby: framesWritten:%lld suspendedFrames:%lld "
4952 "monoPipeWritten:%lld monoPipeLeft:%lld",
4953 (long long)mFramesWritten, (long long)mSuspendedFrames,
4954 (long long)mPipeSink->framesWritten(), pipeFrames);
4955 mLocalLog.log("threadLoop_standby: %s", mTimestamp.toString().c_str());
4956
4957 state->mCommand = FastMixerState::COLD_IDLE;
4958 state->mColdFutexAddr = &mFastMixerFutex;
4959 state->mColdGen++;
4960 mFastMixerFutex = 0;
4961 sq->end();
4962 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
4963 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4964 if (kUseFastMixer == FastMixer_Dynamic) {
4965 mNormalSink = mOutputSink;
4966 }
4967 #ifdef AUDIO_WATCHDOG
4968 if (mAudioWatchdog != 0) {
4969 mAudioWatchdog->pause();
4970 }
4971 #endif
4972 } else {
4973 sq->end(false /*didModify*/);
4974 }
4975 }
4976 PlaybackThread::threadLoop_standby();
4977 }
4978
waitingAsyncCallback_l()4979 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
4980 {
4981 return false;
4982 }
4983
shouldStandby_l()4984 bool AudioFlinger::PlaybackThread::shouldStandby_l()
4985 {
4986 return !mStandby;
4987 }
4988
waitingAsyncCallback()4989 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
4990 {
4991 Mutex::Autolock _l(mLock);
4992 return waitingAsyncCallback_l();
4993 }
4994
4995 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_standby()4996 void AudioFlinger::PlaybackThread::threadLoop_standby()
4997 {
4998 ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
4999 mOutput->standby();
5000 if (mUseAsyncWrite != 0) {
5001 // discard any pending drain or write ack by incrementing sequence
5002 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5003 mDrainSequence = (mDrainSequence + 2) & ~1;
5004 ALOG_ASSERT(mCallbackThread != 0);
5005 mCallbackThread->setWriteBlocked(mWriteAckSequence);
5006 mCallbackThread->setDraining(mDrainSequence);
5007 }
5008 mHwPaused = false;
5009 }
5010
onAddNewTrack_l()5011 void AudioFlinger::PlaybackThread::onAddNewTrack_l()
5012 {
5013 ALOGV("signal playback thread");
5014 broadcast_l();
5015 }
5016
onAsyncError()5017 void AudioFlinger::PlaybackThread::onAsyncError()
5018 {
5019 for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) {
5020 invalidateTracks((audio_stream_type_t)i);
5021 }
5022 }
5023
threadLoop_mix()5024 void AudioFlinger::MixerThread::threadLoop_mix()
5025 {
5026 // mix buffers...
5027 mAudioMixer->process();
5028 mCurrentWriteLength = mSinkBufferSize;
5029 // increase sleep time progressively when application underrun condition clears.
5030 // Only increase sleep time if the mixer is ready for two consecutive times to avoid
5031 // that a steady state of alternating ready/not ready conditions keeps the sleep time
5032 // such that we would underrun the audio HAL.
5033 if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
5034 sleepTimeShift--;
5035 }
5036 mSleepTimeUs = 0;
5037 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5038 //TODO: delay standby when effects have a tail
5039
5040 }
5041
threadLoop_sleepTime()5042 void AudioFlinger::MixerThread::threadLoop_sleepTime()
5043 {
5044 // If no tracks are ready, sleep once for the duration of an output
5045 // buffer size, then write 0s to the output
5046 if (mSleepTimeUs == 0) {
5047 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5048 if (mPipeSink.get() != nullptr && mPipeSink == mNormalSink) {
5049 // Using the Monopipe availableToWrite, we estimate the
5050 // sleep time to retry for more data (before we underrun).
5051 MonoPipe *monoPipe = static_cast<MonoPipe *>(mPipeSink.get());
5052 const ssize_t availableToWrite = mPipeSink->availableToWrite();
5053 const size_t pipeFrames = monoPipe->maxFrames();
5054 const size_t framesLeft = pipeFrames - max(availableToWrite, 0);
5055 // HAL_framecount <= framesDelay ~ framesLeft / 2 <= Normal_Mixer_framecount
5056 const size_t framesDelay = std::min(
5057 mNormalFrameCount, max(framesLeft / 2, mFrameCount));
5058 ALOGV("pipeFrames:%zu framesLeft:%zu framesDelay:%zu",
5059 pipeFrames, framesLeft, framesDelay);
5060 mSleepTimeUs = framesDelay * MICROS_PER_SECOND / mSampleRate;
5061 } else {
5062 mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
5063 if (mSleepTimeUs < kMinThreadSleepTimeUs) {
5064 mSleepTimeUs = kMinThreadSleepTimeUs;
5065 }
5066 // reduce sleep time in case of consecutive application underruns to avoid
5067 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
5068 // duration we would end up writing less data than needed by the audio HAL if
5069 // the condition persists.
5070 if (sleepTimeShift < kMaxThreadSleepTimeShift) {
5071 sleepTimeShift++;
5072 }
5073 }
5074 } else {
5075 mSleepTimeUs = mIdleSleepTimeUs;
5076 }
5077 } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
5078 // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
5079 // before effects processing or output.
5080 if (mMixerBufferValid) {
5081 memset(mMixerBuffer, 0, mMixerBufferSize);
5082 if (mType == SPATIALIZER) {
5083 memset(mSinkBuffer, 0, mSinkBufferSize);
5084 }
5085 } else {
5086 memset(mSinkBuffer, 0, mSinkBufferSize);
5087 }
5088 mSleepTimeUs = 0;
5089 ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
5090 "anticipated start");
5091 }
5092 // TODO add standby time extension fct of effect tail
5093 }
5094
5095 // prepareTracks_l() must be called with ThreadBase::mLock held
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)5096 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
5097 Vector< sp<Track> > *tracksToRemove)
5098 {
5099 // clean up deleted track ids in AudioMixer before allocating new tracks
5100 (void)mTracks.processDeletedTrackIds([this](int trackId) {
5101 // for each trackId, destroy it in the AudioMixer
5102 if (mAudioMixer->exists(trackId)) {
5103 mAudioMixer->destroy(trackId);
5104 }
5105 });
5106 mTracks.clearDeletedTrackIds();
5107
5108 mixer_state mixerStatus = MIXER_IDLE;
5109 // find out which tracks need to be processed
5110 size_t count = mActiveTracks.size();
5111 size_t mixedTracks = 0;
5112 size_t tracksWithEffect = 0;
5113 // counts only _active_ fast tracks
5114 size_t fastTracks = 0;
5115 uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
5116
5117 float masterVolume = mMasterVolume;
5118 bool masterMute = mMasterMute;
5119
5120 if (masterMute) {
5121 masterVolume = 0;
5122 }
5123 // Delegate master volume control to effect in output mix effect chain if needed
5124 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
5125 if (chain != 0) {
5126 uint32_t v = (uint32_t)(masterVolume * (1 << 24));
5127 chain->setVolume_l(&v, &v);
5128 masterVolume = (float)((v + (1 << 23)) >> 24);
5129 chain.clear();
5130 }
5131
5132 // prepare a new state to push
5133 FastMixerStateQueue *sq = NULL;
5134 FastMixerState *state = NULL;
5135 bool didModify = false;
5136 FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
5137 bool coldIdle = false;
5138 if (mFastMixer != 0) {
5139 sq = mFastMixer->sq();
5140 state = sq->begin();
5141 coldIdle = state->mCommand == FastMixerState::COLD_IDLE;
5142 }
5143
5144 mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found.
5145 mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
5146
5147 // DeferredOperations handles statistics after setting mixerStatus.
5148 class DeferredOperations {
5149 public:
5150 DeferredOperations(mixer_state *mixerStatus, ThreadMetrics *threadMetrics)
5151 : mMixerStatus(mixerStatus)
5152 , mThreadMetrics(threadMetrics) {}
5153
5154 // when leaving scope, tally frames properly.
5155 ~DeferredOperations() {
5156 // Tally underrun frames only if we are actually mixing (MIXER_TRACKS_READY)
5157 // because that is when the underrun occurs.
5158 // We do not distinguish between FastTracks and NormalTracks here.
5159 size_t maxUnderrunFrames = 0;
5160 if (*mMixerStatus == MIXER_TRACKS_READY && mUnderrunFrames.size() > 0) {
5161 for (const auto &underrun : mUnderrunFrames) {
5162 underrun.first->tallyUnderrunFrames(underrun.second);
5163 maxUnderrunFrames = max(underrun.second, maxUnderrunFrames);
5164 }
5165 }
5166 // send the max underrun frames for this mixer period
5167 mThreadMetrics->logUnderrunFrames(maxUnderrunFrames);
5168 }
5169
5170 // tallyUnderrunFrames() is called to update the track counters
5171 // with the number of underrun frames for a particular mixer period.
5172 // We defer tallying until we know the final mixer status.
5173 void tallyUnderrunFrames(sp<Track> track, size_t underrunFrames) {
5174 mUnderrunFrames.emplace_back(track, underrunFrames);
5175 }
5176
5177 private:
5178 const mixer_state * const mMixerStatus;
5179 ThreadMetrics * const mThreadMetrics;
5180 std::vector<std::pair<sp<Track>, size_t>> mUnderrunFrames;
5181 } deferredOperations(&mixerStatus, &mThreadMetrics);
5182 // implicit nested scope for variable capture
5183
5184 bool noFastHapticTrack = true;
5185 for (size_t i=0 ; i<count ; i++) {
5186 const sp<Track> t = mActiveTracks[i];
5187
5188 // this const just means the local variable doesn't change
5189 Track* const track = t.get();
5190
5191 // process fast tracks
5192 if (track->isFastTrack()) {
5193 LOG_ALWAYS_FATAL_IF(mFastMixer.get() == nullptr,
5194 "%s(%d): FastTrack(%d) present without FastMixer",
5195 __func__, id(), track->id());
5196
5197 if (track->getHapticPlaybackEnabled()) {
5198 noFastHapticTrack = false;
5199 }
5200
5201 // It's theoretically possible (though unlikely) for a fast track to be created
5202 // and then removed within the same normal mix cycle. This is not a problem, as
5203 // the track never becomes active so it's fast mixer slot is never touched.
5204 // The converse, of removing an (active) track and then creating a new track
5205 // at the identical fast mixer slot within the same normal mix cycle,
5206 // is impossible because the slot isn't marked available until the end of each cycle.
5207 int j = track->mFastIndex;
5208 ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
5209 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
5210 FastTrack *fastTrack = &state->mFastTracks[j];
5211
5212 // Determine whether the track is currently in underrun condition,
5213 // and whether it had a recent underrun.
5214 FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
5215 FastTrackUnderruns underruns = ftDump->mUnderruns;
5216 uint32_t recentFull = (underruns.mBitFields.mFull -
5217 track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
5218 uint32_t recentPartial = (underruns.mBitFields.mPartial -
5219 track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
5220 uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
5221 track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
5222 uint32_t recentUnderruns = recentPartial + recentEmpty;
5223 track->mObservedUnderruns = underruns;
5224 // don't count underruns that occur while stopping or pausing
5225 // or stopped which can occur when flush() is called while active
5226 size_t underrunFrames = 0;
5227 if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
5228 recentUnderruns > 0) {
5229 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
5230 underrunFrames = recentUnderruns * mFrameCount;
5231 }
5232 // Immediately account for FastTrack underruns.
5233 track->mAudioTrackServerProxy->tallyUnderrunFrames(underrunFrames);
5234
5235 // This is similar to the state machine for normal tracks,
5236 // with a few modifications for fast tracks.
5237 bool isActive = true;
5238 switch (track->mState) {
5239 case TrackBase::STOPPING_1:
5240 // track stays active in STOPPING_1 state until first underrun
5241 if (recentUnderruns > 0 || track->isTerminated()) {
5242 track->mState = TrackBase::STOPPING_2;
5243 }
5244 break;
5245 case TrackBase::PAUSING:
5246 // ramp down is not yet implemented
5247 track->setPaused();
5248 break;
5249 case TrackBase::RESUMING:
5250 // ramp up is not yet implemented
5251 track->mState = TrackBase::ACTIVE;
5252 break;
5253 case TrackBase::ACTIVE:
5254 if (recentFull > 0 || recentPartial > 0) {
5255 // track has provided at least some frames recently: reset retry count
5256 track->mRetryCount = kMaxTrackRetries;
5257 }
5258 if (recentUnderruns == 0) {
5259 // no recent underruns: stay active
5260 break;
5261 }
5262 // there has recently been an underrun of some kind
5263 if (track->sharedBuffer() == 0) {
5264 // were any of the recent underruns "empty" (no frames available)?
5265 if (recentEmpty == 0) {
5266 // no, then ignore the partial underruns as they are allowed indefinitely
5267 break;
5268 }
5269 // there has recently been an "empty" underrun: decrement the retry counter
5270 if (--(track->mRetryCount) > 0) {
5271 break;
5272 }
5273 // indicate to client process that the track was disabled because of underrun;
5274 // it will then automatically call start() when data is available
5275 track->disable();
5276 // remove from active list, but state remains ACTIVE [confusing but true]
5277 isActive = false;
5278 break;
5279 }
5280 FALLTHROUGH_INTENDED;
5281 case TrackBase::STOPPING_2:
5282 case TrackBase::PAUSED:
5283 case TrackBase::STOPPED:
5284 case TrackBase::FLUSHED: // flush() while active
5285 // Check for presentation complete if track is inactive
5286 // We have consumed all the buffers of this track.
5287 // This would be incomplete if we auto-paused on underrun
5288 {
5289 uint32_t latency = 0;
5290 status_t result = mOutput->stream->getLatency(&latency);
5291 ALOGE_IF(result != OK,
5292 "Error when retrieving output stream latency: %d", result);
5293 size_t audioHALFrames = (latency * mSampleRate) / 1000;
5294 int64_t framesWritten = mBytesWritten / mFrameSize;
5295 if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
5296 // track stays in active list until presentation is complete
5297 break;
5298 }
5299 }
5300 if (track->isStopping_2()) {
5301 track->mState = TrackBase::STOPPED;
5302 }
5303 if (track->isStopped()) {
5304 // Can't reset directly, as fast mixer is still polling this track
5305 // track->reset();
5306 // So instead mark this track as needing to be reset after push with ack
5307 resetMask |= 1 << i;
5308 }
5309 isActive = false;
5310 break;
5311 case TrackBase::IDLE:
5312 default:
5313 LOG_ALWAYS_FATAL("unexpected track state %d", (int)track->mState);
5314 }
5315
5316 if (isActive) {
5317 // was it previously inactive?
5318 if (!(state->mTrackMask & (1 << j))) {
5319 ExtendedAudioBufferProvider *eabp = track;
5320 VolumeProvider *vp = track;
5321 fastTrack->mBufferProvider = eabp;
5322 fastTrack->mVolumeProvider = vp;
5323 fastTrack->mChannelMask = track->mChannelMask;
5324 fastTrack->mFormat = track->mFormat;
5325 fastTrack->mHapticPlaybackEnabled = track->getHapticPlaybackEnabled();
5326 fastTrack->mHapticIntensity = track->getHapticIntensity();
5327 fastTrack->mHapticMaxAmplitude = track->getHapticMaxAmplitude();
5328 fastTrack->mGeneration++;
5329 state->mTrackMask |= 1 << j;
5330 didModify = true;
5331 // no acknowledgement required for newly active tracks
5332 }
5333 sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
5334 float volume;
5335 if (track->isPlaybackRestricted() || mStreamTypes[track->streamType()].mute) {
5336 volume = 0.f;
5337 } else {
5338 volume = masterVolume * mStreamTypes[track->streamType()].volume;
5339 }
5340
5341 handleVoipVolume_l(&volume);
5342
5343 // cache the combined master volume and stream type volume for fast mixer; this
5344 // lacks any synchronization or barrier so VolumeProvider may read a stale value
5345 const float vh = track->getVolumeHandler()->getVolume(
5346 proxy->framesReleased()).first;
5347 volume *= vh;
5348 track->mCachedVolume = volume;
5349 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
5350 float vlf = volume * float_from_gain(gain_minifloat_unpack_left(vlr));
5351 float vrf = volume * float_from_gain(gain_minifloat_unpack_right(vlr));
5352
5353 track->setFinalVolume((vlf + vrf) / 2.f);
5354 ++fastTracks;
5355 } else {
5356 // was it previously active?
5357 if (state->mTrackMask & (1 << j)) {
5358 fastTrack->mBufferProvider = NULL;
5359 fastTrack->mGeneration++;
5360 state->mTrackMask &= ~(1 << j);
5361 didModify = true;
5362 // If any fast tracks were removed, we must wait for acknowledgement
5363 // because we're about to decrement the last sp<> on those tracks.
5364 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
5365 } else {
5366 // ALOGW rather than LOG_ALWAYS_FATAL because it seems there are cases where an
5367 // AudioTrack may start (which may not be with a start() but with a write()
5368 // after underrun) and immediately paused or released. In that case the
5369 // FastTrack state hasn't had time to update.
5370 // TODO Remove the ALOGW when this theory is confirmed.
5371 ALOGW("fast track %d should have been active; "
5372 "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
5373 j, (int)track->mState, state->mTrackMask, recentUnderruns,
5374 track->sharedBuffer() != 0);
5375 // Since the FastMixer state already has the track inactive, do nothing here.
5376 }
5377 tracksToRemove->add(track);
5378 // Avoids a misleading display in dumpsys
5379 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
5380 }
5381 if (fastTrack->mHapticPlaybackEnabled != track->getHapticPlaybackEnabled()) {
5382 fastTrack->mHapticPlaybackEnabled = track->getHapticPlaybackEnabled();
5383 didModify = true;
5384 }
5385 continue;
5386 }
5387
5388 { // local variable scope to avoid goto warning
5389
5390 audio_track_cblk_t* cblk = track->cblk();
5391
5392 // The first time a track is added we wait
5393 // for all its buffers to be filled before processing it
5394 const int trackId = track->id();
5395
5396 // if an active track doesn't exist in the AudioMixer, create it.
5397 // use the trackId as the AudioMixer name.
5398 if (!mAudioMixer->exists(trackId)) {
5399 status_t status = mAudioMixer->create(
5400 trackId,
5401 track->mChannelMask,
5402 track->mFormat,
5403 track->mSessionId);
5404 if (status != OK) {
5405 ALOGW("%s(): AudioMixer cannot create track(%d)"
5406 " mask %#x, format %#x, sessionId %d",
5407 __func__, trackId,
5408 track->mChannelMask, track->mFormat, track->mSessionId);
5409 tracksToRemove->add(track);
5410 track->invalidate(); // consider it dead.
5411 continue;
5412 }
5413 }
5414
5415 // make sure that we have enough frames to mix one full buffer.
5416 // enforce this condition only once to enable draining the buffer in case the client
5417 // app does not call stop() and relies on underrun to stop:
5418 // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
5419 // during last round
5420 size_t desiredFrames;
5421 const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
5422 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
5423
5424 desiredFrames = sourceFramesNeededWithTimestretch(
5425 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
5426 // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
5427 // add frames already consumed but not yet released by the resampler
5428 // because mAudioTrackServerProxy->framesReady() will include these frames
5429 desiredFrames += mAudioMixer->getUnreleasedFrames(trackId);
5430
5431 uint32_t minFrames = 1;
5432 if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
5433 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
5434 minFrames = desiredFrames;
5435 }
5436
5437 size_t framesReady = track->framesReady();
5438 if (ATRACE_ENABLED()) {
5439 // I wish we had formatted trace names
5440 std::string traceName("nRdy");
5441 traceName += std::to_string(trackId);
5442 ATRACE_INT(traceName.c_str(), framesReady);
5443 }
5444 if ((framesReady >= minFrames) && track->isReady() &&
5445 !track->isPaused() && !track->isTerminated())
5446 {
5447 ALOGVV("track(%d) s=%08x [OK] on thread %p", trackId, cblk->mServer, this);
5448
5449 mixedTracks++;
5450
5451 // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
5452 // there is an effect chain connected to the track
5453 chain.clear();
5454 if (track->mainBuffer() != mSinkBuffer &&
5455 track->mainBuffer() != mMixerBuffer) {
5456 if (mEffectBufferEnabled) {
5457 mEffectBufferValid = true; // Later can set directly.
5458 }
5459 chain = getEffectChain_l(track->sessionId());
5460 // Delegate volume control to effect in track effect chain if needed
5461 if (chain != 0) {
5462 tracksWithEffect++;
5463 } else {
5464 ALOGW("prepareTracks_l(): track(%d) attached to effect but no chain found on "
5465 "session %d",
5466 trackId, track->sessionId());
5467 }
5468 }
5469
5470
5471 int param = AudioMixer::VOLUME;
5472 if (track->mFillingUpStatus == Track::FS_FILLED) {
5473 // no ramp for the first volume setting
5474 track->mFillingUpStatus = Track::FS_ACTIVE;
5475 if (track->mState == TrackBase::RESUMING) {
5476 track->mState = TrackBase::ACTIVE;
5477 // If a new track is paused immediately after start, do not ramp on resume.
5478 if (cblk->mServer != 0) {
5479 param = AudioMixer::RAMP_VOLUME;
5480 }
5481 }
5482 mAudioMixer->setParameter(trackId, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
5483 mLeftVolFloat = -1.0;
5484 // FIXME should not make a decision based on mServer
5485 } else if (cblk->mServer != 0) {
5486 // If the track is stopped before the first frame was mixed,
5487 // do not apply ramp
5488 param = AudioMixer::RAMP_VOLUME;
5489 }
5490
5491 // compute volume for this track
5492 uint32_t vl, vr; // in U8.24 integer format
5493 float vlf, vrf, vaf; // in [0.0, 1.0] float format
5494 // read original volumes with volume control
5495 float v = masterVolume * mStreamTypes[track->streamType()].volume;
5496 // Always fetch volumeshaper volume to ensure state is updated.
5497 const sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
5498 const float vh = track->getVolumeHandler()->getVolume(
5499 track->mAudioTrackServerProxy->framesReleased()).first;
5500
5501 if (mStreamTypes[track->streamType()].mute || track->isPlaybackRestricted()) {
5502 v = 0;
5503 }
5504
5505 handleVoipVolume_l(&v);
5506
5507 if (track->isPausing()) {
5508 vl = vr = 0;
5509 vlf = vrf = vaf = 0.;
5510 track->setPaused();
5511 } else {
5512 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
5513 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
5514 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
5515 // track volumes come from shared memory, so can't be trusted and must be clamped
5516 if (vlf > GAIN_FLOAT_UNITY) {
5517 ALOGV("Track left volume out of range: %.3g", vlf);
5518 vlf = GAIN_FLOAT_UNITY;
5519 }
5520 if (vrf > GAIN_FLOAT_UNITY) {
5521 ALOGV("Track right volume out of range: %.3g", vrf);
5522 vrf = GAIN_FLOAT_UNITY;
5523 }
5524 // now apply the master volume and stream type volume and shaper volume
5525 vlf *= v * vh;
5526 vrf *= v * vh;
5527 // assuming master volume and stream type volume each go up to 1.0,
5528 // then derive vl and vr as U8.24 versions for the effect chain
5529 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
5530 vl = (uint32_t) (scaleto8_24 * vlf);
5531 vr = (uint32_t) (scaleto8_24 * vrf);
5532 // vl and vr are now in U8.24 format
5533 uint16_t sendLevel = proxy->getSendLevel_U4_12();
5534 // send level comes from shared memory and so may be corrupt
5535 if (sendLevel > MAX_GAIN_INT) {
5536 ALOGV("Track send level out of range: %04X", sendLevel);
5537 sendLevel = MAX_GAIN_INT;
5538 }
5539 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
5540 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
5541 }
5542
5543 track->setFinalVolume((vrf + vlf) / 2.f);
5544
5545 // Delegate volume control to effect in track effect chain if needed
5546 if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
5547 // Do not ramp volume if volume is controlled by effect
5548 param = AudioMixer::VOLUME;
5549 // Update remaining floating point volume levels
5550 vlf = (float)vl / (1 << 24);
5551 vrf = (float)vr / (1 << 24);
5552 track->mHasVolumeController = true;
5553 } else {
5554 // force no volume ramp when volume controller was just disabled or removed
5555 // from effect chain to avoid volume spike
5556 if (track->mHasVolumeController) {
5557 param = AudioMixer::VOLUME;
5558 }
5559 track->mHasVolumeController = false;
5560 }
5561
5562 // XXX: these things DON'T need to be done each time
5563 mAudioMixer->setBufferProvider(trackId, track);
5564 mAudioMixer->enable(trackId);
5565
5566 mAudioMixer->setParameter(trackId, param, AudioMixer::VOLUME0, &vlf);
5567 mAudioMixer->setParameter(trackId, param, AudioMixer::VOLUME1, &vrf);
5568 mAudioMixer->setParameter(trackId, param, AudioMixer::AUXLEVEL, &vaf);
5569 mAudioMixer->setParameter(
5570 trackId,
5571 AudioMixer::TRACK,
5572 AudioMixer::FORMAT, (void *)track->format());
5573 mAudioMixer->setParameter(
5574 trackId,
5575 AudioMixer::TRACK,
5576 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
5577
5578 if (mType == SPATIALIZER && !track->canBeSpatialized()) {
5579 mAudioMixer->setParameter(
5580 trackId,
5581 AudioMixer::TRACK,
5582 AudioMixer::MIXER_CHANNEL_MASK,
5583 (void *)(uintptr_t)(mChannelMask | mHapticChannelMask));
5584 } else {
5585 mAudioMixer->setParameter(
5586 trackId,
5587 AudioMixer::TRACK,
5588 AudioMixer::MIXER_CHANNEL_MASK,
5589 (void *)(uintptr_t)(mMixerChannelMask | mHapticChannelMask));
5590 }
5591
5592 // limit track sample rate to 2 x output sample rate, which changes at re-configuration
5593 uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
5594 uint32_t reqSampleRate = proxy->getSampleRate();
5595 if (reqSampleRate == 0) {
5596 reqSampleRate = mSampleRate;
5597 } else if (reqSampleRate > maxSampleRate) {
5598 reqSampleRate = maxSampleRate;
5599 }
5600 mAudioMixer->setParameter(
5601 trackId,
5602 AudioMixer::RESAMPLE,
5603 AudioMixer::SAMPLE_RATE,
5604 (void *)(uintptr_t)reqSampleRate);
5605
5606 AudioPlaybackRate playbackRate = proxy->getPlaybackRate();
5607 mAudioMixer->setParameter(
5608 trackId,
5609 AudioMixer::TIMESTRETCH,
5610 AudioMixer::PLAYBACK_RATE,
5611 &playbackRate);
5612
5613 /*
5614 * Select the appropriate output buffer for the track.
5615 *
5616 * Tracks with effects go into their own effects chain buffer
5617 * and from there into either mEffectBuffer or mSinkBuffer.
5618 *
5619 * Other tracks can use mMixerBuffer for higher precision
5620 * channel accumulation. If this buffer is enabled
5621 * (mMixerBufferEnabled true), then selected tracks will accumulate
5622 * into it.
5623 *
5624 */
5625 if (mMixerBufferEnabled
5626 && (track->mainBuffer() == mSinkBuffer
5627 || track->mainBuffer() == mMixerBuffer)) {
5628 if (mType == SPATIALIZER && !track->canBeSpatialized()) {
5629 mAudioMixer->setParameter(
5630 trackId,
5631 AudioMixer::TRACK,
5632 AudioMixer::MIXER_FORMAT, (void *)mEffectBufferFormat);
5633 mAudioMixer->setParameter(
5634 trackId,
5635 AudioMixer::TRACK,
5636 AudioMixer::MAIN_BUFFER, (void *)mPostSpatializerBuffer);
5637 } else {
5638 mAudioMixer->setParameter(
5639 trackId,
5640 AudioMixer::TRACK,
5641 AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
5642 mAudioMixer->setParameter(
5643 trackId,
5644 AudioMixer::TRACK,
5645 AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
5646 // TODO: override track->mainBuffer()?
5647 mMixerBufferValid = true;
5648 }
5649 } else {
5650 mAudioMixer->setParameter(
5651 trackId,
5652 AudioMixer::TRACK,
5653 AudioMixer::MIXER_FORMAT, (void *)EFFECT_BUFFER_FORMAT);
5654 mAudioMixer->setParameter(
5655 trackId,
5656 AudioMixer::TRACK,
5657 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
5658 }
5659 mAudioMixer->setParameter(
5660 trackId,
5661 AudioMixer::TRACK,
5662 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
5663 mAudioMixer->setParameter(
5664 trackId,
5665 AudioMixer::TRACK,
5666 AudioMixer::HAPTIC_ENABLED, (void *)(uintptr_t)track->getHapticPlaybackEnabled());
5667 mAudioMixer->setParameter(
5668 trackId,
5669 AudioMixer::TRACK,
5670 AudioMixer::HAPTIC_INTENSITY, (void *)(uintptr_t)track->getHapticIntensity());
5671 mAudioMixer->setParameter(
5672 trackId,
5673 AudioMixer::TRACK,
5674 AudioMixer::HAPTIC_MAX_AMPLITUDE, (void *)(&(track->mHapticMaxAmplitude)));
5675
5676 // reset retry count
5677 track->mRetryCount = kMaxTrackRetries;
5678
5679 // If one track is ready, set the mixer ready if:
5680 // - the mixer was not ready during previous round OR
5681 // - no other track is not ready
5682 if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
5683 mixerStatus != MIXER_TRACKS_ENABLED) {
5684 mixerStatus = MIXER_TRACKS_READY;
5685 }
5686
5687 // Enable the next few lines to instrument a test for underrun log handling.
5688 // TODO: Remove when we have a better way of testing the underrun log.
5689 #if 0
5690 static int i;
5691 if ((++i & 0xf) == 0) {
5692 deferredOperations.tallyUnderrunFrames(track, 10 /* underrunFrames */);
5693 }
5694 #endif
5695 } else {
5696 size_t underrunFrames = 0;
5697 if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
5698 ALOGV("track(%d) underrun, track state %s framesReady(%zu) < framesDesired(%zd)",
5699 trackId, track->getTrackStateAsString(), framesReady, desiredFrames);
5700 underrunFrames = desiredFrames;
5701 }
5702 deferredOperations.tallyUnderrunFrames(track, underrunFrames);
5703
5704 // clear effect chain input buffer if an active track underruns to avoid sending
5705 // previous audio buffer again to effects
5706 chain = getEffectChain_l(track->sessionId());
5707 if (chain != 0) {
5708 chain->clearInputBuffer();
5709 }
5710
5711 ALOGVV("track(%d) s=%08x [NOT READY] on thread %p", trackId, cblk->mServer, this);
5712 if ((track->sharedBuffer() != 0) || track->isTerminated() ||
5713 track->isStopped() || track->isPaused()) {
5714 // We have consumed all the buffers of this track.
5715 // Remove it from the list of active tracks.
5716 // TODO: use actual buffer filling status instead of latency when available from
5717 // audio HAL
5718 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
5719 int64_t framesWritten = mBytesWritten / mFrameSize;
5720 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
5721 if (track->isStopped()) {
5722 track->reset();
5723 }
5724 tracksToRemove->add(track);
5725 }
5726 } else {
5727 // No buffers for this track. Give it a few chances to
5728 // fill a buffer, then remove it from active list.
5729 if (--(track->mRetryCount) <= 0) {
5730 ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p",
5731 trackId, this);
5732 tracksToRemove->add(track);
5733 // indicate to client process that the track was disabled because of underrun;
5734 // it will then automatically call start() when data is available
5735 track->disable();
5736 // If one track is not ready, mark the mixer also not ready if:
5737 // - the mixer was ready during previous round OR
5738 // - no other track is ready
5739 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
5740 mixerStatus != MIXER_TRACKS_READY) {
5741 mixerStatus = MIXER_TRACKS_ENABLED;
5742 }
5743 }
5744 mAudioMixer->disable(trackId);
5745 }
5746
5747 } // local variable scope to avoid goto warning
5748
5749 }
5750
5751 if (mHapticChannelMask != AUDIO_CHANNEL_NONE && sq != NULL) {
5752 // When there is no fast track playing haptic and FastMixer exists,
5753 // enabling the first FastTrack, which provides mixed data from normal
5754 // tracks, to play haptic data.
5755 FastTrack *fastTrack = &state->mFastTracks[0];
5756 if (fastTrack->mHapticPlaybackEnabled != noFastHapticTrack) {
5757 fastTrack->mHapticPlaybackEnabled = noFastHapticTrack;
5758 didModify = true;
5759 }
5760 }
5761
5762 // Push the new FastMixer state if necessary
5763 bool pauseAudioWatchdog = false;
5764 if (didModify) {
5765 state->mFastTracksGen++;
5766 // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
5767 if (kUseFastMixer == FastMixer_Dynamic &&
5768 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
5769 state->mCommand = FastMixerState::COLD_IDLE;
5770 state->mColdFutexAddr = &mFastMixerFutex;
5771 state->mColdGen++;
5772 mFastMixerFutex = 0;
5773 if (kUseFastMixer == FastMixer_Dynamic) {
5774 mNormalSink = mOutputSink;
5775 }
5776 // If we go into cold idle, need to wait for acknowledgement
5777 // so that fast mixer stops doing I/O.
5778 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
5779 pauseAudioWatchdog = true;
5780 }
5781 }
5782 if (sq != NULL) {
5783 sq->end(didModify);
5784 // No need to block if the FastMixer is in COLD_IDLE as the FastThread
5785 // is not active. (We BLOCK_UNTIL_ACKED when entering COLD_IDLE
5786 // when bringing the output sink into standby.)
5787 //
5788 // We will get the latest FastMixer state when we come out of COLD_IDLE.
5789 //
5790 // This occurs with BT suspend when we idle the FastMixer with
5791 // active tracks, which may be added or removed.
5792 sq->push(coldIdle ? FastMixerStateQueue::BLOCK_NEVER : block);
5793 }
5794 #ifdef AUDIO_WATCHDOG
5795 if (pauseAudioWatchdog && mAudioWatchdog != 0) {
5796 mAudioWatchdog->pause();
5797 }
5798 #endif
5799
5800 // Now perform the deferred reset on fast tracks that have stopped
5801 while (resetMask != 0) {
5802 size_t i = __builtin_ctz(resetMask);
5803 ALOG_ASSERT(i < count);
5804 resetMask &= ~(1 << i);
5805 sp<Track> track = mActiveTracks[i];
5806 ALOG_ASSERT(track->isFastTrack() && track->isStopped());
5807 track->reset();
5808 }
5809
5810 // Track destruction may occur outside of threadLoop once it is removed from active tracks.
5811 // Ensure the AudioMixer doesn't have a raw "buffer provider" pointer to the track if
5812 // it ceases to be active, to allow safe removal from the AudioMixer at the start
5813 // of prepareTracks_l(); this releases any outstanding buffer back to the track.
5814 // See also the implementation of destroyTrack_l().
5815 for (const auto &track : *tracksToRemove) {
5816 const int trackId = track->id();
5817 if (mAudioMixer->exists(trackId)) { // Normal tracks here, fast tracks in FastMixer.
5818 mAudioMixer->setBufferProvider(trackId, nullptr /* bufferProvider */);
5819 }
5820 }
5821
5822 // remove all the tracks that need to be...
5823 removeTracks_l(*tracksToRemove);
5824
5825 if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0 ||
5826 getEffectChain_l(AUDIO_SESSION_OUTPUT_STAGE) != 0) {
5827 mEffectBufferValid = true;
5828 }
5829
5830 if (mEffectBufferValid) {
5831 // as long as there are effects we should clear the effects buffer, to avoid
5832 // passing a non-clean buffer to the effect chain
5833 memset(mEffectBuffer, 0, mEffectBufferSize);
5834 if (mType == SPATIALIZER) {
5835 memset(mPostSpatializerBuffer, 0, mPostSpatializerBufferSize);
5836 }
5837 }
5838 // sink or mix buffer must be cleared if all tracks are connected to an
5839 // effect chain as in this case the mixer will not write to the sink or mix buffer
5840 // and track effects will accumulate into it
5841 // always clear sink buffer for spatializer output as the output of the spatializer
5842 // effect will be accumulated into it
5843 if ((mBytesRemaining == 0) && (((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
5844 (mixedTracks == 0 && fastTracks > 0)) || (mType == SPATIALIZER))) {
5845 // FIXME as a performance optimization, should remember previous zero status
5846 if (mMixerBufferValid) {
5847 memset(mMixerBuffer, 0, mMixerBufferSize);
5848 // TODO: In testing, mSinkBuffer below need not be cleared because
5849 // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
5850 // after mixing.
5851 //
5852 // To enforce this guarantee:
5853 // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
5854 // (mixedTracks == 0 && fastTracks > 0))
5855 // must imply MIXER_TRACKS_READY.
5856 // Later, we may clear buffers regardless, and skip much of this logic.
5857 }
5858 // FIXME as a performance optimization, should remember previous zero status
5859 memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
5860 }
5861
5862 // if any fast tracks, then status is ready
5863 mMixerStatusIgnoringFastTracks = mixerStatus;
5864 if (fastTracks > 0) {
5865 mixerStatus = MIXER_TRACKS_READY;
5866 }
5867 return mixerStatus;
5868 }
5869
5870 // trackCountForUid_l() must be called with ThreadBase::mLock held
trackCountForUid_l(uid_t uid) const5871 uint32_t AudioFlinger::PlaybackThread::trackCountForUid_l(uid_t uid) const
5872 {
5873 uint32_t trackCount = 0;
5874 for (size_t i = 0; i < mTracks.size() ; i++) {
5875 if (mTracks[i]->uid() == uid) {
5876 trackCount++;
5877 }
5878 }
5879 return trackCount;
5880 }
5881
5882 // isTrackAllowed_l() must be called with ThreadBase::mLock held
isTrackAllowed_l(audio_channel_mask_t channelMask,audio_format_t format,audio_session_t sessionId,uid_t uid) const5883 bool AudioFlinger::MixerThread::isTrackAllowed_l(
5884 audio_channel_mask_t channelMask, audio_format_t format,
5885 audio_session_t sessionId, uid_t uid) const
5886 {
5887 if (!PlaybackThread::isTrackAllowed_l(channelMask, format, sessionId, uid)) {
5888 return false;
5889 }
5890 // Check validity as we don't call AudioMixer::create() here.
5891 if (!mAudioMixer->isValidFormat(format)) {
5892 ALOGW("%s: invalid format: %#x", __func__, format);
5893 return false;
5894 }
5895 if (!mAudioMixer->isValidChannelMask(channelMask)) {
5896 ALOGW("%s: invalid channelMask: %#x", __func__, channelMask);
5897 return false;
5898 }
5899 return true;
5900 }
5901
5902 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)5903 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
5904 status_t& status)
5905 {
5906 bool reconfig = false;
5907 status = NO_ERROR;
5908
5909 AutoPark<FastMixer> park(mFastMixer);
5910
5911 AudioParameter param = AudioParameter(keyValuePair);
5912 int value;
5913 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
5914 reconfig = true;
5915 }
5916 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
5917 if (!isValidPcmSinkFormat((audio_format_t) value)) {
5918 status = BAD_VALUE;
5919 } else {
5920 // no need to save value, since it's constant
5921 reconfig = true;
5922 }
5923 }
5924 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
5925 if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
5926 status = BAD_VALUE;
5927 } else {
5928 // no need to save value, since it's constant
5929 reconfig = true;
5930 }
5931 }
5932 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5933 // do not accept frame count changes if tracks are open as the track buffer
5934 // size depends on frame count and correct behavior would not be guaranteed
5935 // if frame count is changed after track creation
5936 if (!mTracks.isEmpty()) {
5937 status = INVALID_OPERATION;
5938 } else {
5939 reconfig = true;
5940 }
5941 }
5942 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5943 LOG_FATAL("Should not set routing device in MixerThread");
5944 }
5945
5946 if (status == NO_ERROR) {
5947 status = mOutput->stream->setParameters(keyValuePair);
5948 if (!mStandby && status == INVALID_OPERATION) {
5949 mOutput->standby();
5950 if (!mStandby) {
5951 mThreadMetrics.logEndInterval();
5952 mStandby = true;
5953 }
5954 mBytesWritten = 0;
5955 status = mOutput->stream->setParameters(keyValuePair);
5956 }
5957 if (status == NO_ERROR && reconfig) {
5958 readOutputParameters_l();
5959 delete mAudioMixer;
5960 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
5961 for (const auto &track : mTracks) {
5962 const int trackId = track->id();
5963 status_t status = mAudioMixer->create(
5964 trackId,
5965 track->mChannelMask,
5966 track->mFormat,
5967 track->mSessionId);
5968 ALOGW_IF(status != NO_ERROR,
5969 "%s(): AudioMixer cannot create track(%d)"
5970 " mask %#x, format %#x, sessionId %d",
5971 __func__,
5972 trackId, track->mChannelMask, track->mFormat, track->mSessionId);
5973 }
5974 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5975 }
5976 }
5977
5978 return reconfig;
5979 }
5980
5981
dumpInternals_l(int fd,const Vector<String16> & args)5982 void AudioFlinger::MixerThread::dumpInternals_l(int fd, const Vector<String16>& args)
5983 {
5984 PlaybackThread::dumpInternals_l(fd, args);
5985 dprintf(fd, " Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
5986 dprintf(fd, " AudioMixer tracks: %s\n", mAudioMixer->trackNames().c_str());
5987 dprintf(fd, " Master mono: %s\n", mMasterMono ? "on" : "off");
5988 dprintf(fd, " Master balance: %f (%s)\n", mMasterBalance.load(),
5989 (hasFastMixer() ? std::to_string(mFastMixer->getMasterBalance())
5990 : mBalance.toString()).c_str());
5991 if (hasFastMixer()) {
5992 dprintf(fd, " FastMixer thread %p tid=%d", mFastMixer.get(), mFastMixer->getTid());
5993
5994 // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
5995 // while we are dumping it. It may be inconsistent, but it won't mutate!
5996 // This is a large object so we place it on the heap.
5997 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
5998 const std::unique_ptr<FastMixerDumpState> copy =
5999 std::make_unique<FastMixerDumpState>(mFastMixerDumpState);
6000 copy->dump(fd);
6001
6002 #ifdef STATE_QUEUE_DUMP
6003 // Similar for state queue
6004 StateQueueObserverDump observerCopy = mStateQueueObserverDump;
6005 observerCopy.dump(fd);
6006 StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
6007 mutatorCopy.dump(fd);
6008 #endif
6009
6010 #ifdef AUDIO_WATCHDOG
6011 if (mAudioWatchdog != 0) {
6012 // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
6013 AudioWatchdogDump wdCopy = mAudioWatchdogDump;
6014 wdCopy.dump(fd);
6015 }
6016 #endif
6017
6018 } else {
6019 dprintf(fd, " No FastMixer\n");
6020 }
6021 }
6022
idleSleepTimeUs() const6023 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
6024 {
6025 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
6026 }
6027
suspendSleepTimeUs() const6028 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
6029 {
6030 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
6031 }
6032
cacheParameters_l()6033 void AudioFlinger::MixerThread::cacheParameters_l()
6034 {
6035 PlaybackThread::cacheParameters_l();
6036
6037 // FIXME: Relaxed timing because of a certain device that can't meet latency
6038 // Should be reduced to 2x after the vendor fixes the driver issue
6039 // increase threshold again due to low power audio mode. The way this warning
6040 // threshold is calculated and its usefulness should be reconsidered anyway.
6041 maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
6042 }
6043
6044 // ----------------------------------------------------------------------------
6045
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,ThreadBase::type_t type,bool systemReady)6046 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
6047 AudioStreamOut* output, audio_io_handle_t id, ThreadBase::type_t type, bool systemReady)
6048 : PlaybackThread(audioFlinger, output, id, type, systemReady)
6049 {
6050 setMasterBalance(audioFlinger->getMasterBalance_l());
6051 }
6052
~DirectOutputThread()6053 AudioFlinger::DirectOutputThread::~DirectOutputThread()
6054 {
6055 }
6056
dumpInternals_l(int fd,const Vector<String16> & args)6057 void AudioFlinger::DirectOutputThread::dumpInternals_l(int fd, const Vector<String16>& args)
6058 {
6059 PlaybackThread::dumpInternals_l(fd, args);
6060 dprintf(fd, " Master balance: %f Left: %f Right: %f\n",
6061 mMasterBalance.load(), mMasterBalanceLeft, mMasterBalanceRight);
6062 }
6063
setMasterBalance(float balance)6064 void AudioFlinger::DirectOutputThread::setMasterBalance(float balance)
6065 {
6066 Mutex::Autolock _l(mLock);
6067 if (mMasterBalance != balance) {
6068 mMasterBalance.store(balance);
6069 mBalance.computeStereoBalance(balance, &mMasterBalanceLeft, &mMasterBalanceRight);
6070 broadcast_l();
6071 }
6072 }
6073
processVolume_l(Track * track,bool lastTrack)6074 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
6075 {
6076 float left, right;
6077
6078 // Ensure volumeshaper state always advances even when muted.
6079 const sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
6080 const auto [shaperVolume, shaperActive] = track->getVolumeHandler()->getVolume(
6081 proxy->framesReleased());
6082 mVolumeShaperActive = shaperActive;
6083
6084 if (mMasterMute || mStreamTypes[track->streamType()].mute || track->isPlaybackRestricted()) {
6085 left = right = 0;
6086 } else {
6087 float typeVolume = mStreamTypes[track->streamType()].volume;
6088 const float v = mMasterVolume * typeVolume * shaperVolume;
6089
6090 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
6091 left = float_from_gain(gain_minifloat_unpack_left(vlr));
6092 if (left > GAIN_FLOAT_UNITY) {
6093 left = GAIN_FLOAT_UNITY;
6094 }
6095 left *= v * mMasterBalanceLeft; // DirectOutputThread balance applied as track volume
6096 right = float_from_gain(gain_minifloat_unpack_right(vlr));
6097 if (right > GAIN_FLOAT_UNITY) {
6098 right = GAIN_FLOAT_UNITY;
6099 }
6100 right *= v * mMasterBalanceRight;
6101 }
6102
6103 if (lastTrack) {
6104 track->setFinalVolume((left + right) / 2.f);
6105 if (left != mLeftVolFloat || right != mRightVolFloat) {
6106 mLeftVolFloat = left;
6107 mRightVolFloat = right;
6108
6109 // Delegate volume control to effect in track effect chain if needed
6110 // only one effect chain can be present on DirectOutputThread, so if
6111 // there is one, the track is connected to it
6112 if (!mEffectChains.isEmpty()) {
6113 // if effect chain exists, volume is handled by it.
6114 // Convert volumes from float to 8.24
6115 uint32_t vl = (uint32_t)(left * (1 << 24));
6116 uint32_t vr = (uint32_t)(right * (1 << 24));
6117 // Direct/Offload effect chains set output volume in setVolume_l().
6118 (void)mEffectChains[0]->setVolume_l(&vl, &vr);
6119 } else {
6120 // otherwise we directly set the volume.
6121 setVolumeForOutput_l(left, right);
6122 }
6123 }
6124 }
6125 }
6126
onAddNewTrack_l()6127 void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
6128 {
6129 sp<Track> previousTrack = mPreviousTrack.promote();
6130 sp<Track> latestTrack = mActiveTracks.getLatest();
6131
6132 if (previousTrack != 0 && latestTrack != 0) {
6133 if (mType == DIRECT) {
6134 if (previousTrack.get() != latestTrack.get()) {
6135 mFlushPending = true;
6136 }
6137 } else /* mType == OFFLOAD */ {
6138 if (previousTrack->sessionId() != latestTrack->sessionId()) {
6139 mFlushPending = true;
6140 }
6141 }
6142 } else if (previousTrack == 0) {
6143 // there could be an old track added back during track transition for direct
6144 // output, so always issues flush to flush data of the previous track if it
6145 // was already destroyed with HAL paused, then flush can resume the playback
6146 mFlushPending = true;
6147 }
6148 PlaybackThread::onAddNewTrack_l();
6149 }
6150
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)6151 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
6152 Vector< sp<Track> > *tracksToRemove
6153 )
6154 {
6155 size_t count = mActiveTracks.size();
6156 mixer_state mixerStatus = MIXER_IDLE;
6157 bool doHwPause = false;
6158 bool doHwResume = false;
6159
6160 // find out which tracks need to be processed
6161 for (const sp<Track> &t : mActiveTracks) {
6162 if (t->isInvalid()) {
6163 ALOGW("An invalidated track shouldn't be in active list");
6164 tracksToRemove->add(t);
6165 continue;
6166 }
6167
6168 Track* const track = t.get();
6169 #ifdef VERY_VERY_VERBOSE_LOGGING
6170 audio_track_cblk_t* cblk = track->cblk();
6171 #endif
6172 // Only consider last track started for volume and mixer state control.
6173 // In theory an older track could underrun and restart after the new one starts
6174 // but as we only care about the transition phase between two tracks on a
6175 // direct output, it is not a problem to ignore the underrun case.
6176 sp<Track> l = mActiveTracks.getLatest();
6177 bool last = l.get() == track;
6178
6179 if (track->isPausePending()) {
6180 track->pauseAck();
6181 // It is possible a track might have been flushed or stopped.
6182 // Other operations such as flush pending might occur on the next prepare.
6183 if (track->isPausing()) {
6184 track->setPaused();
6185 }
6186 // Always perform pause, as an immediate flush will change
6187 // the pause state to be no longer isPausing().
6188 if (mHwSupportsPause && last && !mHwPaused) {
6189 doHwPause = true;
6190 mHwPaused = true;
6191 }
6192 } else if (track->isFlushPending()) {
6193 track->flushAck();
6194 if (last) {
6195 mFlushPending = true;
6196 }
6197 } else if (track->isResumePending()) {
6198 track->resumeAck();
6199 if (last) {
6200 mLeftVolFloat = mRightVolFloat = -1.0;
6201 if (mHwPaused) {
6202 doHwResume = true;
6203 mHwPaused = false;
6204 }
6205 }
6206 }
6207
6208 // The first time a track is added we wait
6209 // for all its buffers to be filled before processing it.
6210 // Allow draining the buffer in case the client
6211 // app does not call stop() and relies on underrun to stop:
6212 // hence the test on (track->mRetryCount > 1).
6213 // If track->mRetryCount <= 1 then track is about to be disabled, paused, removed,
6214 // so we accept any nonzero amount of data delivered by the AudioTrack (which will
6215 // reset the retry counter).
6216 // Do not use a high threshold for compressed audio.
6217
6218 // target retry count that we will use is based on the time we wait for retries.
6219 const int32_t targetRetryCount = kMaxTrackRetriesDirectMs * 1000 / mActiveSleepTimeUs;
6220 // the retry threshold is when we accept any size for PCM data. This is slightly
6221 // smaller than the retry count so we can push small bits of data without a glitch.
6222 const int32_t retryThreshold = targetRetryCount > 2 ? targetRetryCount - 1 : 1;
6223 uint32_t minFrames;
6224 if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
6225 && (track->mRetryCount > retryThreshold) && audio_has_proportional_frames(mFormat)) {
6226 minFrames = mNormalFrameCount;
6227 } else {
6228 minFrames = 1;
6229 }
6230
6231 const size_t framesReady = track->framesReady();
6232 const int trackId = track->id();
6233 if (ATRACE_ENABLED()) {
6234 std::string traceName("nRdy");
6235 traceName += std::to_string(trackId);
6236 ATRACE_INT(traceName.c_str(), framesReady);
6237 }
6238 if ((framesReady >= minFrames) && track->isReady() && !track->isPaused() &&
6239 !track->isStopping_2() && !track->isStopped())
6240 {
6241 ALOGVV("track(%d) s=%08x [OK]", trackId, cblk->mServer);
6242
6243 if (track->mFillingUpStatus == Track::FS_FILLED) {
6244 track->mFillingUpStatus = Track::FS_ACTIVE;
6245 if (last) {
6246 // make sure processVolume_l() will apply new volume even if 0
6247 mLeftVolFloat = mRightVolFloat = -1.0;
6248 }
6249 if (!mHwSupportsPause) {
6250 track->resumeAck();
6251 }
6252 }
6253
6254 // compute volume for this track
6255 processVolume_l(track, last);
6256 if (last) {
6257 sp<Track> previousTrack = mPreviousTrack.promote();
6258 if (previousTrack != 0) {
6259 if (track != previousTrack.get()) {
6260 // Flush any data still being written from last track
6261 mBytesRemaining = 0;
6262 // Invalidate previous track to force a seek when resuming.
6263 previousTrack->invalidate();
6264 }
6265 }
6266 mPreviousTrack = track;
6267
6268 // reset retry count
6269 track->mRetryCount = targetRetryCount;
6270 mActiveTrack = t;
6271 mixerStatus = MIXER_TRACKS_READY;
6272 if (mHwPaused) {
6273 doHwResume = true;
6274 mHwPaused = false;
6275 }
6276 }
6277 } else {
6278 // clear effect chain input buffer if the last active track started underruns
6279 // to avoid sending previous audio buffer again to effects
6280 if (!mEffectChains.isEmpty() && last) {
6281 mEffectChains[0]->clearInputBuffer();
6282 }
6283 if (track->isStopping_1()) {
6284 track->mState = TrackBase::STOPPING_2;
6285 if (last && mHwPaused) {
6286 doHwResume = true;
6287 mHwPaused = false;
6288 }
6289 }
6290 if ((track->sharedBuffer() != 0) || track->isStopped() ||
6291 track->isStopping_2() || track->isPaused()) {
6292 // We have consumed all the buffers of this track.
6293 // Remove it from the list of active tracks.
6294 if (mStandby || !last ||
6295 track->presentationComplete(latency_l()) ||
6296 track->isPaused() || mHwPaused) {
6297 if (track->isStopping_2()) {
6298 track->mState = TrackBase::STOPPED;
6299 }
6300 if (track->isStopped()) {
6301 track->reset();
6302 }
6303 tracksToRemove->add(track);
6304 }
6305 } else {
6306 // No buffers for this track. Give it a few chances to
6307 // fill a buffer, then remove it from active list.
6308 // Only consider last track started for mixer state control
6309 if (--(track->mRetryCount) <= 0) {
6310 ALOGV("BUFFER TIMEOUT: remove track(%d) from active list", trackId);
6311 tracksToRemove->add(track);
6312 // indicate to client process that the track was disabled because of underrun;
6313 // it will then automatically call start() when data is available
6314 track->disable();
6315 // only do hw pause when track is going to be removed due to BUFFER TIMEOUT.
6316 // unlike mixerthread, HAL can be paused for direct output
6317 ALOGW("pause because of UNDERRUN, framesReady = %zu,"
6318 "minFrames = %u, mFormat = %#x",
6319 framesReady, minFrames, mFormat);
6320 if (last && mHwSupportsPause && !mHwPaused && !mStandby) {
6321 doHwPause = true;
6322 mHwPaused = true;
6323 }
6324 } else if (last) {
6325 mixerStatus = MIXER_TRACKS_ENABLED;
6326 }
6327 }
6328 }
6329 }
6330
6331 // if an active track did not command a flush, check for pending flush on stopped tracks
6332 if (!mFlushPending) {
6333 for (size_t i = 0; i < mTracks.size(); i++) {
6334 if (mTracks[i]->isFlushPending()) {
6335 mTracks[i]->flushAck();
6336 mFlushPending = true;
6337 }
6338 }
6339 }
6340
6341 // make sure the pause/flush/resume sequence is executed in the right order.
6342 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
6343 // before flush and then resume HW. This can happen in case of pause/flush/resume
6344 // if resume is received before pause is executed.
6345 if (mHwSupportsPause && !mStandby &&
6346 (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
6347 status_t result = mOutput->stream->pause();
6348 ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
6349 }
6350 if (mFlushPending) {
6351 flushHw_l();
6352 }
6353 if (mHwSupportsPause && !mStandby && doHwResume) {
6354 status_t result = mOutput->stream->resume();
6355 ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
6356 }
6357 // remove all the tracks that need to be...
6358 removeTracks_l(*tracksToRemove);
6359
6360 return mixerStatus;
6361 }
6362
threadLoop_mix()6363 void AudioFlinger::DirectOutputThread::threadLoop_mix()
6364 {
6365 size_t frameCount = mFrameCount;
6366 int8_t *curBuf = (int8_t *)mSinkBuffer;
6367 // output audio to hardware
6368 while (frameCount) {
6369 AudioBufferProvider::Buffer buffer;
6370 buffer.frameCount = frameCount;
6371 status_t status = mActiveTrack->getNextBuffer(&buffer);
6372 if (status != NO_ERROR || buffer.raw == NULL) {
6373 // no need to pad with 0 for compressed audio
6374 if (audio_has_proportional_frames(mFormat)) {
6375 memset(curBuf, 0, frameCount * mFrameSize);
6376 }
6377 break;
6378 }
6379 memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
6380 frameCount -= buffer.frameCount;
6381 curBuf += buffer.frameCount * mFrameSize;
6382 mActiveTrack->releaseBuffer(&buffer);
6383 }
6384 mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
6385 mSleepTimeUs = 0;
6386 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
6387 mActiveTrack.clear();
6388 }
6389
threadLoop_sleepTime()6390 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
6391 {
6392 // do not write to HAL when paused
6393 if (mHwPaused || (usesHwAvSync() && mStandby)) {
6394 mSleepTimeUs = mIdleSleepTimeUs;
6395 return;
6396 }
6397 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
6398 mSleepTimeUs = mActiveSleepTimeUs;
6399 } else {
6400 mSleepTimeUs = mIdleSleepTimeUs;
6401 }
6402 // Note: In S or later, we do not write zeroes for
6403 // linear or proportional PCM direct tracks in underrun.
6404 }
6405
threadLoop_exit()6406 void AudioFlinger::DirectOutputThread::threadLoop_exit()
6407 {
6408 {
6409 Mutex::Autolock _l(mLock);
6410 for (size_t i = 0; i < mTracks.size(); i++) {
6411 if (mTracks[i]->isFlushPending()) {
6412 mTracks[i]->flushAck();
6413 mFlushPending = true;
6414 }
6415 }
6416 if (mFlushPending) {
6417 flushHw_l();
6418 }
6419 }
6420 PlaybackThread::threadLoop_exit();
6421 }
6422
6423 // must be called with thread mutex locked
shouldStandby_l()6424 bool AudioFlinger::DirectOutputThread::shouldStandby_l()
6425 {
6426 bool trackPaused = false;
6427 bool trackStopped = false;
6428
6429 // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
6430 // after a timeout and we will enter standby then.
6431 if (mTracks.size() > 0) {
6432 trackPaused = mTracks[mTracks.size() - 1]->isPaused();
6433 trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
6434 mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
6435 }
6436
6437 return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
6438 }
6439
6440 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)6441 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
6442 status_t& status)
6443 {
6444 bool reconfig = false;
6445 status = NO_ERROR;
6446
6447 AudioParameter param = AudioParameter(keyValuePair);
6448 int value;
6449 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6450 LOG_FATAL("Should not set routing device in DirectOutputThread");
6451 }
6452 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6453 // do not accept frame count changes if tracks are open as the track buffer
6454 // size depends on frame count and correct behavior would not be garantied
6455 // if frame count is changed after track creation
6456 if (!mTracks.isEmpty()) {
6457 status = INVALID_OPERATION;
6458 } else {
6459 reconfig = true;
6460 }
6461 }
6462 if (status == NO_ERROR) {
6463 status = mOutput->stream->setParameters(keyValuePair);
6464 if (!mStandby && status == INVALID_OPERATION) {
6465 mOutput->standby();
6466 if (!mStandby) {
6467 mThreadMetrics.logEndInterval();
6468 mStandby = true;
6469 }
6470 mBytesWritten = 0;
6471 status = mOutput->stream->setParameters(keyValuePair);
6472 }
6473 if (status == NO_ERROR && reconfig) {
6474 readOutputParameters_l();
6475 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
6476 }
6477 }
6478
6479 return reconfig;
6480 }
6481
activeSleepTimeUs() const6482 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
6483 {
6484 uint32_t time;
6485 if (audio_has_proportional_frames(mFormat)) {
6486 time = PlaybackThread::activeSleepTimeUs();
6487 } else {
6488 time = kDirectMinSleepTimeUs;
6489 }
6490 return time;
6491 }
6492
idleSleepTimeUs() const6493 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
6494 {
6495 uint32_t time;
6496 if (audio_has_proportional_frames(mFormat)) {
6497 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
6498 } else {
6499 time = kDirectMinSleepTimeUs;
6500 }
6501 return time;
6502 }
6503
suspendSleepTimeUs() const6504 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
6505 {
6506 uint32_t time;
6507 if (audio_has_proportional_frames(mFormat)) {
6508 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
6509 } else {
6510 time = kDirectMinSleepTimeUs;
6511 }
6512 return time;
6513 }
6514
cacheParameters_l()6515 void AudioFlinger::DirectOutputThread::cacheParameters_l()
6516 {
6517 PlaybackThread::cacheParameters_l();
6518
6519 // use shorter standby delay as on normal output to release
6520 // hardware resources as soon as possible
6521 // no delay on outputs with HW A/V sync
6522 if (usesHwAvSync()) {
6523 mStandbyDelayNs = 0;
6524 } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
6525 mStandbyDelayNs = kOffloadStandbyDelayNs;
6526 } else {
6527 mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
6528 }
6529 }
6530
flushHw_l()6531 void AudioFlinger::DirectOutputThread::flushHw_l()
6532 {
6533 mOutput->flush();
6534 mHwPaused = false;
6535 mFlushPending = false;
6536 mTimestampVerifier.discontinuity(discontinuityForStandbyOrFlush());
6537 mTimestamp.clear();
6538 }
6539
computeWaitTimeNs_l() const6540 int64_t AudioFlinger::DirectOutputThread::computeWaitTimeNs_l() const {
6541 // If a VolumeShaper is active, we must wake up periodically to update volume.
6542 const int64_t NS_PER_MS = 1000000;
6543 return mVolumeShaperActive ?
6544 kMinNormalSinkBufferSizeMs * NS_PER_MS : PlaybackThread::computeWaitTimeNs_l();
6545 }
6546
6547 // ----------------------------------------------------------------------------
6548
AsyncCallbackThread(const wp<AudioFlinger::PlaybackThread> & playbackThread)6549 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
6550 const wp<AudioFlinger::PlaybackThread>& playbackThread)
6551 : Thread(false /*canCallJava*/),
6552 mPlaybackThread(playbackThread),
6553 mWriteAckSequence(0),
6554 mDrainSequence(0),
6555 mAsyncError(false)
6556 {
6557 }
6558
~AsyncCallbackThread()6559 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
6560 {
6561 }
6562
onFirstRef()6563 void AudioFlinger::AsyncCallbackThread::onFirstRef()
6564 {
6565 run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
6566 }
6567
threadLoop()6568 bool AudioFlinger::AsyncCallbackThread::threadLoop()
6569 {
6570 while (!exitPending()) {
6571 uint32_t writeAckSequence;
6572 uint32_t drainSequence;
6573 bool asyncError;
6574
6575 {
6576 Mutex::Autolock _l(mLock);
6577 while (!((mWriteAckSequence & 1) ||
6578 (mDrainSequence & 1) ||
6579 mAsyncError ||
6580 exitPending())) {
6581 mWaitWorkCV.wait(mLock);
6582 }
6583
6584 if (exitPending()) {
6585 break;
6586 }
6587 ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
6588 mWriteAckSequence, mDrainSequence);
6589 writeAckSequence = mWriteAckSequence;
6590 mWriteAckSequence &= ~1;
6591 drainSequence = mDrainSequence;
6592 mDrainSequence &= ~1;
6593 asyncError = mAsyncError;
6594 mAsyncError = false;
6595 }
6596 {
6597 sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
6598 if (playbackThread != 0) {
6599 if (writeAckSequence & 1) {
6600 playbackThread->resetWriteBlocked(writeAckSequence >> 1);
6601 }
6602 if (drainSequence & 1) {
6603 playbackThread->resetDraining(drainSequence >> 1);
6604 }
6605 if (asyncError) {
6606 playbackThread->onAsyncError();
6607 }
6608 }
6609 }
6610 }
6611 return false;
6612 }
6613
exit()6614 void AudioFlinger::AsyncCallbackThread::exit()
6615 {
6616 ALOGV("AsyncCallbackThread::exit");
6617 Mutex::Autolock _l(mLock);
6618 requestExit();
6619 mWaitWorkCV.broadcast();
6620 }
6621
setWriteBlocked(uint32_t sequence)6622 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
6623 {
6624 Mutex::Autolock _l(mLock);
6625 // bit 0 is cleared
6626 mWriteAckSequence = sequence << 1;
6627 }
6628
resetWriteBlocked()6629 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
6630 {
6631 Mutex::Autolock _l(mLock);
6632 // ignore unexpected callbacks
6633 if (mWriteAckSequence & 2) {
6634 mWriteAckSequence |= 1;
6635 mWaitWorkCV.signal();
6636 }
6637 }
6638
setDraining(uint32_t sequence)6639 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
6640 {
6641 Mutex::Autolock _l(mLock);
6642 // bit 0 is cleared
6643 mDrainSequence = sequence << 1;
6644 }
6645
resetDraining()6646 void AudioFlinger::AsyncCallbackThread::resetDraining()
6647 {
6648 Mutex::Autolock _l(mLock);
6649 // ignore unexpected callbacks
6650 if (mDrainSequence & 2) {
6651 mDrainSequence |= 1;
6652 mWaitWorkCV.signal();
6653 }
6654 }
6655
setAsyncError()6656 void AudioFlinger::AsyncCallbackThread::setAsyncError()
6657 {
6658 Mutex::Autolock _l(mLock);
6659 mAsyncError = true;
6660 mWaitWorkCV.signal();
6661 }
6662
6663
6664 // ----------------------------------------------------------------------------
OffloadThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,bool systemReady)6665 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
6666 AudioStreamOut* output, audio_io_handle_t id, bool systemReady)
6667 : DirectOutputThread(audioFlinger, output, id, OFFLOAD, systemReady),
6668 mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true),
6669 mOffloadUnderrunPosition(~0LL)
6670 {
6671 //FIXME: mStandby should be set to true by ThreadBase constructo
6672 mStandby = true;
6673 mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
6674 }
6675
threadLoop_exit()6676 void AudioFlinger::OffloadThread::threadLoop_exit()
6677 {
6678 if (mFlushPending || mHwPaused) {
6679 // If a flush is pending or track was paused, just discard buffered data
6680 flushHw_l();
6681 } else {
6682 mMixerStatus = MIXER_DRAIN_ALL;
6683 threadLoop_drain();
6684 }
6685 if (mUseAsyncWrite) {
6686 ALOG_ASSERT(mCallbackThread != 0);
6687 mCallbackThread->exit();
6688 }
6689 PlaybackThread::threadLoop_exit();
6690 }
6691
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)6692 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
6693 Vector< sp<Track> > *tracksToRemove
6694 )
6695 {
6696 size_t count = mActiveTracks.size();
6697
6698 mixer_state mixerStatus = MIXER_IDLE;
6699 bool doHwPause = false;
6700 bool doHwResume = false;
6701
6702 ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
6703
6704 // find out which tracks need to be processed
6705 for (const sp<Track> &t : mActiveTracks) {
6706 Track* const track = t.get();
6707 #ifdef VERY_VERY_VERBOSE_LOGGING
6708 audio_track_cblk_t* cblk = track->cblk();
6709 #endif
6710 // Only consider last track started for volume and mixer state control.
6711 // In theory an older track could underrun and restart after the new one starts
6712 // but as we only care about the transition phase between two tracks on a
6713 // direct output, it is not a problem to ignore the underrun case.
6714 sp<Track> l = mActiveTracks.getLatest();
6715 bool last = l.get() == track;
6716
6717 if (track->isInvalid()) {
6718 ALOGW("An invalidated track shouldn't be in active list");
6719 tracksToRemove->add(track);
6720 continue;
6721 }
6722
6723 if (track->mState == TrackBase::IDLE) {
6724 ALOGW("An idle track shouldn't be in active list");
6725 continue;
6726 }
6727
6728 if (track->isPausePending()) {
6729 track->pauseAck();
6730 // It is possible a track might have been flushed or stopped.
6731 // Other operations such as flush pending might occur on the next prepare.
6732 if (track->isPausing()) {
6733 track->setPaused();
6734 }
6735 // Always perform pause if last, as an immediate flush will change
6736 // the pause state to be no longer isPausing().
6737 if (last) {
6738 if (mHwSupportsPause && !mHwPaused) {
6739 doHwPause = true;
6740 mHwPaused = true;
6741 }
6742 // If we were part way through writing the mixbuffer to
6743 // the HAL we must save this until we resume
6744 // BUG - this will be wrong if a different track is made active,
6745 // in that case we want to discard the pending data in the
6746 // mixbuffer and tell the client to present it again when the
6747 // track is resumed
6748 mPausedWriteLength = mCurrentWriteLength;
6749 mPausedBytesRemaining = mBytesRemaining;
6750 mBytesRemaining = 0; // stop writing
6751 }
6752 tracksToRemove->add(track);
6753 } else if (track->isFlushPending()) {
6754 if (track->isStopping_1()) {
6755 track->mRetryCount = kMaxTrackStopRetriesOffload;
6756 } else {
6757 track->mRetryCount = kMaxTrackRetriesOffload;
6758 }
6759 track->flushAck();
6760 if (last) {
6761 mFlushPending = true;
6762 }
6763 } else if (track->isResumePending()){
6764 track->resumeAck();
6765 if (last) {
6766 if (mPausedBytesRemaining) {
6767 // Need to continue write that was interrupted
6768 mCurrentWriteLength = mPausedWriteLength;
6769 mBytesRemaining = mPausedBytesRemaining;
6770 mPausedBytesRemaining = 0;
6771 }
6772 if (mHwPaused) {
6773 doHwResume = true;
6774 mHwPaused = false;
6775 // threadLoop_mix() will handle the case that we need to
6776 // resume an interrupted write
6777 }
6778 // enable write to audio HAL
6779 mSleepTimeUs = 0;
6780
6781 mLeftVolFloat = mRightVolFloat = -1.0;
6782
6783 // Do not handle new data in this iteration even if track->framesReady()
6784 mixerStatus = MIXER_TRACKS_ENABLED;
6785 }
6786 } else if (track->framesReady() && track->isReady() &&
6787 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
6788 ALOGVV("OffloadThread: track(%d) s=%08x [OK]", track->id(), cblk->mServer);
6789 if (track->mFillingUpStatus == Track::FS_FILLED) {
6790 track->mFillingUpStatus = Track::FS_ACTIVE;
6791 if (last) {
6792 // make sure processVolume_l() will apply new volume even if 0
6793 mLeftVolFloat = mRightVolFloat = -1.0;
6794 }
6795 }
6796
6797 if (last) {
6798 sp<Track> previousTrack = mPreviousTrack.promote();
6799 if (previousTrack != 0) {
6800 if (track != previousTrack.get()) {
6801 // Flush any data still being written from last track
6802 mBytesRemaining = 0;
6803 if (mPausedBytesRemaining) {
6804 // Last track was paused so we also need to flush saved
6805 // mixbuffer state and invalidate track so that it will
6806 // re-submit that unwritten data when it is next resumed
6807 mPausedBytesRemaining = 0;
6808 // Invalidate is a bit drastic - would be more efficient
6809 // to have a flag to tell client that some of the
6810 // previously written data was lost
6811 previousTrack->invalidate();
6812 }
6813 // flush data already sent to the DSP if changing audio session as audio
6814 // comes from a different source. Also invalidate previous track to force a
6815 // seek when resuming.
6816 if (previousTrack->sessionId() != track->sessionId()) {
6817 previousTrack->invalidate();
6818 }
6819 }
6820 }
6821 mPreviousTrack = track;
6822 // reset retry count
6823 if (track->isStopping_1()) {
6824 track->mRetryCount = kMaxTrackStopRetriesOffload;
6825 } else {
6826 track->mRetryCount = kMaxTrackRetriesOffload;
6827 }
6828 mActiveTrack = t;
6829 mixerStatus = MIXER_TRACKS_READY;
6830 }
6831 } else {
6832 ALOGVV("OffloadThread: track(%d) s=%08x [NOT READY]", track->id(), cblk->mServer);
6833 if (track->isStopping_1()) {
6834 if (--(track->mRetryCount) <= 0) {
6835 // Hardware buffer can hold a large amount of audio so we must
6836 // wait for all current track's data to drain before we say
6837 // that the track is stopped.
6838 if (mBytesRemaining == 0) {
6839 // Only start draining when all data in mixbuffer
6840 // has been written
6841 ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
6842 track->mState = TrackBase::STOPPING_2; // so presentation completes after
6843 // drain do not drain if no data was ever sent to HAL (mStandby == true)
6844 if (last && !mStandby) {
6845 // do not modify drain sequence if we are already draining. This happens
6846 // when resuming from pause after drain.
6847 if ((mDrainSequence & 1) == 0) {
6848 mSleepTimeUs = 0;
6849 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
6850 mixerStatus = MIXER_DRAIN_TRACK;
6851 mDrainSequence += 2;
6852 }
6853 if (mHwPaused) {
6854 // It is possible to move from PAUSED to STOPPING_1 without
6855 // a resume so we must ensure hardware is running
6856 doHwResume = true;
6857 mHwPaused = false;
6858 }
6859 }
6860 }
6861 } else if (last) {
6862 ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
6863 mixerStatus = MIXER_TRACKS_ENABLED;
6864 }
6865 } else if (track->isStopping_2()) {
6866 // Drain has completed or we are in standby, signal presentation complete
6867 if (!(mDrainSequence & 1) || !last || mStandby) {
6868 track->mState = TrackBase::STOPPED;
6869 track->presentationComplete(latency_l());
6870 track->reset();
6871 tracksToRemove->add(track);
6872 // OFFLOADED stop resets frame counts.
6873 if (!mUseAsyncWrite) {
6874 // If we don't get explicit drain notification we must
6875 // register discontinuity regardless of whether this is
6876 // the previous (!last) or the upcoming (last) track
6877 // to avoid skipping the discontinuity.
6878 mTimestampVerifier.discontinuity(
6879 mTimestampVerifier.DISCONTINUITY_MODE_ZERO);
6880 }
6881 }
6882 } else {
6883 // No buffers for this track. Give it a few chances to
6884 // fill a buffer, then remove it from active list.
6885 if (--(track->mRetryCount) <= 0) {
6886 bool running = false;
6887 uint64_t position = 0;
6888 struct timespec unused;
6889 // The running check restarts the retry counter at least once.
6890 status_t ret = mOutput->stream->getPresentationPosition(&position, &unused);
6891 if (ret == NO_ERROR && position != mOffloadUnderrunPosition) {
6892 running = true;
6893 mOffloadUnderrunPosition = position;
6894 }
6895 if (ret == NO_ERROR) {
6896 ALOGVV("underrun counter, running(%d): %lld vs %lld", running,
6897 (long long)position, (long long)mOffloadUnderrunPosition);
6898 }
6899 if (running) { // still running, give us more time.
6900 track->mRetryCount = kMaxTrackRetriesOffload;
6901 } else {
6902 ALOGV("OffloadThread: BUFFER TIMEOUT: remove track(%d) from active list",
6903 track->id());
6904 tracksToRemove->add(track);
6905 // tell client process that the track was disabled because of underrun;
6906 // it will then automatically call start() when data is available
6907 track->disable();
6908 }
6909 } else if (last){
6910 mixerStatus = MIXER_TRACKS_ENABLED;
6911 }
6912 }
6913 }
6914 // compute volume for this track
6915 if (track->isReady()) { // check ready to prevent premature start.
6916 processVolume_l(track, last);
6917 }
6918 }
6919
6920 // make sure the pause/flush/resume sequence is executed in the right order.
6921 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
6922 // before flush and then resume HW. This can happen in case of pause/flush/resume
6923 // if resume is received before pause is executed.
6924 if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
6925 status_t result = mOutput->stream->pause();
6926 ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
6927 }
6928 if (mFlushPending) {
6929 flushHw_l();
6930 }
6931 if (!mStandby && doHwResume) {
6932 status_t result = mOutput->stream->resume();
6933 ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
6934 }
6935
6936 // remove all the tracks that need to be...
6937 removeTracks_l(*tracksToRemove);
6938
6939 return mixerStatus;
6940 }
6941
6942 // must be called with thread mutex locked
waitingAsyncCallback_l()6943 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
6944 {
6945 ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
6946 mWriteAckSequence, mDrainSequence);
6947 if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
6948 return true;
6949 }
6950 return false;
6951 }
6952
waitingAsyncCallback()6953 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
6954 {
6955 Mutex::Autolock _l(mLock);
6956 return waitingAsyncCallback_l();
6957 }
6958
flushHw_l()6959 void AudioFlinger::OffloadThread::flushHw_l()
6960 {
6961 DirectOutputThread::flushHw_l();
6962 // Flush anything still waiting in the mixbuffer
6963 mCurrentWriteLength = 0;
6964 mBytesRemaining = 0;
6965 mPausedWriteLength = 0;
6966 mPausedBytesRemaining = 0;
6967 // reset bytes written count to reflect that DSP buffers are empty after flush.
6968 mBytesWritten = 0;
6969 mOffloadUnderrunPosition = ~0LL;
6970
6971 if (mUseAsyncWrite) {
6972 // discard any pending drain or write ack by incrementing sequence
6973 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
6974 mDrainSequence = (mDrainSequence + 2) & ~1;
6975 ALOG_ASSERT(mCallbackThread != 0);
6976 mCallbackThread->setWriteBlocked(mWriteAckSequence);
6977 mCallbackThread->setDraining(mDrainSequence);
6978 }
6979 }
6980
invalidateTracks(audio_stream_type_t streamType)6981 void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
6982 {
6983 Mutex::Autolock _l(mLock);
6984 if (PlaybackThread::invalidateTracks_l(streamType)) {
6985 mFlushPending = true;
6986 }
6987 }
6988
6989 // ----------------------------------------------------------------------------
6990
DuplicatingThread(const sp<AudioFlinger> & audioFlinger,AudioFlinger::MixerThread * mainThread,audio_io_handle_t id,bool systemReady)6991 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
6992 AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
6993 : MixerThread(audioFlinger, mainThread->getOutput(), id,
6994 systemReady, DUPLICATING),
6995 mWaitTimeMs(UINT_MAX)
6996 {
6997 addOutputTrack(mainThread);
6998 }
6999
~DuplicatingThread()7000 AudioFlinger::DuplicatingThread::~DuplicatingThread()
7001 {
7002 for (size_t i = 0; i < mOutputTracks.size(); i++) {
7003 mOutputTracks[i]->destroy();
7004 }
7005 }
7006
threadLoop_mix()7007 void AudioFlinger::DuplicatingThread::threadLoop_mix()
7008 {
7009 // mix buffers...
7010 if (outputsReady(outputTracks)) {
7011 mAudioMixer->process();
7012 } else {
7013 if (mMixerBufferValid) {
7014 memset(mMixerBuffer, 0, mMixerBufferSize);
7015 } else {
7016 memset(mSinkBuffer, 0, mSinkBufferSize);
7017 }
7018 }
7019 mSleepTimeUs = 0;
7020 writeFrames = mNormalFrameCount;
7021 mCurrentWriteLength = mSinkBufferSize;
7022 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
7023 }
7024
threadLoop_sleepTime()7025 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
7026 {
7027 if (mSleepTimeUs == 0) {
7028 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
7029 mSleepTimeUs = mActiveSleepTimeUs;
7030 } else {
7031 mSleepTimeUs = mIdleSleepTimeUs;
7032 }
7033 } else if (mBytesWritten != 0) {
7034 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
7035 writeFrames = mNormalFrameCount;
7036 memset(mSinkBuffer, 0, mSinkBufferSize);
7037 } else {
7038 // flush remaining overflow buffers in output tracks
7039 writeFrames = 0;
7040 }
7041 mSleepTimeUs = 0;
7042 }
7043 }
7044
threadLoop_write()7045 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
7046 {
7047 for (size_t i = 0; i < outputTracks.size(); i++) {
7048 const ssize_t actualWritten = outputTracks[i]->write(mSinkBuffer, writeFrames);
7049
7050 // Consider the first OutputTrack for timestamp and frame counting.
7051
7052 // The threadLoop() generally assumes writing a full sink buffer size at a time.
7053 // Here, we correct for writeFrames of 0 (a stop) or underruns because
7054 // we always claim success.
7055 if (i == 0) {
7056 const ssize_t correction = mSinkBufferSize / mFrameSize - actualWritten;
7057 ALOGD_IF(correction != 0 && writeFrames != 0,
7058 "%s: writeFrames:%u actualWritten:%zd correction:%zd mFramesWritten:%lld",
7059 __func__, writeFrames, actualWritten, correction, (long long)mFramesWritten);
7060 mFramesWritten -= correction;
7061 }
7062
7063 // TODO: Report correction for the other output tracks and show in the dump.
7064 }
7065 if (mStandby) {
7066 mThreadMetrics.logBeginInterval();
7067 mStandby = false;
7068 }
7069 return (ssize_t)mSinkBufferSize;
7070 }
7071
threadLoop_standby()7072 void AudioFlinger::DuplicatingThread::threadLoop_standby()
7073 {
7074 // DuplicatingThread implements standby by stopping all tracks
7075 for (size_t i = 0; i < outputTracks.size(); i++) {
7076 outputTracks[i]->stop();
7077 }
7078 }
7079
dumpInternals_l(int fd,const Vector<String16> & args __unused)7080 void AudioFlinger::DuplicatingThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
7081 {
7082 MixerThread::dumpInternals_l(fd, args);
7083
7084 std::stringstream ss;
7085 const size_t numTracks = mOutputTracks.size();
7086 ss << " " << numTracks << " OutputTracks";
7087 if (numTracks > 0) {
7088 ss << ":";
7089 for (const auto &track : mOutputTracks) {
7090 const sp<ThreadBase> thread = track->thread().promote();
7091 ss << " (" << track->id() << " : ";
7092 if (thread.get() != nullptr) {
7093 ss << thread.get() << ", " << thread->id();
7094 } else {
7095 ss << "null";
7096 }
7097 ss << ")";
7098 }
7099 }
7100 ss << "\n";
7101 std::string result = ss.str();
7102 write(fd, result.c_str(), result.size());
7103 }
7104
saveOutputTracks()7105 void AudioFlinger::DuplicatingThread::saveOutputTracks()
7106 {
7107 outputTracks = mOutputTracks;
7108 }
7109
clearOutputTracks()7110 void AudioFlinger::DuplicatingThread::clearOutputTracks()
7111 {
7112 outputTracks.clear();
7113 }
7114
addOutputTrack(MixerThread * thread)7115 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
7116 {
7117 Mutex::Autolock _l(mLock);
7118 // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
7119 // Adjust for thread->sampleRate() to determine minimum buffer frame count.
7120 // Then triple buffer because Threads do not run synchronously and may not be clock locked.
7121 const size_t frameCount =
7122 3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
7123 // TODO: Consider asynchronous sample rate conversion to handle clock disparity
7124 // from different OutputTracks and their associated MixerThreads (e.g. one may
7125 // nearly empty and the other may be dropping data).
7126
7127 // TODO b/182392769: use attribution source util, move to server edge
7128 AttributionSourceState attributionSource = AttributionSourceState();
7129 attributionSource.uid = VALUE_OR_FATAL(legacy2aidl_uid_t_int32_t(
7130 IPCThreadState::self()->getCallingUid()));
7131 attributionSource.pid = VALUE_OR_FATAL(legacy2aidl_pid_t_int32_t(
7132 IPCThreadState::self()->getCallingPid()));
7133 attributionSource.token = sp<BBinder>::make();
7134 sp<OutputTrack> outputTrack = new OutputTrack(thread,
7135 this,
7136 mSampleRate,
7137 mFormat,
7138 mChannelMask,
7139 frameCount,
7140 attributionSource);
7141 status_t status = outputTrack != 0 ? outputTrack->initCheck() : (status_t) NO_MEMORY;
7142 if (status != NO_ERROR) {
7143 ALOGE("addOutputTrack() initCheck failed %d", status);
7144 return;
7145 }
7146 thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
7147 mOutputTracks.add(outputTrack);
7148 ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
7149 updateWaitTime_l();
7150 }
7151
removeOutputTrack(MixerThread * thread)7152 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
7153 {
7154 Mutex::Autolock _l(mLock);
7155 for (size_t i = 0; i < mOutputTracks.size(); i++) {
7156 if (mOutputTracks[i]->thread() == thread) {
7157 mOutputTracks[i]->destroy();
7158 mOutputTracks.removeAt(i);
7159 updateWaitTime_l();
7160 if (thread->getOutput() == mOutput) {
7161 mOutput = NULL;
7162 }
7163 return;
7164 }
7165 }
7166 ALOGV("removeOutputTrack(): unknown thread: %p", thread);
7167 }
7168
7169 // caller must hold mLock
updateWaitTime_l()7170 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
7171 {
7172 mWaitTimeMs = UINT_MAX;
7173 for (size_t i = 0; i < mOutputTracks.size(); i++) {
7174 sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
7175 if (strong != 0) {
7176 uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
7177 if (waitTimeMs < mWaitTimeMs) {
7178 mWaitTimeMs = waitTimeMs;
7179 }
7180 }
7181 }
7182 }
7183
7184
outputsReady(const SortedVector<sp<OutputTrack>> & outputTracks)7185 bool AudioFlinger::DuplicatingThread::outputsReady(
7186 const SortedVector< sp<OutputTrack> > &outputTracks)
7187 {
7188 for (size_t i = 0; i < outputTracks.size(); i++) {
7189 sp<ThreadBase> thread = outputTracks[i]->thread().promote();
7190 if (thread == 0) {
7191 ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
7192 outputTracks[i].get());
7193 return false;
7194 }
7195 PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
7196 // see note at standby() declaration
7197 if (playbackThread->standby() && !playbackThread->isSuspended()) {
7198 ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
7199 thread.get());
7200 return false;
7201 }
7202 }
7203 return true;
7204 }
7205
sendMetadataToBackend_l(const StreamOutHalInterface::SourceMetadata & metadata)7206 void AudioFlinger::DuplicatingThread::sendMetadataToBackend_l(
7207 const StreamOutHalInterface::SourceMetadata& metadata)
7208 {
7209 for (auto& outputTrack : outputTracks) { // not mOutputTracks
7210 outputTrack->setMetadatas(metadata.tracks);
7211 }
7212 }
7213
activeSleepTimeUs() const7214 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
7215 {
7216 return (mWaitTimeMs * 1000) / 2;
7217 }
7218
cacheParameters_l()7219 void AudioFlinger::DuplicatingThread::cacheParameters_l()
7220 {
7221 // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
7222 updateWaitTime_l();
7223
7224 MixerThread::cacheParameters_l();
7225 }
7226
7227 // ----------------------------------------------------------------------------
7228
SpatializerThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,bool systemReady,audio_config_base_t * mixerConfig)7229 AudioFlinger::SpatializerThread::SpatializerThread(const sp<AudioFlinger>& audioFlinger,
7230 AudioStreamOut* output,
7231 audio_io_handle_t id,
7232 bool systemReady,
7233 audio_config_base_t *mixerConfig)
7234 : MixerThread(audioFlinger, output, id, systemReady, SPATIALIZER, mixerConfig)
7235 {
7236 }
7237
checkOutputStageEffects()7238 void AudioFlinger::SpatializerThread::checkOutputStageEffects()
7239 {
7240 bool hasVirtualizer = false;
7241 bool hasDownMixer = false;
7242 sp<EffectHandle> finalDownMixer;
7243 {
7244 Mutex::Autolock _l(mLock);
7245 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_STAGE);
7246 if (chain != 0) {
7247 hasVirtualizer = chain->getEffectFromType_l(FX_IID_SPATIALIZER) != nullptr;
7248 hasDownMixer = chain->getEffectFromType_l(EFFECT_UIID_DOWNMIX) != nullptr;
7249 }
7250
7251 finalDownMixer = mFinalDownMixer;
7252 mFinalDownMixer.clear();
7253 }
7254
7255 if (hasVirtualizer) {
7256 if (finalDownMixer != nullptr) {
7257 int32_t ret;
7258 finalDownMixer->disable(&ret);
7259 }
7260 finalDownMixer.clear();
7261 } else if (!hasDownMixer) {
7262 std::vector<effect_descriptor_t> descriptors;
7263 status_t status = mAudioFlinger->mEffectsFactoryHal->getDescriptors(
7264 EFFECT_UIID_DOWNMIX, &descriptors);
7265 if (status != NO_ERROR) {
7266 return;
7267 }
7268 ALOG_ASSERT(!descriptors.empty(),
7269 "%s getDescriptors() returned no error but empty list", __func__);
7270
7271 finalDownMixer = createEffect_l(nullptr /*client*/, nullptr /*effectClient*/,
7272 0 /*priority*/, AUDIO_SESSION_OUTPUT_STAGE, &descriptors[0], nullptr /*enabled*/,
7273 &status, false /*pinned*/, false /*probe*/, false /*notifyFramesProcessed*/);
7274
7275 if (finalDownMixer == nullptr || (status != NO_ERROR && status != ALREADY_EXISTS)) {
7276 ALOGW("%s error creating downmixer %d", __func__, status);
7277 finalDownMixer.clear();
7278 } else {
7279 int32_t ret;
7280 finalDownMixer->enable(&ret);
7281 }
7282 }
7283
7284 {
7285 Mutex::Autolock _l(mLock);
7286 mFinalDownMixer = finalDownMixer;
7287 }
7288 }
7289
7290
7291 // ----------------------------------------------------------------------------
7292 // Record
7293 // ----------------------------------------------------------------------------
7294
RecordThread(const sp<AudioFlinger> & audioFlinger,AudioStreamIn * input,audio_io_handle_t id,bool systemReady)7295 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
7296 AudioStreamIn *input,
7297 audio_io_handle_t id,
7298 bool systemReady
7299 ) :
7300 ThreadBase(audioFlinger, id, RECORD, systemReady, false /* isOut */),
7301 mInput(input),
7302 mSource(mInput),
7303 mActiveTracks(&this->mLocalLog),
7304 mRsmpInBuffer(NULL),
7305 // mRsmpInFrames, mRsmpInFramesP2, and mRsmpInFramesOA are set by readInputParameters_l()
7306 mRsmpInRear(0)
7307 , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
7308 "RecordThreadRO", MemoryHeapBase::READ_ONLY))
7309 // mFastCapture below
7310 , mFastCaptureFutex(0)
7311 // mInputSource
7312 // mPipeSink
7313 // mPipeSource
7314 , mPipeFramesP2(0)
7315 // mPipeMemory
7316 // mFastCaptureNBLogWriter
7317 , mFastTrackAvail(false)
7318 , mBtNrecSuspended(false)
7319 {
7320 snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
7321 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
7322
7323 if (mInput->audioHwDev != nullptr) {
7324 mIsMsdDevice = strcmp(
7325 mInput->audioHwDev->moduleName(), AUDIO_HARDWARE_MODULE_ID_MSD) == 0;
7326 }
7327
7328 readInputParameters_l();
7329
7330 // TODO: We may also match on address as well as device type for
7331 // AUDIO_DEVICE_IN_BUS, AUDIO_DEVICE_IN_BLUETOOTH_A2DP, AUDIO_DEVICE_IN_REMOTE_SUBMIX
7332 // TODO: This property should be ensure that only contains one single device type.
7333 mTimestampCorrectedDevice = (audio_devices_t)property_get_int64(
7334 "audio.timestamp.corrected_input_device",
7335 (int64_t)(mIsMsdDevice ? AUDIO_DEVICE_IN_BUS // turn on by default for MSD
7336 : AUDIO_DEVICE_NONE));
7337
7338 // create an NBAIO source for the HAL input stream, and negotiate
7339 mInputSource = new AudioStreamInSource(input->stream);
7340 size_t numCounterOffers = 0;
7341 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
7342 #if !LOG_NDEBUG
7343 ssize_t index =
7344 #else
7345 (void)
7346 #endif
7347 mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
7348 ALOG_ASSERT(index == 0);
7349
7350 // initialize fast capture depending on configuration
7351 bool initFastCapture;
7352 switch (kUseFastCapture) {
7353 case FastCapture_Never:
7354 initFastCapture = false;
7355 ALOGV("%p kUseFastCapture = Never, initFastCapture = false", this);
7356 break;
7357 case FastCapture_Always:
7358 initFastCapture = true;
7359 ALOGV("%p kUseFastCapture = Always, initFastCapture = true", this);
7360 break;
7361 case FastCapture_Static:
7362 initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
7363 ALOGV("%p kUseFastCapture = Static, (%lld * 1000) / %u vs %u, initFastCapture = %d",
7364 this, (long long)mFrameCount, mSampleRate, kMinNormalCaptureBufferSizeMs,
7365 initFastCapture);
7366 break;
7367 // case FastCapture_Dynamic:
7368 }
7369
7370 if (initFastCapture) {
7371 // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
7372 NBAIO_Format format = mInputSource->format();
7373 // quadruple-buffering of 20 ms each; this ensures we can sleep for 20ms in RecordThread
7374 size_t pipeFramesP2 = roundup(4 * FMS_20 * mSampleRate / 1000);
7375 size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
7376 void *pipeBuffer = nullptr;
7377 const sp<MemoryDealer> roHeap(readOnlyHeap());
7378 sp<IMemory> pipeMemory;
7379 if ((roHeap == 0) ||
7380 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
7381 (pipeBuffer = pipeMemory->unsecurePointer()) == nullptr) {
7382 ALOGE("not enough memory for pipe buffer size=%zu; "
7383 "roHeap=%p, pipeMemory=%p, pipeBuffer=%p; roHeapSize: %lld",
7384 pipeSize, roHeap.get(), pipeMemory.get(), pipeBuffer,
7385 (long long)kRecordThreadReadOnlyHeapSize);
7386 goto failed;
7387 }
7388 // pipe will be shared directly with fast clients, so clear to avoid leaking old information
7389 memset(pipeBuffer, 0, pipeSize);
7390 Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
7391 const NBAIO_Format offers[1] = {format};
7392 size_t numCounterOffers = 0;
7393 ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
7394 ALOG_ASSERT(index == 0);
7395 mPipeSink = pipe;
7396 PipeReader *pipeReader = new PipeReader(*pipe);
7397 numCounterOffers = 0;
7398 index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
7399 ALOG_ASSERT(index == 0);
7400 mPipeSource = pipeReader;
7401 mPipeFramesP2 = pipeFramesP2;
7402 mPipeMemory = pipeMemory;
7403
7404 // create fast capture
7405 mFastCapture = new FastCapture();
7406 FastCaptureStateQueue *sq = mFastCapture->sq();
7407 #ifdef STATE_QUEUE_DUMP
7408 // FIXME
7409 #endif
7410 FastCaptureState *state = sq->begin();
7411 state->mCblk = NULL;
7412 state->mInputSource = mInputSource.get();
7413 state->mInputSourceGen++;
7414 state->mPipeSink = pipe;
7415 state->mPipeSinkGen++;
7416 state->mFrameCount = mFrameCount;
7417 state->mCommand = FastCaptureState::COLD_IDLE;
7418 // already done in constructor initialization list
7419 //mFastCaptureFutex = 0;
7420 state->mColdFutexAddr = &mFastCaptureFutex;
7421 state->mColdGen++;
7422 state->mDumpState = &mFastCaptureDumpState;
7423 #ifdef TEE_SINK
7424 // FIXME
7425 #endif
7426 mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
7427 state->mNBLogWriter = mFastCaptureNBLogWriter.get();
7428 sq->end();
7429 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
7430
7431 // start the fast capture
7432 mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
7433 pid_t tid = mFastCapture->getTid();
7434 sendPrioConfigEvent(getpid(), tid, kPriorityFastCapture, false /*forApp*/);
7435 stream()->setHalThreadPriority(kPriorityFastCapture);
7436 #ifdef AUDIO_WATCHDOG
7437 // FIXME
7438 #endif
7439
7440 mFastTrackAvail = true;
7441 }
7442 #ifdef TEE_SINK
7443 mTee.set(mInputSource->format(), NBAIO_Tee::TEE_FLAG_INPUT_THREAD);
7444 mTee.setId(std::string("_") + std::to_string(mId) + "_C");
7445 #endif
7446 failed: ;
7447
7448 // FIXME mNormalSource
7449 }
7450
~RecordThread()7451 AudioFlinger::RecordThread::~RecordThread()
7452 {
7453 if (mFastCapture != 0) {
7454 FastCaptureStateQueue *sq = mFastCapture->sq();
7455 FastCaptureState *state = sq->begin();
7456 if (state->mCommand == FastCaptureState::COLD_IDLE) {
7457 int32_t old = android_atomic_inc(&mFastCaptureFutex);
7458 if (old == -1) {
7459 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
7460 }
7461 }
7462 state->mCommand = FastCaptureState::EXIT;
7463 sq->end();
7464 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
7465 mFastCapture->join();
7466 mFastCapture.clear();
7467 }
7468 mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
7469 mAudioFlinger->unregisterWriter(mNBLogWriter);
7470 free(mRsmpInBuffer);
7471 }
7472
onFirstRef()7473 void AudioFlinger::RecordThread::onFirstRef()
7474 {
7475 run(mThreadName, PRIORITY_URGENT_AUDIO);
7476 }
7477
preExit()7478 void AudioFlinger::RecordThread::preExit()
7479 {
7480 ALOGV(" preExit()");
7481 Mutex::Autolock _l(mLock);
7482 for (size_t i = 0; i < mTracks.size(); i++) {
7483 sp<RecordTrack> track = mTracks[i];
7484 track->invalidate();
7485 }
7486 mActiveTracks.clear();
7487 mStartStopCond.broadcast();
7488 }
7489
threadLoop()7490 bool AudioFlinger::RecordThread::threadLoop()
7491 {
7492 nsecs_t lastWarning = 0;
7493
7494 inputStandBy();
7495
7496 reacquire_wakelock:
7497 sp<RecordTrack> activeTrack;
7498 {
7499 Mutex::Autolock _l(mLock);
7500 acquireWakeLock_l();
7501 }
7502
7503 // used to request a deferred sleep, to be executed later while mutex is unlocked
7504 uint32_t sleepUs = 0;
7505
7506 int64_t lastLoopCountRead = -2; // never matches "previous" loop, when loopCount = 0.
7507
7508 // loop while there is work to do
7509 for (int64_t loopCount = 0;; ++loopCount) { // loopCount used for statistics tracking
7510 Vector< sp<EffectChain> > effectChains;
7511
7512 // activeTracks accumulates a copy of a subset of mActiveTracks
7513 Vector< sp<RecordTrack> > activeTracks;
7514
7515 // reference to the (first and only) active fast track
7516 sp<RecordTrack> fastTrack;
7517
7518 // reference to a fast track which is about to be removed
7519 sp<RecordTrack> fastTrackToRemove;
7520
7521 bool silenceFastCapture = false;
7522
7523 { // scope for mLock
7524 Mutex::Autolock _l(mLock);
7525
7526 processConfigEvents_l();
7527
7528 // check exitPending here because checkForNewParameters_l() and
7529 // checkForNewParameters_l() can temporarily release mLock
7530 if (exitPending()) {
7531 break;
7532 }
7533
7534 // sleep with mutex unlocked
7535 if (sleepUs > 0) {
7536 ATRACE_BEGIN("sleepC");
7537 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)sleepUs));
7538 ATRACE_END();
7539 sleepUs = 0;
7540 continue;
7541 }
7542
7543 // if no active track(s), then standby and release wakelock
7544 size_t size = mActiveTracks.size();
7545 if (size == 0) {
7546 standbyIfNotAlreadyInStandby();
7547 // exitPending() can't become true here
7548 releaseWakeLock_l();
7549 ALOGV("RecordThread: loop stopping");
7550 // go to sleep
7551 mWaitWorkCV.wait(mLock);
7552 ALOGV("RecordThread: loop starting");
7553 goto reacquire_wakelock;
7554 }
7555
7556 bool doBroadcast = false;
7557 bool allStopped = true;
7558 for (size_t i = 0; i < size; ) {
7559
7560 activeTrack = mActiveTracks[i];
7561 if (activeTrack->isTerminated()) {
7562 if (activeTrack->isFastTrack()) {
7563 ALOG_ASSERT(fastTrackToRemove == 0);
7564 fastTrackToRemove = activeTrack;
7565 }
7566 removeTrack_l(activeTrack);
7567 mActiveTracks.remove(activeTrack);
7568 size--;
7569 continue;
7570 }
7571
7572 TrackBase::track_state activeTrackState = activeTrack->mState;
7573 switch (activeTrackState) {
7574
7575 case TrackBase::PAUSING:
7576 mActiveTracks.remove(activeTrack);
7577 activeTrack->mState = TrackBase::PAUSED;
7578 doBroadcast = true;
7579 size--;
7580 continue;
7581
7582 case TrackBase::STARTING_1:
7583 sleepUs = 10000;
7584 i++;
7585 allStopped = false;
7586 continue;
7587
7588 case TrackBase::STARTING_2:
7589 doBroadcast = true;
7590 if (mStandby) {
7591 mThreadMetrics.logBeginInterval();
7592 mStandby = false;
7593 }
7594 activeTrack->mState = TrackBase::ACTIVE;
7595 allStopped = false;
7596 break;
7597
7598 case TrackBase::ACTIVE:
7599 allStopped = false;
7600 break;
7601
7602 case TrackBase::IDLE: // cannot be on ActiveTracks if idle
7603 case TrackBase::PAUSED: // cannot be on ActiveTracks if paused
7604 case TrackBase::STOPPED: // cannot be on ActiveTracks if destroyed/terminated
7605 default:
7606 LOG_ALWAYS_FATAL("%s: Unexpected active track state:%d, id:%d, tracks:%zu",
7607 __func__, activeTrackState, activeTrack->id(), size);
7608 }
7609
7610 if (activeTrack->isFastTrack()) {
7611 ALOG_ASSERT(!mFastTrackAvail);
7612 ALOG_ASSERT(fastTrack == 0);
7613 // if the active fast track is silenced either:
7614 // 1) silence the whole capture from fast capture buffer if this is
7615 // the only active track
7616 // 2) invalidate this track: this will cause the client to reconnect and possibly
7617 // be invalidated again until unsilenced
7618 bool invalidate = false;
7619 if (activeTrack->isSilenced()) {
7620 if (size > 1) {
7621 invalidate = true;
7622 } else {
7623 silenceFastCapture = true;
7624 }
7625 }
7626 // Invalidate fast tracks if access to audio history is required as this is not
7627 // possible with fast tracks. Once the fast track has been invalidated, no new
7628 // fast track will be created until mMaxSharedAudioHistoryMs is cleared.
7629 if (mMaxSharedAudioHistoryMs != 0) {
7630 invalidate = true;
7631 }
7632 if (invalidate) {
7633 activeTrack->invalidate();
7634 ALOG_ASSERT(fastTrackToRemove == 0);
7635 fastTrackToRemove = activeTrack;
7636 removeTrack_l(activeTrack);
7637 mActiveTracks.remove(activeTrack);
7638 size--;
7639 continue;
7640 }
7641 fastTrack = activeTrack;
7642 }
7643
7644 activeTracks.add(activeTrack);
7645 i++;
7646
7647 }
7648
7649 mActiveTracks.updatePowerState(this);
7650
7651 updateMetadata_l();
7652
7653 if (allStopped) {
7654 standbyIfNotAlreadyInStandby();
7655 }
7656 if (doBroadcast) {
7657 mStartStopCond.broadcast();
7658 }
7659
7660 // sleep if there are no active tracks to process
7661 if (activeTracks.isEmpty()) {
7662 if (sleepUs == 0) {
7663 sleepUs = kRecordThreadSleepUs;
7664 }
7665 continue;
7666 }
7667 sleepUs = 0;
7668
7669 lockEffectChains_l(effectChains);
7670 }
7671
7672 // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
7673
7674 size_t size = effectChains.size();
7675 for (size_t i = 0; i < size; i++) {
7676 // thread mutex is not locked, but effect chain is locked
7677 effectChains[i]->process_l();
7678 }
7679
7680 // Push a new fast capture state if fast capture is not already running, or cblk change
7681 if (mFastCapture != 0) {
7682 FastCaptureStateQueue *sq = mFastCapture->sq();
7683 FastCaptureState *state = sq->begin();
7684 bool didModify = false;
7685 FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
7686 if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
7687 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
7688 if (state->mCommand == FastCaptureState::COLD_IDLE) {
7689 int32_t old = android_atomic_inc(&mFastCaptureFutex);
7690 if (old == -1) {
7691 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
7692 }
7693 }
7694 state->mCommand = FastCaptureState::READ_WRITE;
7695 #if 0 // FIXME
7696 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
7697 FastThreadDumpState::kSamplingNforLowRamDevice :
7698 FastThreadDumpState::kSamplingN);
7699 #endif
7700 didModify = true;
7701 }
7702 audio_track_cblk_t *cblkOld = state->mCblk;
7703 audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
7704 if (cblkNew != cblkOld) {
7705 state->mCblk = cblkNew;
7706 // block until acked if removing a fast track
7707 if (cblkOld != NULL) {
7708 block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
7709 }
7710 didModify = true;
7711 }
7712 AudioBufferProvider* abp = (fastTrack != 0 && fastTrack->isPatchTrack()) ?
7713 reinterpret_cast<AudioBufferProvider*>(fastTrack.get()) : nullptr;
7714 if (state->mFastPatchRecordBufferProvider != abp) {
7715 state->mFastPatchRecordBufferProvider = abp;
7716 state->mFastPatchRecordFormat = fastTrack == 0 ?
7717 AUDIO_FORMAT_INVALID : fastTrack->format();
7718 didModify = true;
7719 }
7720 if (state->mSilenceCapture != silenceFastCapture) {
7721 state->mSilenceCapture = silenceFastCapture;
7722 didModify = true;
7723 }
7724 sq->end(didModify);
7725 if (didModify) {
7726 sq->push(block);
7727 #if 0
7728 if (kUseFastCapture == FastCapture_Dynamic) {
7729 mNormalSource = mPipeSource;
7730 }
7731 #endif
7732 }
7733 }
7734
7735 // now run the fast track destructor with thread mutex unlocked
7736 fastTrackToRemove.clear();
7737
7738 // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
7739 // Only the client(s) that are too slow will overrun. But if even the fastest client is too
7740 // slow, then this RecordThread will overrun by not calling HAL read often enough.
7741 // If destination is non-contiguous, first read past the nominal end of buffer, then
7742 // copy to the right place. Permitted because mRsmpInBuffer was over-allocated.
7743
7744 int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
7745 ssize_t framesRead;
7746 const int64_t lastIoBeginNs = systemTime(); // start IO timing
7747
7748 // If an NBAIO source is present, use it to read the normal capture's data
7749 if (mPipeSource != 0) {
7750 size_t framesToRead = min(mRsmpInFramesOA - rear, mRsmpInFramesP2 / 2);
7751
7752 // The audio fifo read() returns OVERRUN on overflow, and advances the read pointer
7753 // to the full buffer point (clearing the overflow condition). Upon OVERRUN error,
7754 // we immediately retry the read() to get data and prevent another overflow.
7755 for (int retries = 0; retries <= 2; ++retries) {
7756 ALOGW_IF(retries > 0, "overrun on read from pipe, retry #%d", retries);
7757 framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
7758 framesToRead);
7759 if (framesRead != OVERRUN) break;
7760 }
7761
7762 const ssize_t availableToRead = mPipeSource->availableToRead();
7763 if (availableToRead >= 0) {
7764 // PipeSource is the primary clock. It is up to the AudioRecord client to keep up.
7765 LOG_ALWAYS_FATAL_IF((size_t)availableToRead > mPipeFramesP2,
7766 "more frames to read than fifo size, %zd > %zu",
7767 availableToRead, mPipeFramesP2);
7768 const size_t pipeFramesFree = mPipeFramesP2 - availableToRead;
7769 const size_t sleepFrames = min(pipeFramesFree, mRsmpInFramesP2) / 2;
7770 ALOGVV("mPipeFramesP2:%zu mRsmpInFramesP2:%zu sleepFrames:%zu availableToRead:%zd",
7771 mPipeFramesP2, mRsmpInFramesP2, sleepFrames, availableToRead);
7772 sleepUs = (sleepFrames * 1000000LL) / mSampleRate;
7773 }
7774 if (framesRead < 0) {
7775 status_t status = (status_t) framesRead;
7776 switch (status) {
7777 case OVERRUN:
7778 ALOGW("overrun on read from pipe");
7779 framesRead = 0;
7780 break;
7781 case NEGOTIATE:
7782 ALOGE("re-negotiation is needed");
7783 framesRead = -1; // Will cause an attempt to recover.
7784 break;
7785 default:
7786 ALOGE("unknown error %d on read from pipe", status);
7787 break;
7788 }
7789 }
7790 // otherwise use the HAL / AudioStreamIn directly
7791 } else {
7792 ATRACE_BEGIN("read");
7793 size_t bytesRead;
7794 status_t result = mSource->read(
7795 (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize, &bytesRead);
7796 ATRACE_END();
7797 if (result < 0) {
7798 framesRead = result;
7799 } else {
7800 framesRead = bytesRead / mFrameSize;
7801 }
7802 }
7803
7804 const int64_t lastIoEndNs = systemTime(); // end IO timing
7805
7806 // Update server timestamp with server stats
7807 // systemTime() is optional if the hardware supports timestamps.
7808 if (framesRead >= 0) {
7809 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
7810 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = lastIoEndNs;
7811 }
7812
7813 // Update server timestamp with kernel stats
7814 if (mPipeSource.get() == nullptr /* don't obtain for FastCapture, could block */) {
7815 int64_t position, time;
7816 if (mStandby) {
7817 mTimestampVerifier.discontinuity(audio_is_linear_pcm(mFormat) ?
7818 mTimestampVerifier.DISCONTINUITY_MODE_CONTINUOUS :
7819 mTimestampVerifier.DISCONTINUITY_MODE_ZERO);
7820 } else if (mSource->getCapturePosition(&position, &time) == NO_ERROR
7821 && time > mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]) {
7822
7823 mTimestampVerifier.add(position, time, mSampleRate);
7824
7825 // Correct timestamps
7826 if (isTimestampCorrectionEnabled()) {
7827 ALOGVV("TS_BEFORE: %d %lld %lld",
7828 id(), (long long)time, (long long)position);
7829 auto correctedTimestamp = mTimestampVerifier.getLastCorrectedTimestamp();
7830 position = correctedTimestamp.mFrames;
7831 time = correctedTimestamp.mTimeNs;
7832 ALOGVV("TS_AFTER: %d %lld %lld",
7833 id(), (long long)time, (long long)position);
7834 }
7835
7836 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
7837 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
7838 // Note: In general record buffers should tend to be empty in
7839 // a properly running pipeline.
7840 //
7841 // Also, it is not advantageous to call get_presentation_position during the read
7842 // as the read obtains a lock, preventing the timestamp call from executing.
7843 } else {
7844 mTimestampVerifier.error();
7845 }
7846 }
7847
7848 // From the timestamp, input read latency is negative output write latency.
7849 const audio_input_flags_t flags = mInput != NULL ? mInput->flags : AUDIO_INPUT_FLAG_NONE;
7850 const double latencyMs = RecordTrack::checkServerLatencySupported(mFormat, flags)
7851 ? - mTimestamp.getOutputServerLatencyMs(mSampleRate) : 0.;
7852 if (latencyMs != 0.) { // note 0. means timestamp is empty.
7853 mLatencyMs.add(latencyMs);
7854 }
7855
7856 // Use this to track timestamp information
7857 // ALOGD("%s", mTimestamp.toString().c_str());
7858
7859 if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
7860 ALOGE("read failed: framesRead=%zd", framesRead);
7861 // Force input into standby so that it tries to recover at next read attempt
7862 inputStandBy();
7863 sleepUs = kRecordThreadSleepUs;
7864 }
7865 if (framesRead <= 0) {
7866 goto unlock;
7867 }
7868 ALOG_ASSERT(framesRead > 0);
7869 mFramesRead += framesRead;
7870
7871 #ifdef TEE_SINK
7872 (void)mTee.write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
7873 #endif
7874 // If destination is non-contiguous, we now correct for reading past end of buffer.
7875 {
7876 size_t part1 = mRsmpInFramesP2 - rear;
7877 if ((size_t) framesRead > part1) {
7878 memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
7879 (framesRead - part1) * mFrameSize);
7880 }
7881 }
7882 mRsmpInRear = audio_utils::safe_add_overflow(mRsmpInRear, (int32_t)framesRead);
7883
7884 size = activeTracks.size();
7885
7886 // loop over each active track
7887 for (size_t i = 0; i < size; i++) {
7888 activeTrack = activeTracks[i];
7889
7890 // skip fast tracks, as those are handled directly by FastCapture
7891 if (activeTrack->isFastTrack()) {
7892 continue;
7893 }
7894
7895 // TODO: This code probably should be moved to RecordTrack.
7896 // TODO: Update the activeTrack buffer converter in case of reconfigure.
7897
7898 enum {
7899 OVERRUN_UNKNOWN,
7900 OVERRUN_TRUE,
7901 OVERRUN_FALSE
7902 } overrun = OVERRUN_UNKNOWN;
7903
7904 // loop over getNextBuffer to handle circular sink
7905 for (;;) {
7906
7907 activeTrack->mSink.frameCount = ~0;
7908 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
7909 size_t framesOut = activeTrack->mSink.frameCount;
7910 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
7911
7912 // check available frames and handle overrun conditions
7913 // if the record track isn't draining fast enough.
7914 bool hasOverrun;
7915 size_t framesIn;
7916 activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
7917 if (hasOverrun) {
7918 overrun = OVERRUN_TRUE;
7919 }
7920 if (framesOut == 0 || framesIn == 0) {
7921 break;
7922 }
7923
7924 // Don't allow framesOut to be larger than what is possible with resampling
7925 // from framesIn.
7926 // This isn't strictly necessary but helps limit buffer resizing in
7927 // RecordBufferConverter. TODO: remove when no longer needed.
7928 framesOut = min(framesOut,
7929 destinationFramesPossible(
7930 framesIn, mSampleRate, activeTrack->mSampleRate));
7931
7932 if (activeTrack->isDirect()) {
7933 // No RecordBufferConverter used for direct streams. Pass
7934 // straight from RecordThread buffer to RecordTrack buffer.
7935 AudioBufferProvider::Buffer buffer;
7936 buffer.frameCount = framesOut;
7937 status_t status = activeTrack->mResamplerBufferProvider->getNextBuffer(&buffer);
7938 if (status == OK && buffer.frameCount != 0) {
7939 ALOGV_IF(buffer.frameCount != framesOut,
7940 "%s() read less than expected (%zu vs %zu)",
7941 __func__, buffer.frameCount, framesOut);
7942 framesOut = buffer.frameCount;
7943 memcpy(activeTrack->mSink.raw, buffer.raw, buffer.frameCount * mFrameSize);
7944 activeTrack->mResamplerBufferProvider->releaseBuffer(&buffer);
7945 } else {
7946 framesOut = 0;
7947 ALOGE("%s() cannot fill request, status: %d, frameCount: %zu",
7948 __func__, status, buffer.frameCount);
7949 }
7950 } else {
7951 // process frames from the RecordThread buffer provider to the RecordTrack
7952 // buffer
7953 framesOut = activeTrack->mRecordBufferConverter->convert(
7954 activeTrack->mSink.raw,
7955 activeTrack->mResamplerBufferProvider,
7956 framesOut);
7957 }
7958
7959 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
7960 overrun = OVERRUN_FALSE;
7961 }
7962
7963 if (activeTrack->mFramesToDrop == 0) {
7964 if (framesOut > 0) {
7965 activeTrack->mSink.frameCount = framesOut;
7966 // Sanitize before releasing if the track has no access to the source data
7967 // An idle UID receives silence from non virtual devices until active
7968 if (activeTrack->isSilenced()) {
7969 memset(activeTrack->mSink.raw, 0, framesOut * activeTrack->frameSize());
7970 }
7971 activeTrack->releaseBuffer(&activeTrack->mSink);
7972 }
7973 } else {
7974 // FIXME could do a partial drop of framesOut
7975 if (activeTrack->mFramesToDrop > 0) {
7976 activeTrack->mFramesToDrop -= (ssize_t)framesOut;
7977 if (activeTrack->mFramesToDrop <= 0) {
7978 activeTrack->clearSyncStartEvent();
7979 }
7980 } else {
7981 activeTrack->mFramesToDrop += framesOut;
7982 if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
7983 activeTrack->mSyncStartEvent->isCancelled()) {
7984 ALOGW("Synced record %s, session %d, trigger session %d",
7985 (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
7986 activeTrack->sessionId(),
7987 (activeTrack->mSyncStartEvent != 0) ?
7988 activeTrack->mSyncStartEvent->triggerSession() :
7989 AUDIO_SESSION_NONE);
7990 activeTrack->clearSyncStartEvent();
7991 }
7992 }
7993 }
7994
7995 if (framesOut == 0) {
7996 break;
7997 }
7998 }
7999
8000 switch (overrun) {
8001 case OVERRUN_TRUE:
8002 // client isn't retrieving buffers fast enough
8003 if (!activeTrack->setOverflow()) {
8004 nsecs_t now = systemTime();
8005 // FIXME should lastWarning per track?
8006 if ((now - lastWarning) > kWarningThrottleNs) {
8007 ALOGW("RecordThread: buffer overflow");
8008 lastWarning = now;
8009 }
8010 }
8011 break;
8012 case OVERRUN_FALSE:
8013 activeTrack->clearOverflow();
8014 break;
8015 case OVERRUN_UNKNOWN:
8016 break;
8017 }
8018
8019 // update frame information and push timestamp out
8020 activeTrack->updateTrackFrameInfo(
8021 activeTrack->mServerProxy->framesReleased(),
8022 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
8023 mSampleRate, mTimestamp);
8024 }
8025
8026 unlock:
8027 // enable changes in effect chain
8028 unlockEffectChains(effectChains);
8029 // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
8030 if (audio_has_proportional_frames(mFormat)
8031 && loopCount == lastLoopCountRead + 1) {
8032 const int64_t readPeriodNs = lastIoEndNs - mLastIoEndNs;
8033 const double jitterMs =
8034 TimestampVerifier<int64_t, int64_t>::computeJitterMs(
8035 {framesRead, readPeriodNs},
8036 {0, 0} /* lastTimestamp */, mSampleRate);
8037 const double processMs = (lastIoBeginNs - mLastIoEndNs) * 1e-6;
8038
8039 Mutex::Autolock _l(mLock);
8040 mIoJitterMs.add(jitterMs);
8041 mProcessTimeMs.add(processMs);
8042 }
8043 // update timing info.
8044 mLastIoBeginNs = lastIoBeginNs;
8045 mLastIoEndNs = lastIoEndNs;
8046 lastLoopCountRead = loopCount;
8047 }
8048
8049 standbyIfNotAlreadyInStandby();
8050
8051 {
8052 Mutex::Autolock _l(mLock);
8053 for (size_t i = 0; i < mTracks.size(); i++) {
8054 sp<RecordTrack> track = mTracks[i];
8055 track->invalidate();
8056 }
8057 mActiveTracks.clear();
8058 mStartStopCond.broadcast();
8059 }
8060
8061 releaseWakeLock();
8062
8063 ALOGV("RecordThread %p exiting", this);
8064 return false;
8065 }
8066
standbyIfNotAlreadyInStandby()8067 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
8068 {
8069 if (!mStandby) {
8070 inputStandBy();
8071 mThreadMetrics.logEndInterval();
8072 mStandby = true;
8073 }
8074 }
8075
inputStandBy()8076 void AudioFlinger::RecordThread::inputStandBy()
8077 {
8078 // Idle the fast capture if it's currently running
8079 if (mFastCapture != 0) {
8080 FastCaptureStateQueue *sq = mFastCapture->sq();
8081 FastCaptureState *state = sq->begin();
8082 if (!(state->mCommand & FastCaptureState::IDLE)) {
8083 state->mCommand = FastCaptureState::COLD_IDLE;
8084 state->mColdFutexAddr = &mFastCaptureFutex;
8085 state->mColdGen++;
8086 mFastCaptureFutex = 0;
8087 sq->end();
8088 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
8089 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
8090 #if 0
8091 if (kUseFastCapture == FastCapture_Dynamic) {
8092 // FIXME
8093 }
8094 #endif
8095 #ifdef AUDIO_WATCHDOG
8096 // FIXME
8097 #endif
8098 } else {
8099 sq->end(false /*didModify*/);
8100 }
8101 }
8102 status_t result = mSource->standby();
8103 ALOGE_IF(result != OK, "Error when putting input stream into standby: %d", result);
8104
8105 // If going into standby, flush the pipe source.
8106 if (mPipeSource.get() != nullptr) {
8107 const ssize_t flushed = mPipeSource->flush();
8108 if (flushed > 0) {
8109 ALOGV("Input standby flushed PipeSource %zd frames", flushed);
8110 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += flushed;
8111 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
8112 }
8113 }
8114 }
8115
8116 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
createRecordTrack_l(const sp<AudioFlinger::Client> & client,const audio_attributes_t & attr,uint32_t * pSampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,audio_session_t sessionId,size_t * pNotificationFrameCount,pid_t creatorPid,const AttributionSourceState & attributionSource,audio_input_flags_t * flags,pid_t tid,status_t * status,audio_port_handle_t portId,int32_t maxSharedAudioHistoryMs)8117 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
8118 const sp<AudioFlinger::Client>& client,
8119 const audio_attributes_t& attr,
8120 uint32_t *pSampleRate,
8121 audio_format_t format,
8122 audio_channel_mask_t channelMask,
8123 size_t *pFrameCount,
8124 audio_session_t sessionId,
8125 size_t *pNotificationFrameCount,
8126 pid_t creatorPid,
8127 const AttributionSourceState& attributionSource,
8128 audio_input_flags_t *flags,
8129 pid_t tid,
8130 status_t *status,
8131 audio_port_handle_t portId,
8132 int32_t maxSharedAudioHistoryMs)
8133 {
8134 size_t frameCount = *pFrameCount;
8135 size_t notificationFrameCount = *pNotificationFrameCount;
8136 sp<RecordTrack> track;
8137 status_t lStatus;
8138 audio_input_flags_t inputFlags = mInput->flags;
8139 audio_input_flags_t requestedFlags = *flags;
8140 uint32_t sampleRate;
8141 AttributionSourceState checkedAttributionSource = AudioFlinger::checkAttributionSourcePackage(
8142 attributionSource);
8143
8144 lStatus = initCheck();
8145 if (lStatus != NO_ERROR) {
8146 ALOGE("createRecordTrack_l() audio driver not initialized");
8147 goto Exit;
8148 }
8149
8150 if (!audio_is_linear_pcm(mFormat) && (*flags & AUDIO_INPUT_FLAG_DIRECT) == 0) {
8151 ALOGE("createRecordTrack_l() on an encoded stream requires AUDIO_INPUT_FLAG_DIRECT");
8152 lStatus = BAD_VALUE;
8153 goto Exit;
8154 }
8155
8156 if (maxSharedAudioHistoryMs != 0) {
8157 if (!captureHotwordAllowed(checkedAttributionSource)) {
8158 lStatus = PERMISSION_DENIED;
8159 goto Exit;
8160 }
8161 if (maxSharedAudioHistoryMs < 0
8162 || maxSharedAudioHistoryMs > AudioFlinger::kMaxSharedAudioHistoryMs) {
8163 lStatus = BAD_VALUE;
8164 goto Exit;
8165 }
8166 }
8167 if (*pSampleRate == 0) {
8168 *pSampleRate = mSampleRate;
8169 }
8170 sampleRate = *pSampleRate;
8171
8172 // special case for FAST flag considered OK if fast capture is present and access to
8173 // audio history is not required
8174 if (hasFastCapture() && mMaxSharedAudioHistoryMs == 0) {
8175 inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
8176 }
8177
8178 // Check if requested flags are compatible with input stream flags
8179 if ((*flags & inputFlags) != *flags) {
8180 ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
8181 " input flags (%08x)",
8182 *flags, inputFlags);
8183 *flags = (audio_input_flags_t)(*flags & inputFlags);
8184 }
8185
8186 // client expresses a preference for FAST and no access to audio history,
8187 // but we get the final say
8188 if (*flags & AUDIO_INPUT_FLAG_FAST && maxSharedAudioHistoryMs == 0) {
8189 if (
8190 // we formerly checked for a callback handler (non-0 tid),
8191 // but that is no longer required for TRANSFER_OBTAIN mode
8192 //
8193 // Frame count is not specified (0), or is less than or equal the pipe depth.
8194 // It is OK to provide a higher capacity than requested.
8195 // We will force it to mPipeFramesP2 below.
8196 (frameCount <= mPipeFramesP2) &&
8197 // PCM data
8198 audio_is_linear_pcm(format) &&
8199 // hardware format
8200 (format == mFormat) &&
8201 // hardware channel mask
8202 (channelMask == mChannelMask) &&
8203 // hardware sample rate
8204 (sampleRate == mSampleRate) &&
8205 // record thread has an associated fast capture
8206 hasFastCapture() &&
8207 // there are sufficient fast track slots available
8208 mFastTrackAvail
8209 ) {
8210 // check compatibility with audio effects.
8211 Mutex::Autolock _l(mLock);
8212 // Do not accept FAST flag if the session has software effects
8213 sp<EffectChain> chain = getEffectChain_l(sessionId);
8214 if (chain != 0) {
8215 audio_input_flags_t old = *flags;
8216 chain->checkInputFlagCompatibility(flags);
8217 if (old != *flags) {
8218 ALOGV("%p AUDIO_INPUT_FLAGS denied by effect old=%#x new=%#x",
8219 this, (int)old, (int)*flags);
8220 }
8221 }
8222 ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
8223 "%p AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
8224 this, frameCount, mFrameCount);
8225 } else {
8226 ALOGV("%p AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
8227 "format=%#x isLinear=%d mFormat=%#x channelMask=%#x sampleRate=%u mSampleRate=%u "
8228 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
8229 this, frameCount, mFrameCount, mPipeFramesP2,
8230 format, audio_is_linear_pcm(format), mFormat, channelMask, sampleRate, mSampleRate,
8231 hasFastCapture(), tid, mFastTrackAvail);
8232 *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
8233 }
8234 }
8235
8236 // If FAST or RAW flags were corrected, ask caller to request new input from audio policy
8237 if ((*flags & AUDIO_INPUT_FLAG_FAST) !=
8238 (requestedFlags & AUDIO_INPUT_FLAG_FAST)) {
8239 *flags = (audio_input_flags_t) (*flags & ~(AUDIO_INPUT_FLAG_FAST | AUDIO_INPUT_FLAG_RAW));
8240 lStatus = BAD_TYPE;
8241 goto Exit;
8242 }
8243
8244 // compute track buffer size in frames, and suggest the notification frame count
8245 if (*flags & AUDIO_INPUT_FLAG_FAST) {
8246 // fast track: frame count is exactly the pipe depth
8247 frameCount = mPipeFramesP2;
8248 // ignore requested notificationFrames, and always notify exactly once every HAL buffer
8249 notificationFrameCount = mFrameCount;
8250 } else {
8251 // not fast track: max notification period is resampled equivalent of one HAL buffer time
8252 // or 20 ms if there is a fast capture
8253 // TODO This could be a roundupRatio inline, and const
8254 size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
8255 * sampleRate + mSampleRate - 1) / mSampleRate;
8256 // minimum number of notification periods is at least kMinNotifications,
8257 // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
8258 static const size_t kMinNotifications = 3;
8259 static const uint32_t kMinMs = 30;
8260 // TODO This could be a roundupRatio inline
8261 const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
8262 // TODO This could be a roundupRatio inline
8263 const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
8264 maxNotificationFrames;
8265 const size_t minFrameCount = maxNotificationFrames *
8266 max(kMinNotifications, minNotificationsByMs);
8267 frameCount = max(frameCount, minFrameCount);
8268 if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) {
8269 notificationFrameCount = maxNotificationFrames;
8270 }
8271 }
8272 *pFrameCount = frameCount;
8273 *pNotificationFrameCount = notificationFrameCount;
8274
8275 { // scope for mLock
8276 Mutex::Autolock _l(mLock);
8277 int32_t startFrames = -1;
8278 if (!mSharedAudioPackageName.empty()
8279 && mSharedAudioPackageName == checkedAttributionSource.packageName
8280 && mSharedAudioSessionId == sessionId
8281 && captureHotwordAllowed(checkedAttributionSource)) {
8282 startFrames = mSharedAudioStartFrames;
8283 }
8284
8285 track = new RecordTrack(this, client, attr, sampleRate,
8286 format, channelMask, frameCount,
8287 nullptr /* buffer */, (size_t)0 /* bufferSize */, sessionId, creatorPid,
8288 checkedAttributionSource, *flags, TrackBase::TYPE_DEFAULT, portId,
8289 startFrames);
8290
8291 lStatus = track->initCheck();
8292 if (lStatus != NO_ERROR) {
8293 ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
8294 // track must be cleared from the caller as the caller has the AF lock
8295 goto Exit;
8296 }
8297 mTracks.add(track);
8298
8299 if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
8300 pid_t callingPid = IPCThreadState::self()->getCallingPid();
8301 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
8302 // so ask activity manager to do this on our behalf
8303 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
8304 }
8305
8306 if (maxSharedAudioHistoryMs != 0) {
8307 sendResizeBufferConfigEvent_l(maxSharedAudioHistoryMs);
8308 }
8309 }
8310
8311 lStatus = NO_ERROR;
8312
8313 Exit:
8314 *status = lStatus;
8315 return track;
8316 }
8317
start(RecordThread::RecordTrack * recordTrack,AudioSystem::sync_event_t event,audio_session_t triggerSession)8318 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
8319 AudioSystem::sync_event_t event,
8320 audio_session_t triggerSession)
8321 {
8322 ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
8323 sp<ThreadBase> strongMe = this;
8324 status_t status = NO_ERROR;
8325
8326 if (event == AudioSystem::SYNC_EVENT_NONE) {
8327 recordTrack->clearSyncStartEvent();
8328 } else if (event != AudioSystem::SYNC_EVENT_SAME) {
8329 recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
8330 triggerSession,
8331 recordTrack->sessionId(),
8332 syncStartEventCallback,
8333 recordTrack);
8334 // Sync event can be cancelled by the trigger session if the track is not in a
8335 // compatible state in which case we start record immediately
8336 if (recordTrack->mSyncStartEvent->isCancelled()) {
8337 recordTrack->clearSyncStartEvent();
8338 } else {
8339 // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
8340 recordTrack->mFramesToDrop = -(ssize_t)
8341 ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
8342 }
8343 }
8344
8345 {
8346 // This section is a rendezvous between binder thread executing start() and RecordThread
8347 AutoMutex lock(mLock);
8348 if (recordTrack->isInvalid()) {
8349 recordTrack->clearSyncStartEvent();
8350 ALOGW("%s track %d: invalidated before startInput", __func__, recordTrack->portId());
8351 return DEAD_OBJECT;
8352 }
8353 if (mActiveTracks.indexOf(recordTrack) >= 0) {
8354 if (recordTrack->mState == TrackBase::PAUSING) {
8355 // We haven't stopped yet (moved to PAUSED and not in mActiveTracks)
8356 // so no need to startInput().
8357 ALOGV("active record track PAUSING -> ACTIVE");
8358 recordTrack->mState = TrackBase::ACTIVE;
8359 } else {
8360 ALOGV("active record track state %d", (int)recordTrack->mState);
8361 }
8362 return status;
8363 }
8364
8365 // TODO consider other ways of handling this, such as changing the state to :STARTING and
8366 // adding the track to mActiveTracks after returning from AudioSystem::startInput(),
8367 // or using a separate command thread
8368 recordTrack->mState = TrackBase::STARTING_1;
8369 mActiveTracks.add(recordTrack);
8370 status_t status = NO_ERROR;
8371 if (recordTrack->isExternalTrack()) {
8372 mLock.unlock();
8373 status = AudioSystem::startInput(recordTrack->portId());
8374 mLock.lock();
8375 if (recordTrack->isInvalid()) {
8376 recordTrack->clearSyncStartEvent();
8377 if (status == NO_ERROR && recordTrack->mState == TrackBase::STARTING_1) {
8378 recordTrack->mState = TrackBase::STARTING_2;
8379 // STARTING_2 forces destroy to call stopInput.
8380 }
8381 ALOGW("%s track %d: invalidated after startInput", __func__, recordTrack->portId());
8382 return DEAD_OBJECT;
8383 }
8384 if (recordTrack->mState != TrackBase::STARTING_1) {
8385 ALOGW("%s(%d): unsynchronized mState:%d change",
8386 __func__, recordTrack->id(), (int)recordTrack->mState);
8387 // Someone else has changed state, let them take over,
8388 // leave mState in the new state.
8389 recordTrack->clearSyncStartEvent();
8390 return INVALID_OPERATION;
8391 }
8392 // we're ok, but perhaps startInput has failed
8393 if (status != NO_ERROR) {
8394 ALOGW("%s(%d): startInput failed, status %d",
8395 __func__, recordTrack->id(), status);
8396 // We are in ActiveTracks if STARTING_1 and valid, so remove from ActiveTracks,
8397 // leave in STARTING_1, so destroy() will not call stopInput.
8398 mActiveTracks.remove(recordTrack);
8399 recordTrack->clearSyncStartEvent();
8400 return status;
8401 }
8402 sendIoConfigEvent_l(
8403 AUDIO_CLIENT_STARTED, recordTrack->creatorPid(), recordTrack->portId());
8404 }
8405
8406 recordTrack->logBeginInterval(patchSourcesToString(&mPatch)); // log to MediaMetrics
8407
8408 // Catch up with current buffer indices if thread is already running.
8409 // This is what makes a new client discard all buffered data. If the track's mRsmpInFront
8410 // was initialized to some value closer to the thread's mRsmpInFront, then the track could
8411 // see previously buffered data before it called start(), but with greater risk of overrun.
8412
8413 recordTrack->mResamplerBufferProvider->reset();
8414 if (!recordTrack->isDirect()) {
8415 // clear any converter state as new data will be discontinuous
8416 recordTrack->mRecordBufferConverter->reset();
8417 }
8418 recordTrack->mState = TrackBase::STARTING_2;
8419 // signal thread to start
8420 mWaitWorkCV.broadcast();
8421 return status;
8422 }
8423 }
8424
syncStartEventCallback(const wp<SyncEvent> & event)8425 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
8426 {
8427 sp<SyncEvent> strongEvent = event.promote();
8428
8429 if (strongEvent != 0) {
8430 sp<RefBase> ptr = strongEvent->cookie().promote();
8431 if (ptr != 0) {
8432 RecordTrack *recordTrack = (RecordTrack *)ptr.get();
8433 recordTrack->handleSyncStartEvent(strongEvent);
8434 }
8435 }
8436 }
8437
stop(RecordThread::RecordTrack * recordTrack)8438 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
8439 ALOGV("RecordThread::stop");
8440 AutoMutex _l(mLock);
8441 // if we're invalid, we can't be on the ActiveTracks.
8442 if (mActiveTracks.indexOf(recordTrack) < 0 || recordTrack->mState == TrackBase::PAUSING) {
8443 return false;
8444 }
8445 // note that threadLoop may still be processing the track at this point [without lock]
8446 recordTrack->mState = TrackBase::PAUSING;
8447
8448 // NOTE: Waiting here is important to keep stop synchronous.
8449 // This is needed for proper patchRecord peer release.
8450 while (recordTrack->mState == TrackBase::PAUSING && !recordTrack->isInvalid()) {
8451 mWaitWorkCV.broadcast(); // signal thread to stop
8452 mStartStopCond.wait(mLock);
8453 }
8454
8455 if (recordTrack->mState == TrackBase::PAUSED) { // successful stop
8456 ALOGV("Record stopped OK");
8457 return true;
8458 }
8459
8460 // don't handle anything - we've been invalidated or restarted and in a different state
8461 ALOGW_IF("%s(%d): unsynchronized stop, state: %d",
8462 __func__, recordTrack->id(), recordTrack->mState);
8463 return false;
8464 }
8465
isValidSyncEvent(const sp<SyncEvent> & event __unused) const8466 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
8467 {
8468 return false;
8469 }
8470
setSyncEvent(const sp<SyncEvent> & event __unused)8471 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
8472 {
8473 #if 0 // This branch is currently dead code, but is preserved in case it will be needed in future
8474 if (!isValidSyncEvent(event)) {
8475 return BAD_VALUE;
8476 }
8477
8478 audio_session_t eventSession = event->triggerSession();
8479 status_t ret = NAME_NOT_FOUND;
8480
8481 Mutex::Autolock _l(mLock);
8482
8483 for (size_t i = 0; i < mTracks.size(); i++) {
8484 sp<RecordTrack> track = mTracks[i];
8485 if (eventSession == track->sessionId()) {
8486 (void) track->setSyncEvent(event);
8487 ret = NO_ERROR;
8488 }
8489 }
8490 return ret;
8491 #else
8492 return BAD_VALUE;
8493 #endif
8494 }
8495
getActiveMicrophones(std::vector<media::MicrophoneInfo> * activeMicrophones)8496 status_t AudioFlinger::RecordThread::getActiveMicrophones(
8497 std::vector<media::MicrophoneInfo>* activeMicrophones)
8498 {
8499 ALOGV("RecordThread::getActiveMicrophones");
8500 AutoMutex _l(mLock);
8501 if (!isStreamInitialized()) {
8502 return NO_INIT;
8503 }
8504 status_t status = mInput->stream->getActiveMicrophones(activeMicrophones);
8505 return status;
8506 }
8507
setPreferredMicrophoneDirection(audio_microphone_direction_t direction)8508 status_t AudioFlinger::RecordThread::setPreferredMicrophoneDirection(
8509 audio_microphone_direction_t direction)
8510 {
8511 ALOGV("setPreferredMicrophoneDirection(%d)", direction);
8512 AutoMutex _l(mLock);
8513 if (!isStreamInitialized()) {
8514 return NO_INIT;
8515 }
8516 return mInput->stream->setPreferredMicrophoneDirection(direction);
8517 }
8518
setPreferredMicrophoneFieldDimension(float zoom)8519 status_t AudioFlinger::RecordThread::setPreferredMicrophoneFieldDimension(float zoom)
8520 {
8521 ALOGV("setPreferredMicrophoneFieldDimension(%f)", zoom);
8522 AutoMutex _l(mLock);
8523 if (!isStreamInitialized()) {
8524 return NO_INIT;
8525 }
8526 return mInput->stream->setPreferredMicrophoneFieldDimension(zoom);
8527 }
8528
shareAudioHistory(const std::string & sharedAudioPackageName,audio_session_t sharedSessionId,int64_t sharedAudioStartMs)8529 status_t AudioFlinger::RecordThread::shareAudioHistory(
8530 const std::string& sharedAudioPackageName, audio_session_t sharedSessionId,
8531 int64_t sharedAudioStartMs) {
8532 AutoMutex _l(mLock);
8533 return shareAudioHistory_l(sharedAudioPackageName, sharedSessionId, sharedAudioStartMs);
8534 }
8535
shareAudioHistory_l(const std::string & sharedAudioPackageName,audio_session_t sharedSessionId,int64_t sharedAudioStartMs)8536 status_t AudioFlinger::RecordThread::shareAudioHistory_l(
8537 const std::string& sharedAudioPackageName, audio_session_t sharedSessionId,
8538 int64_t sharedAudioStartMs) {
8539
8540 if ((hasAudioSession_l(sharedSessionId) & ThreadBase::TRACK_SESSION) == 0) {
8541 return BAD_VALUE;
8542 }
8543
8544 if (sharedAudioStartMs < 0
8545 || sharedAudioStartMs > INT64_MAX / mSampleRate) {
8546 return BAD_VALUE;
8547 }
8548
8549 // Current implementation of the input resampling buffer wraps around indexes at 32 bit.
8550 // As we cannot detect more than one wraparound, only accept values up current write position
8551 // after one wraparound
8552 // We assume recent wraparounds on mRsmpInRear only given it is unlikely that the requesting
8553 // app waits several hours after the start time was computed.
8554 int64_t sharedAudioStartFrames = sharedAudioStartMs * mSampleRate / 1000;
8555 const int32_t sharedOffset = audio_utils::safe_sub_overflow(mRsmpInRear,
8556 (int32_t)sharedAudioStartFrames);
8557 // Bring the start frame position within the input buffer to match the documented
8558 // "best effort" behavior of the API.
8559 if (sharedOffset < 0) {
8560 sharedAudioStartFrames = mRsmpInRear;
8561 } else if (sharedOffset > mRsmpInFrames) {
8562 sharedAudioStartFrames =
8563 audio_utils::safe_sub_overflow(mRsmpInRear, (int32_t)mRsmpInFrames);
8564 }
8565
8566 mSharedAudioPackageName = sharedAudioPackageName;
8567 if (mSharedAudioPackageName.empty()) {
8568 resetAudioHistory_l();
8569 } else {
8570 mSharedAudioSessionId = sharedSessionId;
8571 mSharedAudioStartFrames = (int32_t)sharedAudioStartFrames;
8572 }
8573 return NO_ERROR;
8574 }
8575
resetAudioHistory_l()8576 void AudioFlinger::RecordThread::resetAudioHistory_l() {
8577 mSharedAudioSessionId = AUDIO_SESSION_NONE;
8578 mSharedAudioStartFrames = -1;
8579 mSharedAudioPackageName = "";
8580 }
8581
updateMetadata_l()8582 void AudioFlinger::RecordThread::updateMetadata_l()
8583 {
8584 if (!isStreamInitialized() || !mActiveTracks.readAndClearHasChanged()) {
8585 return; // nothing to do
8586 }
8587 StreamInHalInterface::SinkMetadata metadata;
8588 for (const sp<RecordTrack> &track : mActiveTracks) {
8589 // Do not forward PatchRecord metadata to audio HAL
8590 if (track->isPatchTrack()) {
8591 continue;
8592 }
8593 // No track is invalid as this is called after prepareTrack_l in the same critical section
8594 record_track_metadata_v7_t trackMetadata;
8595 trackMetadata.base = {
8596 .source = track->attributes().source,
8597 .gain = 1, // capture tracks do not have volumes
8598 };
8599 trackMetadata.channel_mask = track->channelMask(),
8600 strncpy(trackMetadata.tags, track->attributes().tags, AUDIO_ATTRIBUTES_TAGS_MAX_SIZE);
8601
8602 metadata.tracks.push_back(trackMetadata);
8603 }
8604 mInput->stream->updateSinkMetadata(metadata);
8605 }
8606
8607 // destroyTrack_l() must be called with ThreadBase::mLock held
destroyTrack_l(const sp<RecordTrack> & track)8608 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
8609 {
8610 track->terminate();
8611 track->mState = TrackBase::STOPPED;
8612
8613 // active tracks are removed by threadLoop()
8614 if (mActiveTracks.indexOf(track) < 0) {
8615 removeTrack_l(track);
8616 }
8617 }
8618
removeTrack_l(const sp<RecordTrack> & track)8619 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
8620 {
8621 String8 result;
8622 track->appendDump(result, false /* active */);
8623 mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.string());
8624
8625 mTracks.remove(track);
8626 // need anything related to effects here?
8627 if (track->isFastTrack()) {
8628 ALOG_ASSERT(!mFastTrackAvail);
8629 mFastTrackAvail = true;
8630 }
8631 }
8632
dumpInternals_l(int fd,const Vector<String16> & args __unused)8633 void AudioFlinger::RecordThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
8634 {
8635 AudioStreamIn *input = mInput;
8636 audio_input_flags_t flags = input != NULL ? input->flags : AUDIO_INPUT_FLAG_NONE;
8637 dprintf(fd, " AudioStreamIn: %p flags %#x (%s)\n",
8638 input, flags, toString(flags).c_str());
8639 dprintf(fd, " Frames read: %lld\n", (long long)mFramesRead);
8640 if (mActiveTracks.isEmpty()) {
8641 dprintf(fd, " No active record clients\n");
8642 }
8643
8644 if (input != nullptr) {
8645 dprintf(fd, " Hal stream dump:\n");
8646 (void)input->stream->dump(fd);
8647 }
8648
8649 dprintf(fd, " Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
8650 dprintf(fd, " Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
8651
8652 // Make a non-atomic copy of fast capture dump state so it won't change underneath us
8653 // while we are dumping it. It may be inconsistent, but it won't mutate!
8654 // This is a large object so we place it on the heap.
8655 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
8656 const std::unique_ptr<FastCaptureDumpState> copy =
8657 std::make_unique<FastCaptureDumpState>(mFastCaptureDumpState);
8658 copy->dump(fd);
8659 }
8660
dumpTracks_l(int fd,const Vector<String16> & args __unused)8661 void AudioFlinger::RecordThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
8662 {
8663 String8 result;
8664 size_t numtracks = mTracks.size();
8665 size_t numactive = mActiveTracks.size();
8666 size_t numactiveseen = 0;
8667 dprintf(fd, " %zu Tracks", numtracks);
8668 const char *prefix = " ";
8669 if (numtracks) {
8670 dprintf(fd, " of which %zu are active\n", numactive);
8671 result.append(prefix);
8672 mTracks[0]->appendDumpHeader(result);
8673 for (size_t i = 0; i < numtracks ; ++i) {
8674 sp<RecordTrack> track = mTracks[i];
8675 if (track != 0) {
8676 bool active = mActiveTracks.indexOf(track) >= 0;
8677 if (active) {
8678 numactiveseen++;
8679 }
8680 result.append(prefix);
8681 track->appendDump(result, active);
8682 }
8683 }
8684 } else {
8685 dprintf(fd, "\n");
8686 }
8687
8688 if (numactiveseen != numactive) {
8689 result.append(" The following tracks are in the active list but"
8690 " not in the track list\n");
8691 result.append(prefix);
8692 mActiveTracks[0]->appendDumpHeader(result);
8693 for (size_t i = 0; i < numactive; ++i) {
8694 sp<RecordTrack> track = mActiveTracks[i];
8695 if (mTracks.indexOf(track) < 0) {
8696 result.append(prefix);
8697 track->appendDump(result, true /* active */);
8698 }
8699 }
8700
8701 }
8702 write(fd, result.string(), result.size());
8703 }
8704
setRecordSilenced(audio_port_handle_t portId,bool silenced)8705 void AudioFlinger::RecordThread::setRecordSilenced(audio_port_handle_t portId, bool silenced)
8706 {
8707 Mutex::Autolock _l(mLock);
8708 for (size_t i = 0; i < mTracks.size() ; i++) {
8709 sp<RecordTrack> track = mTracks[i];
8710 if (track != 0 && track->portId() == portId) {
8711 track->setSilenced(silenced);
8712 }
8713 }
8714 }
8715
reset()8716 void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
8717 {
8718 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
8719 RecordThread *recordThread = (RecordThread *) threadBase.get();
8720 mRsmpInUnrel = 0;
8721 const int32_t rear = recordThread->mRsmpInRear;
8722 ssize_t deltaFrames = 0;
8723 if (mRecordTrack->startFrames() >= 0) {
8724 int32_t startFrames = mRecordTrack->startFrames();
8725 // Accept a recent wraparound of mRsmpInRear
8726 if (startFrames <= rear) {
8727 deltaFrames = rear - startFrames;
8728 } else {
8729 deltaFrames = (int32_t)((int64_t)rear + UINT32_MAX + 1 - startFrames);
8730 }
8731 // start frame cannot be further in the past than start of resampling buffer
8732 if ((size_t) deltaFrames > recordThread->mRsmpInFrames) {
8733 deltaFrames = recordThread->mRsmpInFrames;
8734 }
8735 }
8736 mRsmpInFront = audio_utils::safe_sub_overflow(rear, static_cast<int32_t>(deltaFrames));
8737 }
8738
sync(size_t * framesAvailable,bool * hasOverrun)8739 void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
8740 size_t *framesAvailable, bool *hasOverrun)
8741 {
8742 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
8743 RecordThread *recordThread = (RecordThread *) threadBase.get();
8744 const int32_t rear = recordThread->mRsmpInRear;
8745 const int32_t front = mRsmpInFront;
8746 const ssize_t filled = audio_utils::safe_sub_overflow(rear, front);
8747
8748 size_t framesIn;
8749 bool overrun = false;
8750 if (filled < 0) {
8751 // should not happen, but treat like a massive overrun and re-sync
8752 framesIn = 0;
8753 mRsmpInFront = rear;
8754 overrun = true;
8755 } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
8756 framesIn = (size_t) filled;
8757 } else {
8758 // client is not keeping up with server, but give it latest data
8759 framesIn = recordThread->mRsmpInFrames;
8760 mRsmpInFront = /* front = */ audio_utils::safe_sub_overflow(
8761 rear, static_cast<int32_t>(framesIn));
8762 overrun = true;
8763 }
8764 if (framesAvailable != NULL) {
8765 *framesAvailable = framesIn;
8766 }
8767 if (hasOverrun != NULL) {
8768 *hasOverrun = overrun;
8769 }
8770 }
8771
8772 // AudioBufferProvider interface
getNextBuffer(AudioBufferProvider::Buffer * buffer)8773 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
8774 AudioBufferProvider::Buffer* buffer)
8775 {
8776 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
8777 if (threadBase == 0) {
8778 buffer->frameCount = 0;
8779 buffer->raw = NULL;
8780 return NOT_ENOUGH_DATA;
8781 }
8782 RecordThread *recordThread = (RecordThread *) threadBase.get();
8783 int32_t rear = recordThread->mRsmpInRear;
8784 int32_t front = mRsmpInFront;
8785 ssize_t filled = audio_utils::safe_sub_overflow(rear, front);
8786 // FIXME should not be P2 (don't want to increase latency)
8787 // FIXME if client not keeping up, discard
8788 LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
8789 // 'filled' may be non-contiguous, so return only the first contiguous chunk
8790
8791 front &= recordThread->mRsmpInFramesP2 - 1;
8792 size_t part1 = recordThread->mRsmpInFramesP2 - front;
8793 if (part1 > (size_t) filled) {
8794 part1 = filled;
8795 }
8796 size_t ask = buffer->frameCount;
8797 ALOG_ASSERT(ask > 0);
8798 if (part1 > ask) {
8799 part1 = ask;
8800 }
8801 if (part1 == 0) {
8802 // out of data is fine since the resampler will return a short-count.
8803 buffer->raw = NULL;
8804 buffer->frameCount = 0;
8805 mRsmpInUnrel = 0;
8806 return NOT_ENOUGH_DATA;
8807 }
8808
8809 buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
8810 buffer->frameCount = part1;
8811 mRsmpInUnrel = part1;
8812 return NO_ERROR;
8813 }
8814
8815 // AudioBufferProvider interface
releaseBuffer(AudioBufferProvider::Buffer * buffer)8816 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
8817 AudioBufferProvider::Buffer* buffer)
8818 {
8819 int32_t stepCount = static_cast<int32_t>(buffer->frameCount);
8820 if (stepCount == 0) {
8821 return;
8822 }
8823 ALOG_ASSERT(stepCount <= mRsmpInUnrel);
8824 mRsmpInUnrel -= stepCount;
8825 mRsmpInFront = audio_utils::safe_add_overflow(mRsmpInFront, stepCount);
8826 buffer->raw = NULL;
8827 buffer->frameCount = 0;
8828 }
8829
checkBtNrec()8830 void AudioFlinger::RecordThread::checkBtNrec()
8831 {
8832 Mutex::Autolock _l(mLock);
8833 checkBtNrec_l();
8834 }
8835
checkBtNrec_l()8836 void AudioFlinger::RecordThread::checkBtNrec_l()
8837 {
8838 // disable AEC and NS if the device is a BT SCO headset supporting those
8839 // pre processings
8840 bool suspend = audio_is_bluetooth_sco_device(inDeviceType()) &&
8841 mAudioFlinger->btNrecIsOff();
8842 if (mBtNrecSuspended.exchange(suspend) != suspend) {
8843 for (size_t i = 0; i < mEffectChains.size(); i++) {
8844 setEffectSuspended_l(FX_IID_AEC, suspend, mEffectChains[i]->sessionId());
8845 setEffectSuspended_l(FX_IID_NS, suspend, mEffectChains[i]->sessionId());
8846 }
8847 }
8848 }
8849
8850
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)8851 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
8852 status_t& status)
8853 {
8854 bool reconfig = false;
8855
8856 status = NO_ERROR;
8857
8858 audio_format_t reqFormat = mFormat;
8859 uint32_t samplingRate = mSampleRate;
8860 // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
8861 audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
8862
8863 AudioParameter param = AudioParameter(keyValuePair);
8864 int value;
8865
8866 // scope for AutoPark extends to end of method
8867 AutoPark<FastCapture> park(mFastCapture);
8868
8869 // TODO Investigate when this code runs. Check with audio policy when a sample rate and
8870 // channel count change can be requested. Do we mandate the first client defines the
8871 // HAL sampling rate and channel count or do we allow changes on the fly?
8872 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
8873 samplingRate = value;
8874 reconfig = true;
8875 }
8876 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
8877 if (!audio_is_linear_pcm((audio_format_t) value)) {
8878 status = BAD_VALUE;
8879 } else {
8880 reqFormat = (audio_format_t) value;
8881 reconfig = true;
8882 }
8883 }
8884 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
8885 audio_channel_mask_t mask = (audio_channel_mask_t) value;
8886 if (!audio_is_input_channel(mask) ||
8887 audio_channel_count_from_in_mask(mask) > FCC_LIMIT) {
8888 status = BAD_VALUE;
8889 } else {
8890 channelMask = mask;
8891 reconfig = true;
8892 }
8893 }
8894 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
8895 // do not accept frame count changes if tracks are open as the track buffer
8896 // size depends on frame count and correct behavior would not be guaranteed
8897 // if frame count is changed after track creation
8898 if (mActiveTracks.size() > 0) {
8899 status = INVALID_OPERATION;
8900 } else {
8901 reconfig = true;
8902 }
8903 }
8904 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
8905 LOG_FATAL("Should not set routing device in RecordThread");
8906 }
8907 if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
8908 mAudioSource != (audio_source_t)value) {
8909 LOG_FATAL("Should not set audio source in RecordThread");
8910 }
8911
8912 if (status == NO_ERROR) {
8913 status = mInput->stream->setParameters(keyValuePair);
8914 if (status == INVALID_OPERATION) {
8915 inputStandBy();
8916 status = mInput->stream->setParameters(keyValuePair);
8917 }
8918 if (reconfig) {
8919 if (status == BAD_VALUE) {
8920 audio_config_base_t config = AUDIO_CONFIG_BASE_INITIALIZER;
8921 if (mInput->stream->getAudioProperties(&config) == OK &&
8922 audio_is_linear_pcm(config.format) && audio_is_linear_pcm(reqFormat) &&
8923 config.sample_rate <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate) &&
8924 audio_channel_count_from_in_mask(config.channel_mask) <= FCC_LIMIT) {
8925 status = NO_ERROR;
8926 }
8927 }
8928 if (status == NO_ERROR) {
8929 readInputParameters_l();
8930 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
8931 }
8932 }
8933 }
8934
8935 return reconfig;
8936 }
8937
getParameters(const String8 & keys)8938 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
8939 {
8940 Mutex::Autolock _l(mLock);
8941 if (initCheck() == NO_ERROR) {
8942 String8 out_s8;
8943 if (mInput->stream->getParameters(keys, &out_s8) == OK) {
8944 return out_s8;
8945 }
8946 }
8947 return String8();
8948 }
8949
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)8950 void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
8951 audio_port_handle_t portId) {
8952 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
8953
8954 desc->mIoHandle = mId;
8955
8956 switch (event) {
8957 case AUDIO_INPUT_OPENED:
8958 case AUDIO_INPUT_REGISTERED:
8959 case AUDIO_INPUT_CONFIG_CHANGED:
8960 desc->mPatch = mPatch;
8961 desc->mChannelMask = mChannelMask;
8962 desc->mSamplingRate = mSampleRate;
8963 desc->mFormat = mFormat;
8964 desc->mFrameCount = mFrameCount;
8965 desc->mFrameCountHAL = mFrameCount;
8966 desc->mLatency = 0;
8967 break;
8968 case AUDIO_CLIENT_STARTED:
8969 desc->mPatch = mPatch;
8970 desc->mPortId = portId;
8971 break;
8972 case AUDIO_INPUT_CLOSED:
8973 default:
8974 break;
8975 }
8976 mAudioFlinger->ioConfigChanged(event, desc, pid);
8977 }
8978
readInputParameters_l()8979 void AudioFlinger::RecordThread::readInputParameters_l()
8980 {
8981 status_t result = mInput->stream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
8982 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
8983 mFormat = mHALFormat;
8984 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
8985 if (audio_is_linear_pcm(mFormat)) {
8986 LOG_ALWAYS_FATAL_IF(mChannelCount > FCC_LIMIT, "HAL channel count %d > %d",
8987 mChannelCount, FCC_LIMIT);
8988 } else {
8989 // Can have more that FCC_LIMIT channels in encoded streams.
8990 ALOGI("HAL format %#x is not linear pcm", mFormat);
8991 }
8992 result = mInput->stream->getFrameSize(&mFrameSize);
8993 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
8994 LOG_ALWAYS_FATAL_IF(mFrameSize <= 0, "Error frame size was %zu but must be greater than zero",
8995 mFrameSize);
8996 result = mInput->stream->getBufferSize(&mBufferSize);
8997 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
8998 mFrameCount = mBufferSize / mFrameSize;
8999 ALOGV("%p RecordThread params: mChannelCount=%u, mFormat=%#x, mFrameSize=%zu, "
9000 "mBufferSize=%zu, mFrameCount=%zu",
9001 this, mChannelCount, mFormat, mFrameSize, mBufferSize, mFrameCount);
9002
9003 // mRsmpInFrames must be 0 before calling resizeInputBuffer_l for the first time
9004 mRsmpInFrames = 0;
9005 resizeInputBuffer_l(0 /*maxSharedAudioHistoryMs*/);
9006
9007 // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
9008 // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
9009
9010 audio_input_flags_t flags = mInput->flags;
9011 mediametrics::LogItem item(mThreadMetrics.getMetricsId());
9012 item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS)
9013 .set(AMEDIAMETRICS_PROP_ENCODING, formatToString(mFormat).c_str())
9014 .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str())
9015 .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate)
9016 .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask)
9017 .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount)
9018 .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mFrameCount)
9019 .record();
9020 }
9021
getInputFramesLost()9022 uint32_t AudioFlinger::RecordThread::getInputFramesLost()
9023 {
9024 Mutex::Autolock _l(mLock);
9025 uint32_t result;
9026 if (initCheck() == NO_ERROR && mInput->stream->getInputFramesLost(&result) == OK) {
9027 return result;
9028 }
9029 return 0;
9030 }
9031
sessionIds() const9032 KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
9033 {
9034 KeyedVector<audio_session_t, bool> ids;
9035 Mutex::Autolock _l(mLock);
9036 for (size_t j = 0; j < mTracks.size(); ++j) {
9037 sp<RecordThread::RecordTrack> track = mTracks[j];
9038 audio_session_t sessionId = track->sessionId();
9039 if (ids.indexOfKey(sessionId) < 0) {
9040 ids.add(sessionId, true);
9041 }
9042 }
9043 return ids;
9044 }
9045
clearInput()9046 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
9047 {
9048 Mutex::Autolock _l(mLock);
9049 AudioStreamIn *input = mInput;
9050 mInput = NULL;
9051 return input;
9052 }
9053
9054 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const9055 sp<StreamHalInterface> AudioFlinger::RecordThread::stream() const
9056 {
9057 if (mInput == NULL) {
9058 return NULL;
9059 }
9060 return mInput->stream;
9061 }
9062
addEffectChain_l(const sp<EffectChain> & chain)9063 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
9064 {
9065 ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
9066 chain->setThread(this);
9067 chain->setInBuffer(NULL);
9068 chain->setOutBuffer(NULL);
9069
9070 checkSuspendOnAddEffectChain_l(chain);
9071
9072 // make sure enabled pre processing effects state is communicated to the HAL as we
9073 // just moved them to a new input stream.
9074 chain->syncHalEffectsState();
9075
9076 mEffectChains.add(chain);
9077
9078 return NO_ERROR;
9079 }
9080
removeEffectChain_l(const sp<EffectChain> & chain)9081 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
9082 {
9083 ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
9084
9085 for (size_t i = 0; i < mEffectChains.size(); i++) {
9086 if (chain == mEffectChains[i]) {
9087 mEffectChains.removeAt(i);
9088 break;
9089 }
9090 }
9091 return mEffectChains.size();
9092 }
9093
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)9094 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
9095 audio_patch_handle_t *handle)
9096 {
9097 status_t status = NO_ERROR;
9098
9099 // store new device and send to effects
9100 mInDeviceTypeAddr.mType = patch->sources[0].ext.device.type;
9101 mInDeviceTypeAddr.setAddress(patch->sources[0].ext.device.address);
9102 audio_port_handle_t deviceId = patch->sources[0].id;
9103 for (size_t i = 0; i < mEffectChains.size(); i++) {
9104 mEffectChains[i]->setInputDevice_l(inDeviceTypeAddr());
9105 }
9106
9107 checkBtNrec_l();
9108
9109 // store new source and send to effects
9110 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
9111 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
9112 for (size_t i = 0; i < mEffectChains.size(); i++) {
9113 mEffectChains[i]->setAudioSource_l(mAudioSource);
9114 }
9115 }
9116
9117 if (mInput->audioHwDev->supportsAudioPatches()) {
9118 sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
9119 status = hwDevice->createAudioPatch(patch->num_sources,
9120 patch->sources,
9121 patch->num_sinks,
9122 patch->sinks,
9123 handle);
9124 } else {
9125 char *address;
9126 if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
9127 address = audio_device_address_to_parameter(
9128 patch->sources[0].ext.device.type,
9129 patch->sources[0].ext.device.address);
9130 } else {
9131 address = (char *)calloc(1, 1);
9132 }
9133 AudioParameter param = AudioParameter(String8(address));
9134 free(address);
9135 param.addInt(String8(AudioParameter::keyRouting),
9136 (int)patch->sources[0].ext.device.type);
9137 param.addInt(String8(AudioParameter::keyInputSource),
9138 (int)patch->sinks[0].ext.mix.usecase.source);
9139 status = mInput->stream->setParameters(param.toString());
9140 *handle = AUDIO_PATCH_HANDLE_NONE;
9141 }
9142
9143 if ((mPatch.num_sources == 0) || (mPatch.sources[0].id != deviceId)) {
9144 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
9145 mPatch = *patch;
9146 }
9147
9148 const std::string pathSourcesAsString = patchSourcesToString(patch);
9149 mThreadMetrics.logEndInterval();
9150 mThreadMetrics.logCreatePatch(pathSourcesAsString, /* outDevices */ {});
9151 mThreadMetrics.logBeginInterval();
9152 // also dispatch to active AudioRecords
9153 for (const auto &track : mActiveTracks) {
9154 track->logEndInterval();
9155 track->logBeginInterval(pathSourcesAsString);
9156 }
9157 return status;
9158 }
9159
releaseAudioPatch_l(const audio_patch_handle_t handle)9160 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
9161 {
9162 status_t status = NO_ERROR;
9163
9164 mPatch = audio_patch{};
9165 mInDeviceTypeAddr.reset();
9166
9167 if (mInput->audioHwDev->supportsAudioPatches()) {
9168 sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
9169 status = hwDevice->releaseAudioPatch(handle);
9170 } else {
9171 AudioParameter param;
9172 param.addInt(String8(AudioParameter::keyRouting), 0);
9173 status = mInput->stream->setParameters(param.toString());
9174 }
9175 return status;
9176 }
9177
updateOutDevices(const DeviceDescriptorBaseVector & outDevices)9178 void AudioFlinger::RecordThread::updateOutDevices(const DeviceDescriptorBaseVector& outDevices)
9179 {
9180 Mutex::Autolock _l(mLock);
9181 mOutDevices = outDevices;
9182 mOutDeviceTypeAddrs = deviceTypeAddrsFromDescriptors(mOutDevices);
9183 for (size_t i = 0; i < mEffectChains.size(); i++) {
9184 mEffectChains[i]->setDevices_l(outDeviceTypeAddrs());
9185 }
9186 }
9187
getOldestFront_l()9188 int32_t AudioFlinger::RecordThread::getOldestFront_l()
9189 {
9190 if (mTracks.size() == 0) {
9191 return mRsmpInRear;
9192 }
9193 int32_t oldestFront = mRsmpInRear;
9194 int32_t maxFilled = 0;
9195 for (size_t i = 0; i < mTracks.size(); i++) {
9196 int32_t front = mTracks[i]->mResamplerBufferProvider->getFront();
9197 int32_t filled;
9198 (void)__builtin_sub_overflow(mRsmpInRear, front, &filled);
9199 if (filled > maxFilled) {
9200 oldestFront = front;
9201 maxFilled = filled;
9202 }
9203 }
9204 if (maxFilled > mRsmpInFrames) {
9205 (void)__builtin_sub_overflow(mRsmpInRear, mRsmpInFrames, &oldestFront);
9206 }
9207 return oldestFront;
9208 }
9209
updateFronts_l(int32_t offset)9210 void AudioFlinger::RecordThread::updateFronts_l(int32_t offset)
9211 {
9212 if (offset == 0) {
9213 return;
9214 }
9215 for (size_t i = 0; i < mTracks.size(); i++) {
9216 int32_t front = mTracks[i]->mResamplerBufferProvider->getFront();
9217 front = audio_utils::safe_sub_overflow(front, offset);
9218 mTracks[i]->mResamplerBufferProvider->setFront(front);
9219 }
9220 }
9221
resizeInputBuffer_l(int32_t maxSharedAudioHistoryMs)9222 void AudioFlinger::RecordThread::resizeInputBuffer_l(int32_t maxSharedAudioHistoryMs)
9223 {
9224 // This is the formula for calculating the temporary buffer size.
9225 // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
9226 // 1 full output buffer, regardless of the alignment of the available input.
9227 // The value is somewhat arbitrary, and could probably be even larger.
9228 // A larger value should allow more old data to be read after a track calls start(),
9229 // without increasing latency.
9230 //
9231 // Note this is independent of the maximum downsampling ratio permitted for capture.
9232 size_t minRsmpInFrames = mFrameCount * 7;
9233
9234 // maxSharedAudioHistoryMs != 0 indicates a request to possibly make some part of the audio
9235 // capture history available to another client using the same session ID:
9236 // dimension the resampler input buffer accordingly.
9237
9238 // Get oldest client read position: getOldestFront_l() must be called before altering
9239 // mRsmpInRear, or mRsmpInFrames
9240 int32_t previousFront = getOldestFront_l();
9241 size_t previousRsmpInFramesP2 = mRsmpInFramesP2;
9242 int32_t previousRear = mRsmpInRear;
9243 mRsmpInRear = 0;
9244
9245 ALOG_ASSERT(maxSharedAudioHistoryMs >= 0
9246 && maxSharedAudioHistoryMs <= AudioFlinger::kMaxSharedAudioHistoryMs,
9247 "resizeInputBuffer_l() called with invalid max shared history %d",
9248 maxSharedAudioHistoryMs);
9249 if (maxSharedAudioHistoryMs != 0) {
9250 // resizeInputBuffer_l should never be called with a non zero shared history if the
9251 // buffer was not already allocated
9252 ALOG_ASSERT(mRsmpInBuffer != nullptr && mRsmpInFrames != 0,
9253 "resizeInputBuffer_l() called with shared history and unallocated buffer");
9254 size_t rsmpInFrames = (size_t)maxSharedAudioHistoryMs * mSampleRate / 1000;
9255 // never reduce resampler input buffer size
9256 if (rsmpInFrames <= mRsmpInFrames) {
9257 return;
9258 }
9259 mRsmpInFrames = rsmpInFrames;
9260 }
9261 mMaxSharedAudioHistoryMs = maxSharedAudioHistoryMs;
9262 // Note: mRsmpInFrames is 0 when called with maxSharedAudioHistoryMs equals to 0 so it is always
9263 // initialized
9264 if (mRsmpInFrames < minRsmpInFrames) {
9265 mRsmpInFrames = minRsmpInFrames;
9266 }
9267 mRsmpInFramesP2 = roundup(mRsmpInFrames);
9268
9269 // TODO optimize audio capture buffer sizes ...
9270 // Here we calculate the size of the sliding buffer used as a source
9271 // for resampling. mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
9272 // For current HAL frame counts, this is usually 2048 = 40 ms. It would
9273 // be better to have it derived from the pipe depth in the long term.
9274 // The current value is higher than necessary. However it should not add to latency.
9275
9276 // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
9277 mRsmpInFramesOA = mRsmpInFramesP2 + mFrameCount - 1;
9278
9279 void *rsmpInBuffer;
9280 (void)posix_memalign(&rsmpInBuffer, 32, mRsmpInFramesOA * mFrameSize);
9281 // if posix_memalign fails, will segv here.
9282 memset(rsmpInBuffer, 0, mRsmpInFramesOA * mFrameSize);
9283
9284 // Copy audio history if any from old buffer before freeing it
9285 if (previousRear != 0) {
9286 ALOG_ASSERT(mRsmpInBuffer != nullptr,
9287 "resizeInputBuffer_l() called with null buffer but frames already read from HAL");
9288
9289 ssize_t unread = audio_utils::safe_sub_overflow(previousRear, previousFront);
9290 previousFront &= previousRsmpInFramesP2 - 1;
9291 size_t part1 = previousRsmpInFramesP2 - previousFront;
9292 if (part1 > (size_t) unread) {
9293 part1 = unread;
9294 }
9295 if (part1 != 0) {
9296 memcpy(rsmpInBuffer, (const uint8_t*)mRsmpInBuffer + previousFront * mFrameSize,
9297 part1 * mFrameSize);
9298 mRsmpInRear = part1;
9299 part1 = unread - part1;
9300 if (part1 != 0) {
9301 memcpy((uint8_t*)rsmpInBuffer + mRsmpInRear * mFrameSize,
9302 (const uint8_t*)mRsmpInBuffer, part1 * mFrameSize);
9303 mRsmpInRear += part1;
9304 }
9305 }
9306 // Update front for all clients according to new rear
9307 updateFronts_l(audio_utils::safe_sub_overflow(previousRear, mRsmpInRear));
9308 } else {
9309 mRsmpInRear = 0;
9310 }
9311 free(mRsmpInBuffer);
9312 mRsmpInBuffer = rsmpInBuffer;
9313 }
9314
addPatchTrack(const sp<PatchRecord> & record)9315 void AudioFlinger::RecordThread::addPatchTrack(const sp<PatchRecord>& record)
9316 {
9317 Mutex::Autolock _l(mLock);
9318 mTracks.add(record);
9319 if (record->getSource()) {
9320 mSource = record->getSource();
9321 }
9322 }
9323
deletePatchTrack(const sp<PatchRecord> & record)9324 void AudioFlinger::RecordThread::deletePatchTrack(const sp<PatchRecord>& record)
9325 {
9326 Mutex::Autolock _l(mLock);
9327 if (mSource == record->getSource()) {
9328 mSource = mInput;
9329 }
9330 destroyTrack_l(record);
9331 }
9332
toAudioPortConfig(struct audio_port_config * config)9333 void AudioFlinger::RecordThread::toAudioPortConfig(struct audio_port_config *config)
9334 {
9335 ThreadBase::toAudioPortConfig(config);
9336 config->role = AUDIO_PORT_ROLE_SINK;
9337 config->ext.mix.hw_module = mInput->audioHwDev->handle();
9338 config->ext.mix.usecase.source = mAudioSource;
9339 if (mInput && mInput->flags != AUDIO_INPUT_FLAG_NONE) {
9340 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
9341 config->flags.input = mInput->flags;
9342 }
9343 }
9344
9345 // ----------------------------------------------------------------------------
9346 // Mmap
9347 // ----------------------------------------------------------------------------
9348
MmapThreadHandle(const sp<MmapThread> & thread)9349 AudioFlinger::MmapThreadHandle::MmapThreadHandle(const sp<MmapThread>& thread)
9350 : mThread(thread)
9351 {
9352 assert(thread != 0); // thread must start non-null and stay non-null
9353 }
9354
~MmapThreadHandle()9355 AudioFlinger::MmapThreadHandle::~MmapThreadHandle()
9356 {
9357 mThread->disconnect();
9358 }
9359
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)9360 status_t AudioFlinger::MmapThreadHandle::createMmapBuffer(int32_t minSizeFrames,
9361 struct audio_mmap_buffer_info *info)
9362 {
9363 return mThread->createMmapBuffer(minSizeFrames, info);
9364 }
9365
getMmapPosition(struct audio_mmap_position * position)9366 status_t AudioFlinger::MmapThreadHandle::getMmapPosition(struct audio_mmap_position *position)
9367 {
9368 return mThread->getMmapPosition(position);
9369 }
9370
getExternalPosition(uint64_t * position,int64_t * timeNanos)9371 status_t AudioFlinger::MmapThreadHandle::getExternalPosition(uint64_t *position,
9372 int64_t *timeNanos) {
9373 return mThread->getExternalPosition(position, timeNanos);
9374 }
9375
start(const AudioClient & client,const audio_attributes_t * attr,audio_port_handle_t * handle)9376 status_t AudioFlinger::MmapThreadHandle::start(const AudioClient& client,
9377 const audio_attributes_t *attr, audio_port_handle_t *handle)
9378
9379 {
9380 return mThread->start(client, attr, handle);
9381 }
9382
stop(audio_port_handle_t handle)9383 status_t AudioFlinger::MmapThreadHandle::stop(audio_port_handle_t handle)
9384 {
9385 return mThread->stop(handle);
9386 }
9387
standby()9388 status_t AudioFlinger::MmapThreadHandle::standby()
9389 {
9390 return mThread->standby();
9391 }
9392
9393
MmapThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,sp<StreamHalInterface> stream,bool systemReady,bool isOut)9394 AudioFlinger::MmapThread::MmapThread(
9395 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
9396 AudioHwDevice *hwDev, sp<StreamHalInterface> stream, bool systemReady, bool isOut)
9397 : ThreadBase(audioFlinger, id, (isOut ? MMAP_PLAYBACK : MMAP_CAPTURE), systemReady, isOut),
9398 mSessionId(AUDIO_SESSION_NONE),
9399 mPortId(AUDIO_PORT_HANDLE_NONE),
9400 mHalStream(stream), mHalDevice(hwDev->hwDevice()), mAudioHwDev(hwDev),
9401 mActiveTracks(&this->mLocalLog),
9402 mHalVolFloat(-1.0f), // Initialize to illegal value so it always gets set properly later.
9403 mNoCallbackWarningCount(0)
9404 {
9405 mStandby = true;
9406 readHalParameters_l();
9407 }
9408
~MmapThread()9409 AudioFlinger::MmapThread::~MmapThread()
9410 {
9411 }
9412
onFirstRef()9413 void AudioFlinger::MmapThread::onFirstRef()
9414 {
9415 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
9416 }
9417
disconnect()9418 void AudioFlinger::MmapThread::disconnect()
9419 {
9420 ActiveTracks<MmapTrack> activeTracks;
9421 {
9422 Mutex::Autolock _l(mLock);
9423 for (const sp<MmapTrack> &t : mActiveTracks) {
9424 activeTracks.add(t);
9425 }
9426 }
9427 for (const sp<MmapTrack> &t : activeTracks) {
9428 stop(t->portId());
9429 }
9430 // This will decrement references and may cause the destruction of this thread.
9431 if (isOutput()) {
9432 AudioSystem::releaseOutput(mPortId);
9433 } else {
9434 AudioSystem::releaseInput(mPortId);
9435 }
9436 }
9437
9438
configure(const audio_attributes_t * attr,audio_stream_type_t streamType __unused,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)9439 void AudioFlinger::MmapThread::configure(const audio_attributes_t *attr,
9440 audio_stream_type_t streamType __unused,
9441 audio_session_t sessionId,
9442 const sp<MmapStreamCallback>& callback,
9443 audio_port_handle_t deviceId,
9444 audio_port_handle_t portId)
9445 {
9446 mAttr = *attr;
9447 mSessionId = sessionId;
9448 mCallback = callback;
9449 mDeviceId = deviceId;
9450 mPortId = portId;
9451 }
9452
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)9453 status_t AudioFlinger::MmapThread::createMmapBuffer(int32_t minSizeFrames,
9454 struct audio_mmap_buffer_info *info)
9455 {
9456 if (mHalStream == 0) {
9457 return NO_INIT;
9458 }
9459 mStandby = true;
9460 return mHalStream->createMmapBuffer(minSizeFrames, info);
9461 }
9462
getMmapPosition(struct audio_mmap_position * position)9463 status_t AudioFlinger::MmapThread::getMmapPosition(struct audio_mmap_position *position)
9464 {
9465 if (mHalStream == 0) {
9466 return NO_INIT;
9467 }
9468 return mHalStream->getMmapPosition(position);
9469 }
9470
exitStandby()9471 status_t AudioFlinger::MmapThread::exitStandby()
9472 {
9473 status_t ret = mHalStream->start();
9474 if (ret != NO_ERROR) {
9475 ALOGE("%s: error mHalStream->start() = %d for first track", __FUNCTION__, ret);
9476 return ret;
9477 }
9478 if (mStandby) {
9479 mThreadMetrics.logBeginInterval();
9480 mStandby = false;
9481 }
9482 return NO_ERROR;
9483 }
9484
start(const AudioClient & client,const audio_attributes_t * attr,audio_port_handle_t * handle)9485 status_t AudioFlinger::MmapThread::start(const AudioClient& client,
9486 const audio_attributes_t *attr,
9487 audio_port_handle_t *handle)
9488 {
9489 ALOGV("%s clientUid %d mStandby %d mPortId %d *handle %d", __FUNCTION__,
9490 client.attributionSource.uid, mStandby, mPortId, *handle);
9491 if (mHalStream == 0) {
9492 return NO_INIT;
9493 }
9494
9495 status_t ret;
9496
9497 if (*handle == mPortId) {
9498 // For the first track, reuse portId and session allocated when the stream was opened.
9499 ret = exitStandby();
9500 if (ret == NO_ERROR) {
9501 acquireWakeLock();
9502 }
9503 return ret;
9504 }
9505
9506 audio_port_handle_t portId = AUDIO_PORT_HANDLE_NONE;
9507
9508 audio_io_handle_t io = mId;
9509 if (isOutput()) {
9510 audio_config_t config = AUDIO_CONFIG_INITIALIZER;
9511 config.sample_rate = mSampleRate;
9512 config.channel_mask = mChannelMask;
9513 config.format = mFormat;
9514 audio_stream_type_t stream = streamType();
9515 audio_output_flags_t flags =
9516 (audio_output_flags_t)(AUDIO_OUTPUT_FLAG_MMAP_NOIRQ | AUDIO_OUTPUT_FLAG_DIRECT);
9517 audio_port_handle_t deviceId = mDeviceId;
9518 std::vector<audio_io_handle_t> secondaryOutputs;
9519 ret = AudioSystem::getOutputForAttr(&mAttr, &io,
9520 mSessionId,
9521 &stream,
9522 client.attributionSource,
9523 &config,
9524 flags,
9525 &deviceId,
9526 &portId,
9527 &secondaryOutputs);
9528 ALOGD_IF(!secondaryOutputs.empty(),
9529 "MmapThread::start does not support secondary outputs, ignoring them");
9530 } else {
9531 audio_config_base_t config;
9532 config.sample_rate = mSampleRate;
9533 config.channel_mask = mChannelMask;
9534 config.format = mFormat;
9535 audio_port_handle_t deviceId = mDeviceId;
9536 ret = AudioSystem::getInputForAttr(&mAttr, &io,
9537 RECORD_RIID_INVALID,
9538 mSessionId,
9539 client.attributionSource,
9540 &config,
9541 AUDIO_INPUT_FLAG_MMAP_NOIRQ,
9542 &deviceId,
9543 &portId);
9544 }
9545 // APM should not chose a different input or output stream for the same set of attributes
9546 // and audo configuration
9547 if (ret != NO_ERROR || io != mId) {
9548 ALOGE("%s: error getting output or input from APM (error %d, io %d expected io %d)",
9549 __FUNCTION__, ret, io, mId);
9550 return BAD_VALUE;
9551 }
9552
9553 if (isOutput()) {
9554 ret = AudioSystem::startOutput(portId);
9555 } else {
9556 ret = AudioSystem::startInput(portId);
9557 }
9558
9559 Mutex::Autolock _l(mLock);
9560 // abort if start is rejected by audio policy manager
9561 if (ret != NO_ERROR) {
9562 ALOGE("%s: error start rejected by AudioPolicyManager = %d", __FUNCTION__, ret);
9563 if (!mActiveTracks.isEmpty()) {
9564 mLock.unlock();
9565 if (isOutput()) {
9566 AudioSystem::releaseOutput(portId);
9567 } else {
9568 AudioSystem::releaseInput(portId);
9569 }
9570 mLock.lock();
9571 } else {
9572 mHalStream->stop();
9573 }
9574 return PERMISSION_DENIED;
9575 }
9576
9577 // Given that MmapThread::mAttr is mutable, should a MmapTrack have attributes ?
9578 sp<MmapTrack> track = new MmapTrack(this, attr == nullptr ? mAttr : *attr, mSampleRate, mFormat,
9579 mChannelMask, mSessionId, isOutput(),
9580 client.attributionSource,
9581 IPCThreadState::self()->getCallingPid(), portId);
9582
9583 if (isOutput()) {
9584 // force volume update when a new track is added
9585 mHalVolFloat = -1.0f;
9586 } else if (!track->isSilenced_l()) {
9587 for (const sp<MmapTrack> &t : mActiveTracks) {
9588 if (t->isSilenced_l() && t->uid() != client.attributionSource.uid)
9589 t->invalidate();
9590 }
9591 }
9592
9593
9594 mActiveTracks.add(track);
9595 sp<EffectChain> chain = getEffectChain_l(mSessionId);
9596 if (chain != 0) {
9597 chain->setStrategy(getStrategyForStream(streamType()));
9598 chain->incTrackCnt();
9599 chain->incActiveTrackCnt();
9600 }
9601
9602 track->logBeginInterval(patchSinksToString(&mPatch)); // log to MediaMetrics
9603 *handle = portId;
9604 broadcast_l();
9605
9606 ALOGV("%s DONE handle %d stream %p", __FUNCTION__, *handle, mHalStream.get());
9607
9608 return NO_ERROR;
9609 }
9610
stop(audio_port_handle_t handle)9611 status_t AudioFlinger::MmapThread::stop(audio_port_handle_t handle)
9612 {
9613 ALOGV("%s handle %d", __FUNCTION__, handle);
9614
9615 if (mHalStream == 0) {
9616 return NO_INIT;
9617 }
9618
9619 if (handle == mPortId) {
9620 mHalStream->stop();
9621 releaseWakeLock();
9622 return NO_ERROR;
9623 }
9624
9625 Mutex::Autolock _l(mLock);
9626
9627 sp<MmapTrack> track;
9628 for (const sp<MmapTrack> &t : mActiveTracks) {
9629 if (handle == t->portId()) {
9630 track = t;
9631 break;
9632 }
9633 }
9634 if (track == 0) {
9635 return BAD_VALUE;
9636 }
9637
9638 mActiveTracks.remove(track);
9639
9640 mLock.unlock();
9641 if (isOutput()) {
9642 AudioSystem::stopOutput(track->portId());
9643 AudioSystem::releaseOutput(track->portId());
9644 } else {
9645 AudioSystem::stopInput(track->portId());
9646 AudioSystem::releaseInput(track->portId());
9647 }
9648 mLock.lock();
9649
9650 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
9651 if (chain != 0) {
9652 chain->decActiveTrackCnt();
9653 chain->decTrackCnt();
9654 }
9655
9656 broadcast_l();
9657
9658 return NO_ERROR;
9659 }
9660
standby()9661 status_t AudioFlinger::MmapThread::standby()
9662 {
9663 ALOGV("%s", __FUNCTION__);
9664
9665 if (mHalStream == 0) {
9666 return NO_INIT;
9667 }
9668 if (!mActiveTracks.isEmpty()) {
9669 return INVALID_OPERATION;
9670 }
9671 mHalStream->standby();
9672 if (!mStandby) {
9673 mThreadMetrics.logEndInterval();
9674 mStandby = true;
9675 }
9676 releaseWakeLock();
9677 return NO_ERROR;
9678 }
9679
9680
readHalParameters_l()9681 void AudioFlinger::MmapThread::readHalParameters_l()
9682 {
9683 status_t result = mHalStream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
9684 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
9685 mFormat = mHALFormat;
9686 LOG_ALWAYS_FATAL_IF(!audio_is_linear_pcm(mFormat), "HAL format %#x is not linear pcm", mFormat);
9687 result = mHalStream->getFrameSize(&mFrameSize);
9688 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
9689 LOG_ALWAYS_FATAL_IF(mFrameSize <= 0, "Error frame size was %zu but must be greater than zero",
9690 mFrameSize);
9691 result = mHalStream->getBufferSize(&mBufferSize);
9692 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
9693 mFrameCount = mBufferSize / mFrameSize;
9694
9695 // TODO: make a readHalParameters call?
9696 mediametrics::LogItem item(mThreadMetrics.getMetricsId());
9697 item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS)
9698 .set(AMEDIAMETRICS_PROP_ENCODING, formatToString(mFormat).c_str())
9699 .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate)
9700 .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask)
9701 .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount)
9702 .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mFrameCount)
9703 /*
9704 .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str())
9705 .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELMASK,
9706 (int32_t)mHapticChannelMask)
9707 .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELCOUNT,
9708 (int32_t)mHapticChannelCount)
9709 */
9710 .set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_ENCODING,
9711 formatToString(mHALFormat).c_str())
9712 .set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_FRAMECOUNT,
9713 (int32_t)mFrameCount) // sic - added HAL
9714 .record();
9715 }
9716
threadLoop()9717 bool AudioFlinger::MmapThread::threadLoop()
9718 {
9719 checkSilentMode_l();
9720
9721 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
9722
9723 while (!exitPending())
9724 {
9725 Vector< sp<EffectChain> > effectChains;
9726
9727 { // under Thread lock
9728 Mutex::Autolock _l(mLock);
9729
9730 if (mSignalPending) {
9731 // A signal was raised while we were unlocked
9732 mSignalPending = false;
9733 } else {
9734 if (mConfigEvents.isEmpty()) {
9735 // we're about to wait, flush the binder command buffer
9736 IPCThreadState::self()->flushCommands();
9737
9738 if (exitPending()) {
9739 break;
9740 }
9741
9742 // wait until we have something to do...
9743 ALOGV("%s going to sleep", myName.string());
9744 mWaitWorkCV.wait(mLock);
9745 ALOGV("%s waking up", myName.string());
9746
9747 checkSilentMode_l();
9748
9749 continue;
9750 }
9751 }
9752
9753 processConfigEvents_l();
9754
9755 processVolume_l();
9756
9757 checkInvalidTracks_l();
9758
9759 mActiveTracks.updatePowerState(this);
9760
9761 updateMetadata_l();
9762
9763 lockEffectChains_l(effectChains);
9764 } // release Thread lock
9765
9766 for (size_t i = 0; i < effectChains.size(); i ++) {
9767 effectChains[i]->process_l(); // Thread is not locked, but effect chain is locked
9768 }
9769
9770 // enable changes in effect chain, including moving to another thread.
9771 unlockEffectChains(effectChains);
9772 // Effect chains will be actually deleted here if they were removed from
9773 // mEffectChains list during mixing or effects processing
9774 }
9775
9776 threadLoop_exit();
9777
9778 if (!mStandby) {
9779 threadLoop_standby();
9780 mStandby = true;
9781 }
9782
9783 ALOGV("Thread %p type %d exiting", this, mType);
9784 return false;
9785 }
9786
9787 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)9788 bool AudioFlinger::MmapThread::checkForNewParameter_l(const String8& keyValuePair,
9789 status_t& status)
9790 {
9791 AudioParameter param = AudioParameter(keyValuePair);
9792 int value;
9793 bool sendToHal = true;
9794 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
9795 LOG_FATAL("Should not happen set routing device in MmapThread");
9796 }
9797 if (sendToHal) {
9798 status = mHalStream->setParameters(keyValuePair);
9799 } else {
9800 status = NO_ERROR;
9801 }
9802
9803 return false;
9804 }
9805
getParameters(const String8 & keys)9806 String8 AudioFlinger::MmapThread::getParameters(const String8& keys)
9807 {
9808 Mutex::Autolock _l(mLock);
9809 String8 out_s8;
9810 if (initCheck() == NO_ERROR && mHalStream->getParameters(keys, &out_s8) == OK) {
9811 return out_s8;
9812 }
9813 return String8();
9814 }
9815
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId __unused)9816 void AudioFlinger::MmapThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
9817 audio_port_handle_t portId __unused) {
9818 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
9819
9820 desc->mIoHandle = mId;
9821
9822 switch (event) {
9823 case AUDIO_INPUT_OPENED:
9824 case AUDIO_INPUT_REGISTERED:
9825 case AUDIO_INPUT_CONFIG_CHANGED:
9826 case AUDIO_OUTPUT_OPENED:
9827 case AUDIO_OUTPUT_REGISTERED:
9828 case AUDIO_OUTPUT_CONFIG_CHANGED:
9829 desc->mPatch = mPatch;
9830 desc->mChannelMask = mChannelMask;
9831 desc->mSamplingRate = mSampleRate;
9832 desc->mFormat = mFormat;
9833 desc->mFrameCount = mFrameCount;
9834 desc->mFrameCountHAL = mFrameCount;
9835 desc->mLatency = 0;
9836 break;
9837
9838 case AUDIO_INPUT_CLOSED:
9839 case AUDIO_OUTPUT_CLOSED:
9840 default:
9841 break;
9842 }
9843 mAudioFlinger->ioConfigChanged(event, desc, pid);
9844 }
9845
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)9846 status_t AudioFlinger::MmapThread::createAudioPatch_l(const struct audio_patch *patch,
9847 audio_patch_handle_t *handle)
9848 {
9849 status_t status = NO_ERROR;
9850
9851 // store new device and send to effects
9852 audio_devices_t type = AUDIO_DEVICE_NONE;
9853 audio_port_handle_t deviceId;
9854 AudioDeviceTypeAddrVector sinkDeviceTypeAddrs;
9855 AudioDeviceTypeAddr sourceDeviceTypeAddr;
9856 uint32_t numDevices = 0;
9857 if (isOutput()) {
9858 for (unsigned int i = 0; i < patch->num_sinks; i++) {
9859 LOG_ALWAYS_FATAL_IF(popcount(patch->sinks[i].ext.device.type) > 1
9860 && !mAudioHwDev->supportsAudioPatches(),
9861 "Enumerated device type(%#x) must not be used "
9862 "as it does not support audio patches",
9863 patch->sinks[i].ext.device.type);
9864 type = static_cast<audio_devices_t>(type | patch->sinks[i].ext.device.type);
9865 sinkDeviceTypeAddrs.push_back(AudioDeviceTypeAddr(patch->sinks[i].ext.device.type,
9866 patch->sinks[i].ext.device.address));
9867 }
9868 deviceId = patch->sinks[0].id;
9869 numDevices = mPatch.num_sinks;
9870 } else {
9871 type = patch->sources[0].ext.device.type;
9872 deviceId = patch->sources[0].id;
9873 numDevices = mPatch.num_sources;
9874 sourceDeviceTypeAddr.mType = patch->sources[0].ext.device.type;
9875 sourceDeviceTypeAddr.setAddress(patch->sources[0].ext.device.address);
9876 }
9877
9878 for (size_t i = 0; i < mEffectChains.size(); i++) {
9879 if (isOutput()) {
9880 mEffectChains[i]->setDevices_l(sinkDeviceTypeAddrs);
9881 } else {
9882 mEffectChains[i]->setInputDevice_l(sourceDeviceTypeAddr);
9883 }
9884 }
9885
9886 if (!isOutput()) {
9887 // store new source and send to effects
9888 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
9889 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
9890 for (size_t i = 0; i < mEffectChains.size(); i++) {
9891 mEffectChains[i]->setAudioSource_l(mAudioSource);
9892 }
9893 }
9894 }
9895
9896 if (mAudioHwDev->supportsAudioPatches()) {
9897 status = mHalDevice->createAudioPatch(patch->num_sources,
9898 patch->sources,
9899 patch->num_sinks,
9900 patch->sinks,
9901 handle);
9902 } else {
9903 char *address;
9904 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
9905 //FIXME: we only support address on first sink with HAL version < 3.0
9906 address = audio_device_address_to_parameter(
9907 patch->sinks[0].ext.device.type,
9908 patch->sinks[0].ext.device.address);
9909 } else {
9910 address = (char *)calloc(1, 1);
9911 }
9912 AudioParameter param = AudioParameter(String8(address));
9913 free(address);
9914 param.addInt(String8(AudioParameter::keyRouting), (int)type);
9915 if (!isOutput()) {
9916 param.addInt(String8(AudioParameter::keyInputSource),
9917 (int)patch->sinks[0].ext.mix.usecase.source);
9918 }
9919 status = mHalStream->setParameters(param.toString());
9920 *handle = AUDIO_PATCH_HANDLE_NONE;
9921 }
9922
9923 if (numDevices == 0 || mDeviceId != deviceId) {
9924 if (isOutput()) {
9925 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
9926 mOutDeviceTypeAddrs = sinkDeviceTypeAddrs;
9927 checkSilentMode_l();
9928 } else {
9929 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
9930 mInDeviceTypeAddr = sourceDeviceTypeAddr;
9931 }
9932 sp<MmapStreamCallback> callback = mCallback.promote();
9933 if (mDeviceId != deviceId && callback != 0) {
9934 mLock.unlock();
9935 callback->onRoutingChanged(deviceId);
9936 mLock.lock();
9937 }
9938 mPatch = *patch;
9939 mDeviceId = deviceId;
9940 }
9941 return status;
9942 }
9943
releaseAudioPatch_l(const audio_patch_handle_t handle)9944 status_t AudioFlinger::MmapThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
9945 {
9946 status_t status = NO_ERROR;
9947
9948 mPatch = audio_patch{};
9949 mOutDeviceTypeAddrs.clear();
9950 mInDeviceTypeAddr.reset();
9951
9952 bool supportsAudioPatches = mHalDevice->supportsAudioPatches(&supportsAudioPatches) == OK ?
9953 supportsAudioPatches : false;
9954
9955 if (supportsAudioPatches) {
9956 status = mHalDevice->releaseAudioPatch(handle);
9957 } else {
9958 AudioParameter param;
9959 param.addInt(String8(AudioParameter::keyRouting), 0);
9960 status = mHalStream->setParameters(param.toString());
9961 }
9962 return status;
9963 }
9964
toAudioPortConfig(struct audio_port_config * config)9965 void AudioFlinger::MmapThread::toAudioPortConfig(struct audio_port_config *config)
9966 {
9967 ThreadBase::toAudioPortConfig(config);
9968 if (isOutput()) {
9969 config->role = AUDIO_PORT_ROLE_SOURCE;
9970 config->ext.mix.hw_module = mAudioHwDev->handle();
9971 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
9972 } else {
9973 config->role = AUDIO_PORT_ROLE_SINK;
9974 config->ext.mix.hw_module = mAudioHwDev->handle();
9975 config->ext.mix.usecase.source = mAudioSource;
9976 }
9977 }
9978
addEffectChain_l(const sp<EffectChain> & chain)9979 status_t AudioFlinger::MmapThread::addEffectChain_l(const sp<EffectChain>& chain)
9980 {
9981 audio_session_t session = chain->sessionId();
9982
9983 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
9984 // Attach all tracks with same session ID to this chain.
9985 // indicate all active tracks in the chain
9986 for (const sp<MmapTrack> &track : mActiveTracks) {
9987 if (session == track->sessionId()) {
9988 chain->incTrackCnt();
9989 chain->incActiveTrackCnt();
9990 }
9991 }
9992
9993 chain->setThread(this);
9994 chain->setInBuffer(nullptr);
9995 chain->setOutBuffer(nullptr);
9996 chain->syncHalEffectsState();
9997
9998 mEffectChains.add(chain);
9999 checkSuspendOnAddEffectChain_l(chain);
10000 return NO_ERROR;
10001 }
10002
removeEffectChain_l(const sp<EffectChain> & chain)10003 size_t AudioFlinger::MmapThread::removeEffectChain_l(const sp<EffectChain>& chain)
10004 {
10005 audio_session_t session = chain->sessionId();
10006
10007 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
10008
10009 for (size_t i = 0; i < mEffectChains.size(); i++) {
10010 if (chain == mEffectChains[i]) {
10011 mEffectChains.removeAt(i);
10012 // detach all active tracks from the chain
10013 // detach all tracks with same session ID from this chain
10014 for (const sp<MmapTrack> &track : mActiveTracks) {
10015 if (session == track->sessionId()) {
10016 chain->decActiveTrackCnt();
10017 chain->decTrackCnt();
10018 }
10019 }
10020 break;
10021 }
10022 }
10023 return mEffectChains.size();
10024 }
10025
threadLoop_standby()10026 void AudioFlinger::MmapThread::threadLoop_standby()
10027 {
10028 mHalStream->standby();
10029 }
10030
threadLoop_exit()10031 void AudioFlinger::MmapThread::threadLoop_exit()
10032 {
10033 // Do not call callback->onTearDown() because it is redundant for thread exit
10034 // and because it can cause a recursive mutex lock on stop().
10035 }
10036
setSyncEvent(const sp<SyncEvent> & event __unused)10037 status_t AudioFlinger::MmapThread::setSyncEvent(const sp<SyncEvent>& event __unused)
10038 {
10039 return BAD_VALUE;
10040 }
10041
isValidSyncEvent(const sp<SyncEvent> & event __unused) const10042 bool AudioFlinger::MmapThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
10043 {
10044 return false;
10045 }
10046
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)10047 status_t AudioFlinger::MmapThread::checkEffectCompatibility_l(
10048 const effect_descriptor_t *desc, audio_session_t sessionId)
10049 {
10050 // No global effect sessions on mmap threads
10051 if (audio_is_global_session(sessionId)) {
10052 ALOGW("checkEffectCompatibility_l(): global effect %s on MMAP thread %s",
10053 desc->name, mThreadName);
10054 return BAD_VALUE;
10055 }
10056
10057 if (!isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC)) {
10058 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on capture mmap thread",
10059 desc->name);
10060 return BAD_VALUE;
10061 }
10062 if (isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
10063 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback mmap "
10064 "thread", desc->name);
10065 return BAD_VALUE;
10066 }
10067
10068 // Only allow effects without processing load or latency
10069 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) != EFFECT_FLAG_NO_PROCESS) {
10070 return BAD_VALUE;
10071 }
10072
10073 if (EffectModule::isHapticGenerator(&desc->type)) {
10074 ALOGE("%s(): HapticGenerator is not supported for MmapThread", __func__);
10075 return BAD_VALUE;
10076 }
10077
10078 return NO_ERROR;
10079 }
10080
checkInvalidTracks_l()10081 void AudioFlinger::MmapThread::checkInvalidTracks_l()
10082 {
10083 for (const sp<MmapTrack> &track : mActiveTracks) {
10084 if (track->isInvalid()) {
10085 sp<MmapStreamCallback> callback = mCallback.promote();
10086 if (callback != 0) {
10087 mLock.unlock();
10088 callback->onTearDown(track->portId());
10089 mLock.lock();
10090 } else if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
10091 ALOGW("Could not notify MMAP stream tear down: no onTearDown callback!");
10092 mNoCallbackWarningCount++;
10093 }
10094 }
10095 }
10096 }
10097
dumpInternals_l(int fd,const Vector<String16> & args __unused)10098 void AudioFlinger::MmapThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
10099 {
10100 dprintf(fd, " Attributes: content type %d usage %d source %d\n",
10101 mAttr.content_type, mAttr.usage, mAttr.source);
10102 dprintf(fd, " Session: %d port Id: %d\n", mSessionId, mPortId);
10103 if (mActiveTracks.isEmpty()) {
10104 dprintf(fd, " No active clients\n");
10105 }
10106 }
10107
dumpTracks_l(int fd,const Vector<String16> & args __unused)10108 void AudioFlinger::MmapThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
10109 {
10110 String8 result;
10111 size_t numtracks = mActiveTracks.size();
10112 dprintf(fd, " %zu Tracks\n", numtracks);
10113 const char *prefix = " ";
10114 if (numtracks) {
10115 result.append(prefix);
10116 mActiveTracks[0]->appendDumpHeader(result);
10117 for (size_t i = 0; i < numtracks ; ++i) {
10118 sp<MmapTrack> track = mActiveTracks[i];
10119 result.append(prefix);
10120 track->appendDump(result, true /* active */);
10121 }
10122 } else {
10123 dprintf(fd, "\n");
10124 }
10125 write(fd, result.string(), result.size());
10126 }
10127
MmapPlaybackThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamOut * output,bool systemReady)10128 AudioFlinger::MmapPlaybackThread::MmapPlaybackThread(
10129 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
10130 AudioHwDevice *hwDev, AudioStreamOut *output, bool systemReady)
10131 : MmapThread(audioFlinger, id, hwDev, output->stream, systemReady, true /* isOut */),
10132 mStreamType(AUDIO_STREAM_MUSIC),
10133 mStreamVolume(1.0),
10134 mStreamMute(false),
10135 mOutput(output)
10136 {
10137 snprintf(mThreadName, kThreadNameLength, "AudioMmapOut_%X", id);
10138 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
10139 mMasterVolume = audioFlinger->masterVolume_l();
10140 mMasterMute = audioFlinger->masterMute_l();
10141 if (mAudioHwDev) {
10142 if (mAudioHwDev->canSetMasterVolume()) {
10143 mMasterVolume = 1.0;
10144 }
10145
10146 if (mAudioHwDev->canSetMasterMute()) {
10147 mMasterMute = false;
10148 }
10149 }
10150 }
10151
configure(const audio_attributes_t * attr,audio_stream_type_t streamType,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)10152 void AudioFlinger::MmapPlaybackThread::configure(const audio_attributes_t *attr,
10153 audio_stream_type_t streamType,
10154 audio_session_t sessionId,
10155 const sp<MmapStreamCallback>& callback,
10156 audio_port_handle_t deviceId,
10157 audio_port_handle_t portId)
10158 {
10159 MmapThread::configure(attr, streamType, sessionId, callback, deviceId, portId);
10160 mStreamType = streamType;
10161 }
10162
clearOutput()10163 AudioStreamOut* AudioFlinger::MmapPlaybackThread::clearOutput()
10164 {
10165 Mutex::Autolock _l(mLock);
10166 AudioStreamOut *output = mOutput;
10167 mOutput = NULL;
10168 return output;
10169 }
10170
setMasterVolume(float value)10171 void AudioFlinger::MmapPlaybackThread::setMasterVolume(float value)
10172 {
10173 Mutex::Autolock _l(mLock);
10174 // Don't apply master volume in SW if our HAL can do it for us.
10175 if (mAudioHwDev &&
10176 mAudioHwDev->canSetMasterVolume()) {
10177 mMasterVolume = 1.0;
10178 } else {
10179 mMasterVolume = value;
10180 }
10181 }
10182
setMasterMute(bool muted)10183 void AudioFlinger::MmapPlaybackThread::setMasterMute(bool muted)
10184 {
10185 Mutex::Autolock _l(mLock);
10186 // Don't apply master mute in SW if our HAL can do it for us.
10187 if (mAudioHwDev && mAudioHwDev->canSetMasterMute()) {
10188 mMasterMute = false;
10189 } else {
10190 mMasterMute = muted;
10191 }
10192 }
10193
setStreamVolume(audio_stream_type_t stream,float value)10194 void AudioFlinger::MmapPlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
10195 {
10196 Mutex::Autolock _l(mLock);
10197 if (stream == mStreamType) {
10198 mStreamVolume = value;
10199 broadcast_l();
10200 }
10201 }
10202
streamVolume(audio_stream_type_t stream) const10203 float AudioFlinger::MmapPlaybackThread::streamVolume(audio_stream_type_t stream) const
10204 {
10205 Mutex::Autolock _l(mLock);
10206 if (stream == mStreamType) {
10207 return mStreamVolume;
10208 }
10209 return 0.0f;
10210 }
10211
setStreamMute(audio_stream_type_t stream,bool muted)10212 void AudioFlinger::MmapPlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
10213 {
10214 Mutex::Autolock _l(mLock);
10215 if (stream == mStreamType) {
10216 mStreamMute= muted;
10217 broadcast_l();
10218 }
10219 }
10220
invalidateTracks(audio_stream_type_t streamType)10221 void AudioFlinger::MmapPlaybackThread::invalidateTracks(audio_stream_type_t streamType)
10222 {
10223 Mutex::Autolock _l(mLock);
10224 if (streamType == mStreamType) {
10225 for (const sp<MmapTrack> &track : mActiveTracks) {
10226 track->invalidate();
10227 }
10228 broadcast_l();
10229 }
10230 }
10231
processVolume_l()10232 void AudioFlinger::MmapPlaybackThread::processVolume_l()
10233 {
10234 float volume;
10235
10236 if (mMasterMute || mStreamMute) {
10237 volume = 0;
10238 } else {
10239 volume = mMasterVolume * mStreamVolume;
10240 }
10241
10242 if (volume != mHalVolFloat) {
10243
10244 // Convert volumes from float to 8.24
10245 uint32_t vol = (uint32_t)(volume * (1 << 24));
10246
10247 // Delegate volume control to effect in track effect chain if needed
10248 // only one effect chain can be present on DirectOutputThread, so if
10249 // there is one, the track is connected to it
10250 if (!mEffectChains.isEmpty()) {
10251 mEffectChains[0]->setVolume_l(&vol, &vol);
10252 volume = (float)vol / (1 << 24);
10253 }
10254 // Try to use HW volume control and fall back to SW control if not implemented
10255 if (mOutput->stream->setVolume(volume, volume) == NO_ERROR) {
10256 mHalVolFloat = volume; // HW volume control worked, so update value.
10257 mNoCallbackWarningCount = 0;
10258 } else {
10259 sp<MmapStreamCallback> callback = mCallback.promote();
10260 if (callback != 0) {
10261 int channelCount;
10262 if (isOutput()) {
10263 channelCount = audio_channel_count_from_out_mask(mChannelMask);
10264 } else {
10265 channelCount = audio_channel_count_from_in_mask(mChannelMask);
10266 }
10267 Vector<float> values;
10268 for (int i = 0; i < channelCount; i++) {
10269 values.add(volume);
10270 }
10271 mHalVolFloat = volume; // SW volume control worked, so update value.
10272 mNoCallbackWarningCount = 0;
10273 mLock.unlock();
10274 callback->onVolumeChanged(mChannelMask, values);
10275 mLock.lock();
10276 } else {
10277 if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
10278 ALOGW("Could not set MMAP stream volume: no volume callback!");
10279 mNoCallbackWarningCount++;
10280 }
10281 }
10282 }
10283 for (const sp<MmapTrack> &track : mActiveTracks) {
10284 track->setMetadataHasChanged();
10285 }
10286 }
10287 }
10288
updateMetadata_l()10289 void AudioFlinger::MmapPlaybackThread::updateMetadata_l()
10290 {
10291 if (!isStreamInitialized() || !mActiveTracks.readAndClearHasChanged()) {
10292 return; // nothing to do
10293 }
10294 StreamOutHalInterface::SourceMetadata metadata;
10295 for (const sp<MmapTrack> &track : mActiveTracks) {
10296 // No track is invalid as this is called after prepareTrack_l in the same critical section
10297 playback_track_metadata_v7_t trackMetadata;
10298 trackMetadata.base = {
10299 .usage = track->attributes().usage,
10300 .content_type = track->attributes().content_type,
10301 .gain = mHalVolFloat, // TODO: propagate from aaudio pre-mix volume
10302 };
10303 trackMetadata.channel_mask = track->channelMask(),
10304 strncpy(trackMetadata.tags, track->attributes().tags, AUDIO_ATTRIBUTES_TAGS_MAX_SIZE);
10305 metadata.tracks.push_back(trackMetadata);
10306 }
10307 mOutput->stream->updateSourceMetadata(metadata);
10308 }
10309
checkSilentMode_l()10310 void AudioFlinger::MmapPlaybackThread::checkSilentMode_l()
10311 {
10312 if (!mMasterMute) {
10313 char value[PROPERTY_VALUE_MAX];
10314 if (property_get("ro.audio.silent", value, "0") > 0) {
10315 char *endptr;
10316 unsigned long ul = strtoul(value, &endptr, 0);
10317 if (*endptr == '\0' && ul != 0) {
10318 ALOGD("Silence is golden");
10319 // The setprop command will not allow a property to be changed after
10320 // the first time it is set, so we don't have to worry about un-muting.
10321 setMasterMute_l(true);
10322 }
10323 }
10324 }
10325 }
10326
toAudioPortConfig(struct audio_port_config * config)10327 void AudioFlinger::MmapPlaybackThread::toAudioPortConfig(struct audio_port_config *config)
10328 {
10329 MmapThread::toAudioPortConfig(config);
10330 if (mOutput && mOutput->flags != AUDIO_OUTPUT_FLAG_NONE) {
10331 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
10332 config->flags.output = mOutput->flags;
10333 }
10334 }
10335
getExternalPosition(uint64_t * position,int64_t * timeNanos)10336 status_t AudioFlinger::MmapPlaybackThread::getExternalPosition(uint64_t *position,
10337 int64_t *timeNanos)
10338 {
10339 if (mOutput == nullptr) {
10340 return NO_INIT;
10341 }
10342 struct timespec timestamp;
10343 status_t status = mOutput->getPresentationPosition(position, ×tamp);
10344 if (status == NO_ERROR) {
10345 *timeNanos = timestamp.tv_sec * NANOS_PER_SECOND + timestamp.tv_nsec;
10346 }
10347 return status;
10348 }
10349
dumpInternals_l(int fd,const Vector<String16> & args)10350 void AudioFlinger::MmapPlaybackThread::dumpInternals_l(int fd, const Vector<String16>& args)
10351 {
10352 MmapThread::dumpInternals_l(fd, args);
10353
10354 dprintf(fd, " Stream type: %d Stream volume: %f HAL volume: %f Stream mute %d\n",
10355 mStreamType, mStreamVolume, mHalVolFloat, mStreamMute);
10356 dprintf(fd, " Master volume: %f Master mute %d\n", mMasterVolume, mMasterMute);
10357 }
10358
MmapCaptureThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamIn * input,bool systemReady)10359 AudioFlinger::MmapCaptureThread::MmapCaptureThread(
10360 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
10361 AudioHwDevice *hwDev, AudioStreamIn *input, bool systemReady)
10362 : MmapThread(audioFlinger, id, hwDev, input->stream, systemReady, false /* isOut */),
10363 mInput(input)
10364 {
10365 snprintf(mThreadName, kThreadNameLength, "AudioMmapIn_%X", id);
10366 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
10367 }
10368
exitStandby()10369 status_t AudioFlinger::MmapCaptureThread::exitStandby()
10370 {
10371 {
10372 // mInput might have been cleared by clearInput()
10373 Mutex::Autolock _l(mLock);
10374 if (mInput != nullptr && mInput->stream != nullptr) {
10375 mInput->stream->setGain(1.0f);
10376 }
10377 }
10378 return MmapThread::exitStandby();
10379 }
10380
clearInput()10381 AudioFlinger::AudioStreamIn* AudioFlinger::MmapCaptureThread::clearInput()
10382 {
10383 Mutex::Autolock _l(mLock);
10384 AudioStreamIn *input = mInput;
10385 mInput = NULL;
10386 return input;
10387 }
10388
10389
processVolume_l()10390 void AudioFlinger::MmapCaptureThread::processVolume_l()
10391 {
10392 bool changed = false;
10393 bool silenced = false;
10394
10395 sp<MmapStreamCallback> callback = mCallback.promote();
10396 if (callback == 0) {
10397 if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
10398 ALOGW("Could not set MMAP stream silenced: no onStreamSilenced callback!");
10399 mNoCallbackWarningCount++;
10400 }
10401 }
10402
10403 // After a change occurred in track silenced state, mute capture in audio DSP if at least one
10404 // track is silenced and unmute otherwise
10405 for (size_t i = 0; i < mActiveTracks.size() && !silenced; i++) {
10406 if (!mActiveTracks[i]->getAndSetSilencedNotified_l()) {
10407 changed = true;
10408 silenced = mActiveTracks[i]->isSilenced_l();
10409 }
10410 }
10411
10412 if (changed) {
10413 mInput->stream->setGain(silenced ? 0.0f: 1.0f);
10414 }
10415 }
10416
updateMetadata_l()10417 void AudioFlinger::MmapCaptureThread::updateMetadata_l()
10418 {
10419 if (!isStreamInitialized() || !mActiveTracks.readAndClearHasChanged()) {
10420 return; // nothing to do
10421 }
10422 StreamInHalInterface::SinkMetadata metadata;
10423 for (const sp<MmapTrack> &track : mActiveTracks) {
10424 // No track is invalid as this is called after prepareTrack_l in the same critical section
10425 record_track_metadata_v7_t trackMetadata;
10426 trackMetadata.base = {
10427 .source = track->attributes().source,
10428 .gain = 1, // capture tracks do not have volumes
10429 };
10430 trackMetadata.channel_mask = track->channelMask(),
10431 strncpy(trackMetadata.tags, track->attributes().tags, AUDIO_ATTRIBUTES_TAGS_MAX_SIZE);
10432 metadata.tracks.push_back(trackMetadata);
10433 }
10434 mInput->stream->updateSinkMetadata(metadata);
10435 }
10436
setRecordSilenced(audio_port_handle_t portId,bool silenced)10437 void AudioFlinger::MmapCaptureThread::setRecordSilenced(audio_port_handle_t portId, bool silenced)
10438 {
10439 Mutex::Autolock _l(mLock);
10440 for (size_t i = 0; i < mActiveTracks.size() ; i++) {
10441 if (mActiveTracks[i]->portId() == portId) {
10442 mActiveTracks[i]->setSilenced_l(silenced);
10443 broadcast_l();
10444 }
10445 }
10446 }
10447
toAudioPortConfig(struct audio_port_config * config)10448 void AudioFlinger::MmapCaptureThread::toAudioPortConfig(struct audio_port_config *config)
10449 {
10450 MmapThread::toAudioPortConfig(config);
10451 if (mInput && mInput->flags != AUDIO_INPUT_FLAG_NONE) {
10452 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
10453 config->flags.input = mInput->flags;
10454 }
10455 }
10456
getExternalPosition(uint64_t * position,int64_t * timeNanos)10457 status_t AudioFlinger::MmapCaptureThread::getExternalPosition(
10458 uint64_t *position, int64_t *timeNanos)
10459 {
10460 if (mInput == nullptr) {
10461 return NO_INIT;
10462 }
10463 return mInput->getCapturePosition((int64_t*)position, timeNanos);
10464 }
10465
10466 } // namespace android
10467