1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Operations"
18 
19 #include <algorithm>
20 #include <cfloat>
21 #include <cmath>
22 #include <memory>
23 #include <vector>
24 
25 #include "OperationResolver.h"
26 #include "Tracing.h"
27 
28 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
29 #include <tensorflow/lite/kernels/internal/common.h>
30 
31 #include "CpuOperationUtils.h"
32 #endif  // NN_INCLUDE_CPU_IMPLEMENTATION
33 
34 namespace android {
35 namespace nn {
36 namespace transpose_conv_2d {
37 
38 constexpr char kOperationName[] = "TRANSPOSE_CONV_2D";
39 
40 constexpr uint32_t kInputTensor = 0;
41 constexpr uint32_t kFilterTensor = 1;
42 constexpr uint32_t kBiasTensor = 2;
43 
44 constexpr uint32_t kNumInputs1 = 9;
45 constexpr uint32_t kNumInputs2 = 11;
46 constexpr uint32_t kNumOutputs = 1;
47 constexpr uint32_t kOutputTensor = 0;
48 
49 namespace {
50 
51 // If possible we will use this static buffer for the tensor.
52 constexpr size_t kStaticBufferSize = 1605632;
53 char static_scratch_buffer[kStaticBufferSize];
54 
55 // executionMutex is used to protect concurrent access of the static_scratch_buffer.
56 // std::mutex is safe for pthreads on Android.
57 std::mutex executionMutex;
58 
59 struct TransposeConv2dParam {
60     int32_t paddingLeft, paddingRight;
61     int32_t paddingTop, paddingBottom;
62     int32_t strideWidth, strideHeight;
63     int32_t activation;
64     bool useNchw = false;
65 
initializeandroid::nn::transpose_conv_2d::__anon57f3627b0110::TransposeConv2dParam66     bool initialize(const IOperationExecutionContext* context) {
67         uint32_t inCount = context->getNumInputs();
68         int32_t paddingImplicit = 0;
69         if (inCount == 9) {
70             paddingImplicit = context->getInputValue<int32_t>(4);
71             strideWidth = context->getInputValue<int32_t>(5);
72             strideHeight = context->getInputValue<int32_t>(6);
73             activation = context->getInputValue<int32_t>(7);
74             useNchw = context->getInputValue<bool>(8);
75             Shape filterShape = context->getInputShape(kFilterTensor);
76             int32_t filterWidth = getSizeOfDimension(filterShape, 2);
77             int32_t filterHeight = getSizeOfDimension(filterShape, 1);
78             NN_RET_CHECK_EQ(getNumberOfDimensions(context->getInputShape(3)), 1);
79             NN_RET_CHECK_EQ(getSizeOfDimension(context->getInputShape(3), 0), 4);
80             const int32_t* outputShapeData = context->getInputBuffer<int32_t>(3);
81             int32_t outputWidth = useNchw ? outputShapeData[3] : outputShapeData[2];
82             int32_t outputHeight = useNchw ? outputShapeData[2] : outputShapeData[1];
83             calculateExplicitPaddingTransposeConv(outputWidth, strideWidth, filterWidth,
84                                                   paddingImplicit, &paddingLeft, &paddingRight);
85             calculateExplicitPaddingTransposeConv(outputHeight, strideHeight, filterHeight,
86                                                   paddingImplicit, &paddingTop, &paddingBottom);
87         } else if (inCount == 11) {
88             paddingLeft = context->getInputValue<int32_t>(3);
89             paddingRight = context->getInputValue<int32_t>(4);
90             paddingTop = context->getInputValue<int32_t>(5);
91             paddingBottom = context->getInputValue<int32_t>(6);
92             strideWidth = context->getInputValue<int32_t>(7);
93             strideHeight = context->getInputValue<int32_t>(8);
94             activation = context->getInputValue<int32_t>(9);
95             useNchw = context->getInputValue<bool>(10);
96         } else {
97             NN_RET_CHECK_FAIL() << "Unsupported input spec for operation " << kOperationName;
98         }
99         // paddingRight and paddingBottom in transpose conv may be less than 0 to resolve the
100         // ambiguous output shape issue in the case of stride > 1.
101         NN_RET_CHECK_GE(paddingLeft, 0);
102         NN_RET_CHECK_GE(paddingTop, 0);
103         NN_RET_CHECK_GT(strideWidth, 0);
104         NN_RET_CHECK_GT(strideHeight, 0);
105         NN_RET_CHECK_GE(activation, 0);
106         return true;
107     }
108 };
109 
110 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
111 #define ANDROID_NN_TRANSPOSE_CONV_PARAMETERS                                    \
112     uint32_t numBatches = getSizeOfDimension(inputShape, 0);                    \
113     uint32_t inputHeight = getSizeOfDimension(inputShape, 1);                   \
114     uint32_t inputWidth = getSizeOfDimension(inputShape, 2);                    \
115     uint32_t inputDepth = getSizeOfDimension(inputShape, 3);                    \
116     uint32_t filterHeight = getSizeOfDimension(filterShape, 1);                 \
117     uint32_t filterWidth = getSizeOfDimension(filterShape, 2);                  \
118     uint32_t outputHeight = getSizeOfDimension(outputShape, 1);                 \
119     uint32_t outputWidth = getSizeOfDimension(outputShape, 2);                  \
120     uint32_t outputDepth = getSizeOfDimension(outputShape, 3);                  \
121     int32_t paddingLeft = param.paddingLeft, paddingRight = param.paddingRight; \
122     int32_t paddingTop = param.paddingTop, paddingBottom = param.paddingBottom; \
123     int32_t strideWidth = param.strideWidth, strideHeight = param.strideHeight; \
124     int32_t activation = param.activation;
125 
transposeConvNhwc(const float * inputData,const Shape & inputShape,const float * filterData,const Shape & filterShape,const float * biasData,const Shape & biasShape,const TransposeConv2dParam & param,float * outputData,const Shape & outputShape)126 bool transposeConvNhwc(const float* inputData, const Shape& inputShape, const float* filterData,
127                        const Shape& filterShape, const float* biasData, const Shape& biasShape,
128                        const TransposeConv2dParam& param, float* outputData,
129                        const Shape& outputShape) {
130     NNTRACE_TRANS("transposeConvFloat32");
131     ANDROID_NN_TRANSPOSE_CONV_PARAMETERS
132 
133     float outputActivationMin = 0.0f, outputActivationMax = 0.0f;
134     CalculateActivationRangeFloat(activation, &outputActivationMin, &outputActivationMax);
135 
136     memset(outputData, 0, getNumberOfElements(outputShape) * sizeof(float));
137 
138     const float* inputBase = inputData;
139     float* outputBase = outputData;
140     for (uint32_t b = 0; b < numBatches; b++) {
141         for (uint32_t h = 0; h < inputHeight; h++) {
142             for (uint32_t w = 0; w < inputWidth; w++) {
143                 int32_t wOutputOrigin = static_cast<int32_t>(w) * strideWidth - paddingLeft;
144                 int32_t hOutputOrigin = static_cast<int32_t>(h) * strideHeight - paddingTop;
145 
146                 const float* filterBase = filterData;
147                 for (uint32_t k = 0; k < outputDepth; k++) {
148                     for (uint32_t i = 0; i < filterHeight; i++) {
149                         for (uint32_t j = 0; j < filterWidth; j++, filterBase += inputDepth) {
150                             int32_t hOutput = hOutputOrigin + static_cast<int32_t>(i);
151                             int32_t wOutput = wOutputOrigin + static_cast<int32_t>(j);
152                             if (hOutput >= 0 && hOutput < static_cast<int32_t>(outputHeight) &&
153                                 wOutput >= 0 && wOutput < static_cast<int32_t>(outputWidth)) {
154                                 for (uint32_t d = 0; d < inputDepth; d++) {
155                                     uint32_t outputIndex = hOutput * outputWidth * outputDepth +
156                                                            wOutput * outputDepth + k;
157                                     outputBase[outputIndex] += inputBase[d] * filterBase[d];
158                                 }
159                             }
160                         }
161                     }
162                 }
163 
164                 inputBase += inputDepth;
165             }
166         }
167         outputBase += outputHeight * outputWidth * outputDepth;
168     }
169 
170     const uint32_t outerSize = numBatches * outputHeight * outputWidth;
171     float* outPtr = outputData;
172     for (uint32_t i = 0; i < outerSize; i++) {
173         for (uint32_t d = 0; d < outputDepth; d++, outPtr++) {
174             *outPtr += biasData[d];
175             *outPtr = std::max(std::min(*outPtr, outputActivationMax), outputActivationMin);
176         }
177     }
178 
179     return true;
180 }
181 
182 template <typename T>
transposeConvNhwc(const T * inputData,const Shape & inputShape,const T * filterData,const Shape & filterShape,const int32_t * biasData,const Shape & biasShape,const TransposeConv2dParam & param,T * outputData,const Shape & outputShape)183 bool transposeConvNhwc(const T* inputData, const Shape& inputShape, const T* filterData,
184                        const Shape& filterShape, const int32_t* biasData, const Shape& biasShape,
185                        const TransposeConv2dParam& param, T* outputData, const Shape& outputShape) {
186     NNTRACE_TRANS("transposeConvQuant8");
187     ANDROID_NN_TRANSPOSE_CONV_PARAMETERS
188 
189     int32_t* tempBuffer = nullptr;
190     std::unique_ptr<int32_t[]> bufferGuard;
191     uint32_t tempBufferByteSize = getNumberOfElements(outputShape) * sizeof(int32_t);
192     if (tempBufferByteSize <= kStaticBufferSize) {
193         tempBuffer = reinterpret_cast<int32_t*>(static_scratch_buffer);
194     } else {
195         tempBuffer = new (std::nothrow) int32_t[tempBufferByteSize / sizeof(int32_t)];
196         if (tempBuffer == nullptr) {
197             LOG(ERROR) << "ConvTranspose size is too large, not enough memory";
198             return false;
199         }
200         bufferGuard.reset(tempBuffer);
201     }
202 
203     int32_t inputOffset = -inputShape.offset;
204     int32_t filterOffset = -filterShape.offset;
205     int32_t outputOffset = outputShape.offset;
206 
207     double realMultiplier = 0.0;
208     int32_t outputMultiplier = 0;
209     int32_t outputShift = 0;
210     NN_RET_CHECK(GetQuantizedConvolutionMultipler(inputShape, filterShape, biasShape, outputShape,
211                                                   &realMultiplier));
212     int exponent;
213     NN_RET_CHECK(QuantizeMultiplier(realMultiplier, &outputMultiplier, &exponent));
214     outputShift = -exponent;
215 
216     int32_t outputActivationMin = 0, outputActivationMax = 0;
217     CalculateActivationRange<T>(activation, outputShape, &outputActivationMin,
218                                 &outputActivationMax);
219 
220     // Prevent concurrent executions that may access the scratch buffer
221     std::unique_lock<std::mutex> lock(executionMutex);
222     memset(tempBuffer, 0, tempBufferByteSize);
223 
224     const T* inputPtr = inputData;
225     int32_t* outputBase = tempBuffer;
226     for (uint32_t b = 0; b < numBatches; b++) {
227         for (uint32_t h = 0; h < inputHeight; h++) {
228             for (uint32_t w = 0; w < inputWidth; w++) {
229                 for (uint32_t d = 0; d < inputDepth; d++) {
230                     int32_t wOutputOrigin = static_cast<int32_t>(w) * strideWidth - paddingLeft;
231                     int32_t hOutputOrigin = static_cast<int32_t>(h) * strideHeight - paddingTop;
232 
233                     for (uint32_t i = 0; i < filterHeight; i++) {
234                         for (uint32_t j = 0; j < filterWidth; j++) {
235                             for (uint32_t k = 0; k < outputDepth; k++) {
236                                 int32_t hOutput = hOutputOrigin + static_cast<int32_t>(i);
237                                 int32_t wOutput = wOutputOrigin + static_cast<int32_t>(j);
238                                 if (hOutput >= 0 && hOutput < static_cast<int32_t>(outputHeight) &&
239                                     wOutput >= 0 && wOutput < static_cast<int32_t>(outputWidth)) {
240                                     uint32_t filterIndex =
241                                             k * filterHeight * filterWidth * inputDepth +
242                                             i * filterWidth * inputDepth + j * inputDepth + d;
243                                     uint32_t outputIndex = hOutput * outputWidth * outputDepth +
244                                                            wOutput * outputDepth + k;
245                                     outputBase[outputIndex] +=
246                                             (static_cast<int32_t>(*inputPtr) + inputOffset) *
247                                             (static_cast<int32_t>(filterData[filterIndex]) +
248                                              filterOffset);
249                                 }
250                             }
251                         }
252                     }
253 
254                     inputPtr++;
255                 }
256             }
257         }
258         outputBase += outputHeight * outputWidth * outputDepth;
259     }
260 
261     const uint32_t outerSize = numBatches * outputHeight * outputWidth;
262     int32_t* bufferPtr = tempBuffer;
263     T* outPtr = outputData;
264     for (uint32_t i = 0; i < outerSize; i++) {
265         for (uint32_t d = 0; d < outputDepth; d++, bufferPtr++, outPtr++) {
266             int32_t outVal = *bufferPtr + biasData[d];
267             outVal = tflite::MultiplyByQuantizedMultiplier(outVal, outputMultiplier, -outputShift);
268             outVal += outputOffset;
269             outVal = std::max(std::min(outVal, outputActivationMax), outputActivationMin);
270             *outPtr = static_cast<T>(outVal);
271         }
272     }
273 
274     return true;
275 }
276 
transposeConvNhwc(const _Float16 * inputData,const Shape & inputShape,const _Float16 * filterData,const Shape & filterShape,const _Float16 * biasData,const Shape & biasShape,const TransposeConv2dParam & param,_Float16 * outputData,const Shape & outputShape)277 bool transposeConvNhwc(const _Float16* inputData, const Shape& inputShape,
278                        const _Float16* filterData, const Shape& filterShape,
279                        const _Float16* biasData, const Shape& biasShape,
280                        const TransposeConv2dParam& param, _Float16* outputData,
281                        const Shape& outputShape) {
282     NNTRACE_TRANS("transposeConvFloat16");
283     std::vector<float> inputData_float32(getNumberOfElements(inputShape));
284     std::vector<float> filterData_float32(getNumberOfElements(filterShape));
285     std::vector<float> biasData_float32(getNumberOfElements(biasShape));
286     std::vector<float> outputData_float32(getNumberOfElements(outputShape));
287 
288     convertFloat16ToFloat32(inputData, &inputData_float32);
289     convertFloat16ToFloat32(filterData, &filterData_float32);
290     convertFloat16ToFloat32(biasData, &biasData_float32);
291 
292     transposeConvNhwc(inputData_float32.data(), inputShape, filterData_float32.data(), filterShape,
293                       biasData_float32.data(), biasShape, param, outputData_float32.data(),
294                       outputShape);
295     convertFloat32ToFloat16(outputData_float32, outputData);
296 
297     return true;
298 }
299 
300 template <typename T_Input, typename T_Filter, typename T_Bias>
transposeConv(const T_Input * inputData,const Shape & inputShape,const T_Filter * filterData,const Shape & filterShape,const T_Bias * biasData,const Shape & biasShape,const TransposeConv2dParam & param,T_Input * outputData,const Shape & outputShape)301 bool transposeConv(const T_Input* inputData, const Shape& inputShape, const T_Filter* filterData,
302                    const Shape& filterShape, const T_Bias* biasData, const Shape& biasShape,
303                    const TransposeConv2dParam& param, T_Input* outputData,
304                    const Shape& outputShape) {
305     InputWithLayout<T_Input> input(param.useNchw);
306     OutputWithLayout<T_Input> output(param.useNchw);
307     NN_RET_CHECK(input.initialize(inputData, inputShape));
308     NN_RET_CHECK(output.initialize(outputData, outputShape));
309     NN_RET_CHECK(transposeConvNhwc(input.getNhwcBuffer(), input.getNhwcShape(), filterData,
310                                    filterShape, biasData, biasShape, param, output.getNhwcBuffer(),
311                                    output.getNhwcShape()));
312     NN_RET_CHECK(output.commit());
313     return true;
314 }
315 
316 template <typename T>
transposeConvQuant8PerChannelNhwc(const T * inputData,const Shape & inputShape,const int8_t * filterData,const Shape & filterShape,const float * filterScales,const int32_t * biasData,const Shape & biasShape,const TransposeConv2dParam & param,T * outputData,const Shape & outputShape)317 bool transposeConvQuant8PerChannelNhwc(const T* inputData, const Shape& inputShape,
318                                        const int8_t* filterData, const Shape& filterShape,
319                                        const float* filterScales, const int32_t* biasData,
320                                        const Shape& biasShape, const TransposeConv2dParam& param,
321                                        T* outputData, const Shape& outputShape) {
322     NNTRACE_TRANS("transposeConvQuant8PerChannel");
323     ANDROID_NN_TRANSPOSE_CONV_PARAMETERS
324 
325     int32_t* tempBuffer = nullptr;
326     std::unique_ptr<int32_t[]> bufferGuard;
327     uint32_t tempBufferByteSize = getNumberOfElements(outputShape) * sizeof(int32_t);
328     if (tempBufferByteSize <= kStaticBufferSize) {
329         tempBuffer = reinterpret_cast<int32_t*>(static_scratch_buffer);
330     } else {
331         tempBuffer = new (std::nothrow) int32_t[tempBufferByteSize / sizeof(int32_t)];
332         if (tempBuffer == nullptr) {
333             LOG(ERROR) << "ConvTranspose size is too large, not enough memory";
334             return false;
335         }
336         bufferGuard.reset(tempBuffer);
337     }
338 
339     int32_t inputOffset = -inputShape.offset;
340     int32_t outputOffset = outputShape.offset;
341 
342     std::vector<double> realMultiplier(outputDepth, 0.0);
343     std::vector<int32_t> outputMultiplier(outputDepth, 0);
344     std::vector<int32_t> outputShift(outputDepth, 0);
345     for (int i = 0; i < outputDepth; ++i) {
346         Shape filterChannelShape = filterShape;
347         filterChannelShape.scale = filterScales[i];
348         Shape biasChannelShape = biasShape;
349         biasChannelShape.scale = filterScales[i] * inputShape.scale;
350 
351         NN_RET_CHECK(GetQuantizedConvolutionMultipler(
352                 inputShape, filterChannelShape, biasChannelShape, outputShape, &realMultiplier[i]));
353         int exponent;
354         NN_RET_CHECK(QuantizeMultiplier(realMultiplier[i], &outputMultiplier[i], &exponent));
355         outputShift[i] = -exponent;
356     }
357 
358     int32_t outputActivationMin = 0, outputActivationMax = 0;
359     CalculateActivationRange<T>(activation, outputShape, &outputActivationMin,
360                                 &outputActivationMax);
361 
362     // Prevent concurrent executions that may access the scratch buffer
363     std::unique_lock<std::mutex> lock(executionMutex);
364     memset(tempBuffer, 0, tempBufferByteSize);
365 
366     const T* inputPtr = inputData;
367     int32_t* outputBase = tempBuffer;
368     for (uint32_t b = 0; b < numBatches; b++) {
369         for (uint32_t h = 0; h < inputHeight; h++) {
370             for (uint32_t w = 0; w < inputWidth; w++) {
371                 for (uint32_t d = 0; d < inputDepth; d++) {
372                     int32_t wOutputOrigin = static_cast<int32_t>(w) * strideWidth - paddingLeft;
373                     int32_t hOutputOrigin = static_cast<int32_t>(h) * strideHeight - paddingTop;
374 
375                     for (uint32_t i = 0; i < filterHeight; i++) {
376                         for (uint32_t j = 0; j < filterWidth; j++) {
377                             for (uint32_t k = 0; k < outputDepth; k++) {
378                                 int32_t hOutput = hOutputOrigin + static_cast<int32_t>(i);
379                                 int32_t wOutput = wOutputOrigin + static_cast<int32_t>(j);
380                                 if (hOutput >= 0 && hOutput < static_cast<int32_t>(outputHeight) &&
381                                     wOutput >= 0 && wOutput < static_cast<int32_t>(outputWidth)) {
382                                     uint32_t filterIndex =
383                                             k * filterHeight * filterWidth * inputDepth +
384                                             i * filterWidth * inputDepth + j * inputDepth + d;
385                                     uint32_t outputIndex = hOutput * outputWidth * outputDepth +
386                                                            wOutput * outputDepth + k;
387                                     outputBase[outputIndex] +=
388                                             (static_cast<int32_t>(*inputPtr) + inputOffset) *
389                                             static_cast<int32_t>(filterData[filterIndex]);
390                                 }
391                             }
392                         }
393                     }
394 
395                     inputPtr++;
396                 }
397             }
398         }
399         outputBase += outputHeight * outputWidth * outputDepth;
400     }
401 
402     const uint32_t outerSize = numBatches * outputHeight * outputWidth;
403     int32_t* bufferPtr = tempBuffer;
404     T* outPtr = outputData;
405     for (uint32_t i = 0; i < outerSize; i++) {
406         for (uint32_t d = 0; d < outputDepth; d++, bufferPtr++, outPtr++) {
407             int32_t outVal = *bufferPtr + biasData[d];
408             outVal = tflite::MultiplyByQuantizedMultiplier(outVal, outputMultiplier[d],
409                                                            -outputShift[d]);
410             outVal += outputOffset;
411             outVal = std::max(std::min(outVal, outputActivationMax), outputActivationMin);
412             *outPtr = static_cast<T>(outVal);
413         }
414     }
415 
416     return true;
417 }
418 
419 template <typename T>
transposeConvQuant8PerChannel(const T * inputData,const Shape & inputShape,const int8_t * filterData,const Shape & filterShape,const float * filterScales,const int32_t * biasData,const Shape & biasShape,const TransposeConv2dParam & param,T * outputData,const Shape & outputShape)420 bool transposeConvQuant8PerChannel(const T* inputData, const Shape& inputShape,
421                                    const int8_t* filterData, const Shape& filterShape,
422                                    const float* filterScales, const int32_t* biasData,
423                                    const Shape& biasShape, const TransposeConv2dParam& param,
424                                    T* outputData, const Shape& outputShape) {
425     InputWithLayout<T> input(param.useNchw);
426     OutputWithLayout<T> output(param.useNchw);
427     NN_RET_CHECK(input.initialize(inputData, inputShape));
428     NN_RET_CHECK(output.initialize(outputData, outputShape));
429     NN_RET_CHECK(transposeConvQuant8PerChannelNhwc(
430             input.getNhwcBuffer(), input.getNhwcShape(), filterData, filterShape, filterScales,
431             biasData, biasShape, param, output.getNhwcBuffer(), output.getNhwcShape()));
432     NN_RET_CHECK(output.commit());
433     return true;
434 }
435 
436 #undef ANDROID_NN_TRANSPOSE_CONV_PARAMETERS
437 #endif  // NN_INCLUDE_CPU_IMPLEMENTATION
438 
439 }  // namespace
440 
validate(const IOperationValidationContext * context)441 Result<Version> validate(const IOperationValidationContext* context) {
442     const uint32_t inputCount = context->getNumInputs();
443     NN_RET_CHECK(inputCount == kNumInputs1 || inputCount == kNumInputs2);
444     NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
445     const auto inputType = context->getInputType(kInputTensor);
446     const auto filterType = context->getInputType(kFilterTensor);
447     std::vector<OperandType> inExpectedTypes;
448     Version minSupportedVersion = Version::ANDROID_Q;
449     if (inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_FLOAT16) {
450         inExpectedTypes = {inputType, inputType, inputType};
451     } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM ||
452                inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
453         NN_RET_CHECK(filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL ||
454                      filterType == inputType)
455                 << "Unsupported filter tensor type for operation " << kOperationName;
456         if (filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
457             NN_RET_CHECK_EQ(std::get<Operand::SymmPerChannelQuantParams>(
458                                     context->getInputExtraParams(kFilterTensor))
459                                     .channelDim,
460                             0)
461                     << "Unsupported filter tensor channel dimension for operation "
462                     << kOperationName;
463         }
464         inExpectedTypes = {inputType, filterType, OperandType::TENSOR_INT32};
465         if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
466             minSupportedVersion = Version::ANDROID_R;
467         }
468     } else {
469         NN_RET_CHECK_FAIL() << "Unsupported input tensor type for operation " << kOperationName;
470     }
471 
472     std::vector<OperandType> argExpectedTypes;
473     if (inputCount == 11) {
474         argExpectedTypes = {OperandType::INT32, OperandType::INT32, OperandType::INT32,
475                             OperandType::INT32, OperandType::INT32, OperandType::INT32,
476                             OperandType::INT32, OperandType::BOOL};
477     } else {
478         argExpectedTypes = {OperandType::TENSOR_INT32, OperandType::INT32, OperandType::INT32,
479                             OperandType::INT32,        OperandType::INT32, OperandType::BOOL};
480     }
481     inExpectedTypes.insert(inExpectedTypes.end(), argExpectedTypes.begin(), argExpectedTypes.end());
482     NN_RET_CHECK(validateInputTypes(context, inExpectedTypes));
483     NN_RET_CHECK(validateOutputTypes(context, {inputType}));
484     return minSupportedVersion;
485 }
486 
487 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
prepare(IOperationExecutionContext * context)488 bool prepare(IOperationExecutionContext* context) {
489     Shape input = context->getInputShape(kInputTensor);
490     Shape filter = context->getInputShape(kFilterTensor);
491     Shape bias = context->getInputShape(kBiasTensor);
492 
493     if (filter.type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
494         NN_RET_CHECK(input.type == OperandType::TENSOR_QUANT8_ASYMM ||
495                      input.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED);
496     } else {
497         NN_RET_CHECK(input.type == filter.type);
498     }
499     if (input.type == OperandType::TENSOR_QUANT8_ASYMM ||
500         input.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
501         NN_RET_CHECK(bias.type == OperandType::TENSOR_INT32);
502     } else {
503         NN_RET_CHECK(input.type == bias.type);
504     }
505     NN_RET_CHECK_EQ(getNumberOfDimensions(input), 4);
506     NN_RET_CHECK_EQ(getNumberOfDimensions(filter), 4);
507     NN_RET_CHECK_EQ(getNumberOfDimensions(bias), 1);
508 
509     TransposeConv2dParam param;
510     NN_RET_CHECK(param.initialize(context));
511 
512     uint32_t batches = getSizeOfDimension(input, 0);
513     uint32_t height = getSizeOfDimension(input, param.useNchw ? 2 : 1);
514     uint32_t width = getSizeOfDimension(input, param.useNchw ? 3 : 2);
515     uint32_t channels_in = getSizeOfDimension(input, param.useNchw ? 1 : 3);
516     uint32_t channels_out = getSizeOfDimension(filter, 0);
517     uint32_t filterHeight = getSizeOfDimension(filter, 1);
518     uint32_t filterWidth = getSizeOfDimension(filter, 2);
519     // Only batches can be zero.
520     NN_RET_CHECK_EQ(channels_in, getSizeOfDimension(filter, 3));
521     NN_RET_CHECK_EQ(channels_out, getSizeOfDimension(bias, 0));
522     NN_RET_CHECK_GT(height, 0);
523     NN_RET_CHECK_GT(width, 0);
524     NN_RET_CHECK_GT(channels_in, 0);
525     NN_RET_CHECK_GT(channels_out, 0);
526     NN_RET_CHECK_GT(filterWidth, 0);
527     NN_RET_CHECK_GT(filterHeight, 0);
528 
529     uint32_t outWidth = computeOutSizeTransposeConv(width, filterWidth, param.strideWidth,
530                                                     param.paddingLeft, param.paddingRight);
531     uint32_t outHeight = computeOutSizeTransposeConv(height, filterHeight, param.strideHeight,
532                                                      param.paddingTop, param.paddingBottom);
533     NN_RET_CHECK_GT(outWidth, 0);
534     NN_RET_CHECK_GT(outHeight, 0);
535 
536     Shape output = context->getOutputShape(kOutputTensor);
537     output.type = input.type;
538     if (param.useNchw) {
539         output.dimensions = {batches, channels_out, outHeight, outWidth};
540     } else {
541         output.dimensions = {batches, outHeight, outWidth, channels_out};
542     }
543     return context->setOutputShape(kOutputTensor, output);
544 }
545 
execute(IOperationExecutionContext * context)546 bool execute(IOperationExecutionContext* context) {
547     // Bypass execution in the case of zero-sized input.
548     if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
549     TransposeConv2dParam param;
550     NN_RET_CHECK(param.initialize(context));
551     switch (context->getInputType(kInputTensor)) {
552         case OperandType::TENSOR_FLOAT32:
553             return transposeConv(context->getInputBuffer<float>(kInputTensor),
554                                  context->getInputShape(kInputTensor),
555                                  context->getInputBuffer<float>(kFilterTensor),
556                                  context->getInputShape(kFilterTensor),
557                                  context->getInputBuffer<float>(kBiasTensor),
558                                  context->getInputShape(kBiasTensor), param,
559                                  context->getOutputBuffer<float>(kOutputTensor),
560                                  context->getOutputShape(kOutputTensor));
561         case OperandType::TENSOR_FLOAT16:
562             return transposeConv(context->getInputBuffer<_Float16>(kInputTensor),
563                                  context->getInputShape(kInputTensor),
564                                  context->getInputBuffer<_Float16>(kFilterTensor),
565                                  context->getInputShape(kFilterTensor),
566                                  context->getInputBuffer<_Float16>(kBiasTensor),
567                                  context->getInputShape(kBiasTensor), param,
568                                  context->getOutputBuffer<_Float16>(kOutputTensor),
569                                  context->getOutputShape(kOutputTensor));
570         case OperandType::TENSOR_QUANT8_ASYMM:
571             if (context->getInputType(kFilterTensor) ==
572                 OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
573                 return transposeConvQuant8PerChannel(
574                         context->getInputBuffer<uint8_t>(kInputTensor),
575                         context->getInputShape(kInputTensor),
576                         context->getInputBuffer<int8_t>(kFilterTensor),
577                         context->getInputShape(kFilterTensor),
578                         std::get<Operand::SymmPerChannelQuantParams>(
579                                 context->getInputExtraParams(kFilterTensor))
580                                 .scales.data(),
581                         context->getInputBuffer<int32_t>(kBiasTensor),
582                         context->getInputShape(kBiasTensor), param,
583                         context->getOutputBuffer<uint8_t>(kOutputTensor),
584                         context->getOutputShape(kOutputTensor));
585             } else if (context->getInputType(kFilterTensor) == OperandType::TENSOR_QUANT8_ASYMM) {
586                 return transposeConv(context->getInputBuffer<uint8_t>(kInputTensor),
587                                      context->getInputShape(kInputTensor),
588                                      context->getInputBuffer<uint8_t>(kFilterTensor),
589                                      context->getInputShape(kFilterTensor),
590                                      context->getInputBuffer<int32_t>(kBiasTensor),
591                                      context->getInputShape(kBiasTensor), param,
592                                      context->getOutputBuffer<uint8_t>(kOutputTensor),
593                                      context->getOutputShape(kOutputTensor));
594             } else {
595                 NN_RET_CHECK_FAIL() << "Unsupported filter type for operation " << kOperationName;
596             }
597         case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
598             if (context->getInputType(kFilterTensor) ==
599                 OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
600                 return transposeConvQuant8PerChannel(
601                         context->getInputBuffer<int8_t>(kInputTensor),
602                         context->getInputShape(kInputTensor),
603                         context->getInputBuffer<int8_t>(kFilterTensor),
604                         context->getInputShape(kFilterTensor),
605                         std::get<Operand::SymmPerChannelQuantParams>(
606                                 context->getInputExtraParams(kFilterTensor))
607                                 .scales.data(),
608                         context->getInputBuffer<int32_t>(kBiasTensor),
609                         context->getInputShape(kBiasTensor), param,
610                         context->getOutputBuffer<int8_t>(kOutputTensor),
611                         context->getOutputShape(kOutputTensor));
612             } else if (context->getInputType(kFilterTensor) ==
613                        OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
614                 return transposeConv(context->getInputBuffer<int8_t>(kInputTensor),
615                                      context->getInputShape(kInputTensor),
616                                      context->getInputBuffer<int8_t>(kFilterTensor),
617                                      context->getInputShape(kFilterTensor),
618                                      context->getInputBuffer<int32_t>(kBiasTensor),
619                                      context->getInputShape(kBiasTensor), param,
620                                      context->getOutputBuffer<int8_t>(kOutputTensor),
621                                      context->getOutputShape(kOutputTensor));
622             } else {
623                 NN_RET_CHECK_FAIL() << "Unsupported filter type for operation " << kOperationName;
624             }
625         default:
626             NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
627     }
628 }
629 #endif  // NN_INCLUDE_CPU_IMPLEMENTATION
630 
631 }  // namespace transpose_conv_2d
632 
633 NN_REGISTER_OPERATION(TRANSPOSE_CONV_2D, transpose_conv_2d::kOperationName,
634                       transpose_conv_2d::validate, transpose_conv_2d::prepare,
635                       transpose_conv_2d::execute, .allowZeroSizedInput = true);
636 
637 }  // namespace nn
638 }  // namespace android
639