1 /*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "Operations"
18
19 #include <vector>
20
21 #include "IndexedShapeWrapper.h"
22 #include "OperationResolver.h"
23
24 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
25 #include "CpuOperationUtils.h"
26 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
27
28 namespace android {
29 namespace nn {
30 namespace slice {
31
32 constexpr char kOperationName[] = "SLICE";
33
34 constexpr uint32_t kNumInputs = 3;
35 constexpr uint32_t kInputTensor = 0;
36 constexpr uint32_t kBeginTensor = 1;
37 constexpr uint32_t kSizeTensor = 2;
38
39 constexpr uint32_t kNumOutputs = 1;
40 constexpr uint32_t kOutputTensor = 0;
41
42 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
43 namespace {
44
45 template <typename T>
addVectors(const std::vector<T> & a,const std::vector<T> & b,std::vector<T> * res)46 void addVectors(const std::vector<T>& a, const std::vector<T>& b, std::vector<T>* res) {
47 for (int i = 0; i < res->size(); ++i) {
48 res->at(i) = a[i] + b[i];
49 }
50 }
51
52 template <typename T>
evalGeneric(const T * inputData,const Shape & inputShape,const int32_t * beginData,const Shape & beginShape,const int32_t * sizeData,const Shape & sizeShape,T * outputData,const Shape & outputShape)53 bool evalGeneric(const T* inputData, const Shape& inputShape, const int32_t* beginData,
54 const Shape& beginShape, const int32_t* sizeData, const Shape& sizeShape,
55 T* outputData, const Shape& outputShape) {
56 const int outputSize = getNumberOfElements(outputShape);
57 const IndexedShapeWrapper indexedOutput = IndexedShapeWrapper(outputShape);
58 const IndexedShapeWrapper indexedInput = IndexedShapeWrapper(inputShape);
59 std::vector<uint32_t> outputIndex(getNumberOfDimensions(outputShape), 0);
60 std::vector<uint32_t> beginIndex(getSizeOfDimension(beginShape, 0));
61 std::vector<uint32_t> inputIndex(getNumberOfDimensions(inputShape));
62
63 for (int i = 0; i < beginIndex.size(); ++i) {
64 beginIndex[i] = static_cast<uint32_t>(beginData[i]);
65 }
66
67 bool lastIndex = false;
68 uint32_t outputOffset;
69 uint32_t inputOffset;
70
71 do {
72 addVectors(outputIndex, beginIndex, &inputIndex);
73
74 NN_RET_CHECK(indexedOutput.indexToFlatIndex(outputIndex, &outputOffset));
75 NN_RET_CHECK(indexedInput.indexToFlatIndex(inputIndex, &inputOffset));
76
77 outputData[outputOffset] = inputData[inputOffset];
78 NN_RET_CHECK(indexedOutput.nextIndexInplace(&outputIndex, &lastIndex));
79 } while (!lastIndex);
80 return true;
81 }
82
83 } // namespace
84 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
85
validate(const IOperationValidationContext * context)86 Result<Version> validate(const IOperationValidationContext* context) {
87 NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
88 NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
89
90 const OperandType inputType = context->getInputType(kInputTensor);
91 NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 ||
92 inputType == OperandType::TENSOR_FLOAT32 ||
93 inputType == OperandType::TENSOR_INT32 ||
94 inputType == OperandType::TENSOR_QUANT8_ASYMM ||
95 inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED)
96 << "Unsupported tensor type for operation " << kOperationName;
97 auto minSupportedVersion = Version::ANDROID_OC_MR1;
98 if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
99 minSupportedVersion = Version::ANDROID_R;
100 } else {
101 minSupportedVersion = Version::ANDROID_Q;
102 }
103 NN_RET_CHECK(validateInputTypes(
104 context, {inputType, OperandType::TENSOR_INT32, OperandType::TENSOR_INT32}));
105 NN_RET_CHECK(validateOutputTypes(context, {inputType}));
106 return minSupportedVersion;
107 }
108
109 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
prepare(IOperationExecutionContext * context)110 bool prepare(IOperationExecutionContext* context) {
111 const Shape& inputShape = context->getInputShape(kInputTensor);
112 const int32_t n_dims = getNumberOfDimensions(inputShape);
113 NN_RET_CHECK(n_dims > 0);
114
115 const Shape& beginShape = context->getInputShape(kBeginTensor);
116 NN_RET_CHECK_EQ(getNumberOfDimensions(beginShape), 1);
117 NN_RET_CHECK_EQ(getSizeOfDimension(beginShape, 0), n_dims);
118
119 const Shape& sizeShape = context->getInputShape(kSizeTensor);
120 NN_RET_CHECK_EQ(getNumberOfDimensions(sizeShape), 1);
121 NN_RET_CHECK_EQ(getSizeOfDimension(sizeShape, 0), n_dims);
122
123 const int32_t* beginData = context->getInputBuffer<int32_t>(kBeginTensor);
124 const int32_t* sizeData = context->getInputBuffer<int32_t>(kSizeTensor);
125
126 Shape outputShape = context->getOutputShape(kOutputTensor);
127 outputShape.dimensions.resize(n_dims);
128 for (int i = 0; i < n_dims; ++i) {
129 const int32_t sliceBegin = beginData[i];
130 int32_t sliceSize = sizeData[i];
131 if (sliceSize == -1) {
132 sliceSize = getSizeOfDimension(inputShape, i) - sliceBegin;
133 }
134 NN_RET_CHECK_LE(beginData[i], getSizeOfDimension(inputShape, i));
135 NN_RET_CHECK_GE(sliceSize, 0);
136 NN_RET_CHECK_LE(sliceBegin + sliceSize, getSizeOfDimension(inputShape, i));
137 outputShape.dimensions[i] = sliceSize;
138 }
139 return context->setOutputShape(kOutputTensor, outputShape);
140 }
141
execute(IOperationExecutionContext * context)142 bool execute(IOperationExecutionContext* context) {
143 // Bypass execution in the case of zero-sized input.
144 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
145 switch (context->getInputType(kInputTensor)) {
146 case OperandType::TENSOR_FLOAT16:
147 return evalGeneric(context->getInputBuffer<_Float16>(kInputTensor),
148 context->getInputShape(kInputTensor),
149 context->getInputBuffer<int32_t>(kBeginTensor),
150 context->getInputShape(kBeginTensor),
151 context->getInputBuffer<int32_t>(kSizeTensor),
152 context->getInputShape(kSizeTensor),
153 context->getOutputBuffer<_Float16>(kOutputTensor),
154 context->getOutputShape(kOutputTensor));
155 case OperandType::TENSOR_FLOAT32:
156 return evalGeneric(context->getInputBuffer<float>(kInputTensor),
157 context->getInputShape(kInputTensor),
158 context->getInputBuffer<int32_t>(kBeginTensor),
159 context->getInputShape(kBeginTensor),
160 context->getInputBuffer<int32_t>(kSizeTensor),
161 context->getInputShape(kSizeTensor),
162 context->getOutputBuffer<float>(kOutputTensor),
163 context->getOutputShape(kOutputTensor));
164 case OperandType::TENSOR_INT32:
165 return evalGeneric(context->getInputBuffer<int32_t>(kInputTensor),
166 context->getInputShape(kInputTensor),
167 context->getInputBuffer<int32_t>(kBeginTensor),
168 context->getInputShape(kBeginTensor),
169 context->getInputBuffer<int32_t>(kSizeTensor),
170 context->getInputShape(kSizeTensor),
171 context->getOutputBuffer<int32_t>(kOutputTensor),
172 context->getOutputShape(kOutputTensor));
173 case OperandType::TENSOR_QUANT8_ASYMM:
174 return evalGeneric(context->getInputBuffer<uint8_t>(kInputTensor),
175 context->getInputShape(kInputTensor),
176 context->getInputBuffer<int32_t>(kBeginTensor),
177 context->getInputShape(kBeginTensor),
178 context->getInputBuffer<int32_t>(kSizeTensor),
179 context->getInputShape(kSizeTensor),
180 context->getOutputBuffer<uint8_t>(kOutputTensor),
181 context->getOutputShape(kOutputTensor));
182 case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
183 return evalGeneric(context->getInputBuffer<int8_t>(kInputTensor),
184 context->getInputShape(kInputTensor),
185 context->getInputBuffer<int32_t>(kBeginTensor),
186 context->getInputShape(kBeginTensor),
187 context->getInputBuffer<int32_t>(kSizeTensor),
188 context->getInputShape(kSizeTensor),
189 context->getOutputBuffer<int8_t>(kOutputTensor),
190 context->getOutputShape(kOutputTensor));
191 default:
192 NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
193 }
194 }
195 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
196
197 } // namespace slice
198
199 NN_REGISTER_OPERATION(SLICE, slice::kOperationName, slice::validate, slice::prepare, slice::execute,
200 .allowZeroSizedInput = true);
201
202 } // namespace nn
203 } // namespace android
204