1 /*
2 * Copyright 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <SurfaceFlingerProperties.sysprop.h>
18 #include <android-base/stringprintf.h>
19 #include <compositionengine/CompositionEngine.h>
20 #include <compositionengine/CompositionRefreshArgs.h>
21 #include <compositionengine/DisplayColorProfile.h>
22 #include <compositionengine/LayerFE.h>
23 #include <compositionengine/LayerFECompositionState.h>
24 #include <compositionengine/RenderSurface.h>
25 #include <compositionengine/impl/Output.h>
26 #include <compositionengine/impl/OutputCompositionState.h>
27 #include <compositionengine/impl/OutputLayer.h>
28 #include <compositionengine/impl/OutputLayerCompositionState.h>
29 #include <compositionengine/impl/planner/Planner.h>
30
31 #include <thread>
32
33 #include "renderengine/ExternalTexture.h"
34
35 // TODO(b/129481165): remove the #pragma below and fix conversion issues
36 #pragma clang diagnostic push
37 #pragma clang diagnostic ignored "-Wconversion"
38
39 #include <renderengine/DisplaySettings.h>
40 #include <renderengine/RenderEngine.h>
41
42 // TODO(b/129481165): remove the #pragma below and fix conversion issues
43 #pragma clang diagnostic pop // ignored "-Wconversion"
44
45 #include <android-base/properties.h>
46 #include <ui/DebugUtils.h>
47 #include <ui/HdrCapabilities.h>
48 #include <utils/Trace.h>
49
50 #include "TracedOrdinal.h"
51
52 namespace android::compositionengine {
53
54 Output::~Output() = default;
55
56 namespace impl {
57
58 namespace {
59
60 template <typename T>
61 class Reversed {
62 public:
Reversed(const T & container)63 explicit Reversed(const T& container) : mContainer(container) {}
begin()64 auto begin() { return mContainer.rbegin(); }
end()65 auto end() { return mContainer.rend(); }
66
67 private:
68 const T& mContainer;
69 };
70
71 // Helper for enumerating over a container in reverse order
72 template <typename T>
reversed(const T & c)73 Reversed<T> reversed(const T& c) {
74 return Reversed<T>(c);
75 }
76
77 struct ScaleVector {
78 float x;
79 float y;
80 };
81
82 // Returns a ScaleVector (x, y) such that from.scale(x, y) = to',
83 // where to' will have the same size as "to". In the case where "from" and "to"
84 // start at the origin to'=to.
getScale(const Rect & from,const Rect & to)85 ScaleVector getScale(const Rect& from, const Rect& to) {
86 return {.x = static_cast<float>(to.width()) / from.width(),
87 .y = static_cast<float>(to.height()) / from.height()};
88 }
89
90 } // namespace
91
createOutput(const compositionengine::CompositionEngine & compositionEngine)92 std::shared_ptr<Output> createOutput(
93 const compositionengine::CompositionEngine& compositionEngine) {
94 return createOutputTemplated<Output>(compositionEngine);
95 }
96
97 Output::~Output() = default;
98
isValid() const99 bool Output::isValid() const {
100 return mDisplayColorProfile && mDisplayColorProfile->isValid() && mRenderSurface &&
101 mRenderSurface->isValid();
102 }
103
getDisplayId() const104 std::optional<DisplayId> Output::getDisplayId() const {
105 return {};
106 }
107
getName() const108 const std::string& Output::getName() const {
109 return mName;
110 }
111
setName(const std::string & name)112 void Output::setName(const std::string& name) {
113 mName = name;
114 }
115
setCompositionEnabled(bool enabled)116 void Output::setCompositionEnabled(bool enabled) {
117 auto& outputState = editState();
118 if (outputState.isEnabled == enabled) {
119 return;
120 }
121
122 outputState.isEnabled = enabled;
123 dirtyEntireOutput();
124 }
125
setLayerCachingEnabled(bool enabled)126 void Output::setLayerCachingEnabled(bool enabled) {
127 if (enabled == (mPlanner != nullptr)) {
128 return;
129 }
130
131 if (enabled) {
132 mPlanner = std::make_unique<planner::Planner>(getCompositionEngine().getRenderEngine());
133 if (mRenderSurface) {
134 mPlanner->setDisplaySize(mRenderSurface->getSize());
135 }
136 } else {
137 mPlanner.reset();
138 }
139
140 for (auto* outputLayer : getOutputLayersOrderedByZ()) {
141 if (!outputLayer) {
142 continue;
143 }
144
145 outputLayer->editState().overrideInfo = {};
146 }
147 }
148
setLayerCachingTexturePoolEnabled(bool enabled)149 void Output::setLayerCachingTexturePoolEnabled(bool enabled) {
150 if (mPlanner) {
151 mPlanner->setTexturePoolEnabled(enabled);
152 }
153 }
154
setProjection(ui::Rotation orientation,const Rect & layerStackSpaceRect,const Rect & orientedDisplaySpaceRect)155 void Output::setProjection(ui::Rotation orientation, const Rect& layerStackSpaceRect,
156 const Rect& orientedDisplaySpaceRect) {
157 auto& outputState = editState();
158
159 outputState.displaySpace.orientation = orientation;
160 LOG_FATAL_IF(outputState.displaySpace.bounds == Rect::INVALID_RECT,
161 "The display bounds are unknown.");
162
163 // Compute orientedDisplaySpace
164 ui::Size orientedSize = outputState.displaySpace.bounds.getSize();
165 if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) {
166 std::swap(orientedSize.width, orientedSize.height);
167 }
168 outputState.orientedDisplaySpace.bounds = Rect(orientedSize);
169 outputState.orientedDisplaySpace.content = orientedDisplaySpaceRect;
170
171 // Compute displaySpace.content
172 const uint32_t transformOrientationFlags = ui::Transform::toRotationFlags(orientation);
173 ui::Transform rotation;
174 if (transformOrientationFlags != ui::Transform::ROT_INVALID) {
175 const auto displaySize = outputState.displaySpace.bounds;
176 rotation.set(transformOrientationFlags, displaySize.width(), displaySize.height());
177 }
178 outputState.displaySpace.content = rotation.transform(orientedDisplaySpaceRect);
179
180 // Compute framebufferSpace
181 outputState.framebufferSpace.orientation = orientation;
182 LOG_FATAL_IF(outputState.framebufferSpace.bounds == Rect::INVALID_RECT,
183 "The framebuffer bounds are unknown.");
184 const auto scale =
185 getScale(outputState.displaySpace.bounds, outputState.framebufferSpace.bounds);
186 outputState.framebufferSpace.content = outputState.displaySpace.content.scale(scale.x, scale.y);
187
188 // Compute layerStackSpace
189 outputState.layerStackSpace.content = layerStackSpaceRect;
190 outputState.layerStackSpace.bounds = layerStackSpaceRect;
191
192 outputState.transform = outputState.layerStackSpace.getTransform(outputState.displaySpace);
193 outputState.needsFiltering = outputState.transform.needsBilinearFiltering();
194 dirtyEntireOutput();
195 }
196
setDisplaySize(const ui::Size & size)197 void Output::setDisplaySize(const ui::Size& size) {
198 mRenderSurface->setDisplaySize(size);
199
200 auto& state = editState();
201
202 // Update framebuffer space
203 const Rect newBounds(size);
204 state.framebufferSpace.bounds = newBounds;
205
206 // Update display space
207 state.displaySpace.bounds = newBounds;
208 state.transform = state.layerStackSpace.getTransform(state.displaySpace);
209
210 // Update oriented display space
211 const auto orientation = state.displaySpace.orientation;
212 ui::Size orientedSize = size;
213 if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) {
214 std::swap(orientedSize.width, orientedSize.height);
215 }
216 const Rect newOrientedBounds(orientedSize);
217 state.orientedDisplaySpace.bounds = newOrientedBounds;
218
219 if (mPlanner) {
220 mPlanner->setDisplaySize(size);
221 }
222
223 dirtyEntireOutput();
224 }
225
getTransformHint() const226 ui::Transform::RotationFlags Output::getTransformHint() const {
227 return static_cast<ui::Transform::RotationFlags>(getState().transform.getOrientation());
228 }
229
setLayerStackFilter(uint32_t layerStackId,bool isInternal)230 void Output::setLayerStackFilter(uint32_t layerStackId, bool isInternal) {
231 auto& outputState = editState();
232 outputState.layerStackId = layerStackId;
233 outputState.layerStackInternal = isInternal;
234
235 dirtyEntireOutput();
236 }
237
setColorTransform(const compositionengine::CompositionRefreshArgs & args)238 void Output::setColorTransform(const compositionengine::CompositionRefreshArgs& args) {
239 auto& colorTransformMatrix = editState().colorTransformMatrix;
240 if (!args.colorTransformMatrix || colorTransformMatrix == args.colorTransformMatrix) {
241 return;
242 }
243
244 colorTransformMatrix = *args.colorTransformMatrix;
245
246 dirtyEntireOutput();
247 }
248
setColorProfile(const ColorProfile & colorProfile)249 void Output::setColorProfile(const ColorProfile& colorProfile) {
250 ui::Dataspace targetDataspace =
251 getDisplayColorProfile()->getTargetDataspace(colorProfile.mode, colorProfile.dataspace,
252 colorProfile.colorSpaceAgnosticDataspace);
253
254 auto& outputState = editState();
255 if (outputState.colorMode == colorProfile.mode &&
256 outputState.dataspace == colorProfile.dataspace &&
257 outputState.renderIntent == colorProfile.renderIntent &&
258 outputState.targetDataspace == targetDataspace) {
259 return;
260 }
261
262 outputState.colorMode = colorProfile.mode;
263 outputState.dataspace = colorProfile.dataspace;
264 outputState.renderIntent = colorProfile.renderIntent;
265 outputState.targetDataspace = targetDataspace;
266
267 mRenderSurface->setBufferDataspace(colorProfile.dataspace);
268
269 ALOGV("Set active color mode: %s (%d), active render intent: %s (%d)",
270 decodeColorMode(colorProfile.mode).c_str(), colorProfile.mode,
271 decodeRenderIntent(colorProfile.renderIntent).c_str(), colorProfile.renderIntent);
272
273 dirtyEntireOutput();
274 }
275
setDisplayBrightness(float sdrWhitePointNits,float displayBrightnessNits)276 void Output::setDisplayBrightness(float sdrWhitePointNits, float displayBrightnessNits) {
277 auto& outputState = editState();
278 if (outputState.sdrWhitePointNits == sdrWhitePointNits &&
279 outputState.displayBrightnessNits == displayBrightnessNits) {
280 // Nothing changed
281 return;
282 }
283 outputState.sdrWhitePointNits = sdrWhitePointNits;
284 outputState.displayBrightnessNits = displayBrightnessNits;
285 dirtyEntireOutput();
286 }
287
dump(std::string & out) const288 void Output::dump(std::string& out) const {
289 using android::base::StringAppendF;
290
291 StringAppendF(&out, " Composition Output State: [\"%s\"]", mName.c_str());
292
293 out.append("\n ");
294
295 dumpBase(out);
296 }
297
dumpBase(std::string & out) const298 void Output::dumpBase(std::string& out) const {
299 dumpState(out);
300
301 if (mDisplayColorProfile) {
302 mDisplayColorProfile->dump(out);
303 } else {
304 out.append(" No display color profile!\n");
305 }
306
307 if (mRenderSurface) {
308 mRenderSurface->dump(out);
309 } else {
310 out.append(" No render surface!\n");
311 }
312
313 android::base::StringAppendF(&out, "\n %zu Layers\n", getOutputLayerCount());
314 for (const auto* outputLayer : getOutputLayersOrderedByZ()) {
315 if (!outputLayer) {
316 continue;
317 }
318 outputLayer->dump(out);
319 }
320 }
321
dumpPlannerInfo(const Vector<String16> & args,std::string & out) const322 void Output::dumpPlannerInfo(const Vector<String16>& args, std::string& out) const {
323 if (!mPlanner) {
324 base::StringAppendF(&out, "Planner is disabled\n");
325 return;
326 }
327 base::StringAppendF(&out, "Planner info for display [%s]\n", mName.c_str());
328 mPlanner->dump(args, out);
329 }
330
getDisplayColorProfile() const331 compositionengine::DisplayColorProfile* Output::getDisplayColorProfile() const {
332 return mDisplayColorProfile.get();
333 }
334
setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode)335 void Output::setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
336 mDisplayColorProfile = std::move(mode);
337 }
338
getReleasedLayersForTest() const339 const Output::ReleasedLayers& Output::getReleasedLayersForTest() const {
340 return mReleasedLayers;
341 }
342
setDisplayColorProfileForTest(std::unique_ptr<compositionengine::DisplayColorProfile> mode)343 void Output::setDisplayColorProfileForTest(
344 std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
345 mDisplayColorProfile = std::move(mode);
346 }
347
getRenderSurface() const348 compositionengine::RenderSurface* Output::getRenderSurface() const {
349 return mRenderSurface.get();
350 }
351
setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface)352 void Output::setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface) {
353 mRenderSurface = std::move(surface);
354 const auto size = mRenderSurface->getSize();
355 editState().framebufferSpace.bounds = Rect(size);
356 if (mPlanner) {
357 mPlanner->setDisplaySize(size);
358 }
359 dirtyEntireOutput();
360 }
361
cacheClientCompositionRequests(uint32_t cacheSize)362 void Output::cacheClientCompositionRequests(uint32_t cacheSize) {
363 if (cacheSize == 0) {
364 mClientCompositionRequestCache.reset();
365 } else {
366 mClientCompositionRequestCache = std::make_unique<ClientCompositionRequestCache>(cacheSize);
367 }
368 };
369
setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface)370 void Output::setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface) {
371 mRenderSurface = std::move(surface);
372 }
373
getDirtyRegion(bool repaintEverything) const374 Region Output::getDirtyRegion(bool repaintEverything) const {
375 const auto& outputState = getState();
376 Region dirty(outputState.layerStackSpace.content);
377 if (!repaintEverything) {
378 dirty.andSelf(outputState.dirtyRegion);
379 }
380 return dirty;
381 }
382
belongsInOutput(std::optional<uint32_t> layerStackId,bool internalOnly) const383 bool Output::belongsInOutput(std::optional<uint32_t> layerStackId, bool internalOnly) const {
384 // The layerStackId's must match, and also the layer must not be internal
385 // only when not on an internal output.
386 const auto& outputState = getState();
387 return layerStackId && (*layerStackId == outputState.layerStackId) &&
388 (!internalOnly || outputState.layerStackInternal);
389 }
390
belongsInOutput(const sp<compositionengine::LayerFE> & layerFE) const391 bool Output::belongsInOutput(const sp<compositionengine::LayerFE>& layerFE) const {
392 const auto* layerFEState = layerFE->getCompositionState();
393 return layerFEState && belongsInOutput(layerFEState->layerStackId, layerFEState->internalOnly);
394 }
395
createOutputLayer(const sp<LayerFE> & layerFE) const396 std::unique_ptr<compositionengine::OutputLayer> Output::createOutputLayer(
397 const sp<LayerFE>& layerFE) const {
398 return impl::createOutputLayer(*this, layerFE);
399 }
400
getOutputLayerForLayer(const sp<LayerFE> & layerFE) const401 compositionengine::OutputLayer* Output::getOutputLayerForLayer(const sp<LayerFE>& layerFE) const {
402 auto index = findCurrentOutputLayerForLayer(layerFE);
403 return index ? getOutputLayerOrderedByZByIndex(*index) : nullptr;
404 }
405
findCurrentOutputLayerForLayer(const sp<compositionengine::LayerFE> & layer) const406 std::optional<size_t> Output::findCurrentOutputLayerForLayer(
407 const sp<compositionengine::LayerFE>& layer) const {
408 for (size_t i = 0; i < getOutputLayerCount(); i++) {
409 auto outputLayer = getOutputLayerOrderedByZByIndex(i);
410 if (outputLayer && &outputLayer->getLayerFE() == layer.get()) {
411 return i;
412 }
413 }
414 return std::nullopt;
415 }
416
setReleasedLayers(Output::ReleasedLayers && layers)417 void Output::setReleasedLayers(Output::ReleasedLayers&& layers) {
418 mReleasedLayers = std::move(layers);
419 }
420
prepare(const compositionengine::CompositionRefreshArgs & refreshArgs,LayerFESet & geomSnapshots)421 void Output::prepare(const compositionengine::CompositionRefreshArgs& refreshArgs,
422 LayerFESet& geomSnapshots) {
423 ATRACE_CALL();
424 ALOGV(__FUNCTION__);
425
426 rebuildLayerStacks(refreshArgs, geomSnapshots);
427 }
428
present(const compositionengine::CompositionRefreshArgs & refreshArgs)429 void Output::present(const compositionengine::CompositionRefreshArgs& refreshArgs) {
430 ATRACE_CALL();
431 ALOGV(__FUNCTION__);
432
433 updateColorProfile(refreshArgs);
434 updateCompositionState(refreshArgs);
435 planComposition();
436 writeCompositionState(refreshArgs);
437 setColorTransform(refreshArgs);
438 beginFrame();
439 prepareFrame();
440 devOptRepaintFlash(refreshArgs);
441 finishFrame(refreshArgs);
442 postFramebuffer();
443 renderCachedSets(refreshArgs);
444 }
445
rebuildLayerStacks(const compositionengine::CompositionRefreshArgs & refreshArgs,LayerFESet & layerFESet)446 void Output::rebuildLayerStacks(const compositionengine::CompositionRefreshArgs& refreshArgs,
447 LayerFESet& layerFESet) {
448 ATRACE_CALL();
449 ALOGV(__FUNCTION__);
450
451 auto& outputState = editState();
452
453 // Do nothing if this output is not enabled or there is no need to perform this update
454 if (!outputState.isEnabled || CC_LIKELY(!refreshArgs.updatingOutputGeometryThisFrame)) {
455 return;
456 }
457
458 // Process the layers to determine visibility and coverage
459 compositionengine::Output::CoverageState coverage{layerFESet};
460 collectVisibleLayers(refreshArgs, coverage);
461
462 // Compute the resulting coverage for this output, and store it for later
463 const ui::Transform& tr = outputState.transform;
464 Region undefinedRegion{outputState.displaySpace.bounds};
465 undefinedRegion.subtractSelf(tr.transform(coverage.aboveOpaqueLayers));
466
467 outputState.undefinedRegion = undefinedRegion;
468 outputState.dirtyRegion.orSelf(coverage.dirtyRegion);
469 }
470
collectVisibleLayers(const compositionengine::CompositionRefreshArgs & refreshArgs,compositionengine::Output::CoverageState & coverage)471 void Output::collectVisibleLayers(const compositionengine::CompositionRefreshArgs& refreshArgs,
472 compositionengine::Output::CoverageState& coverage) {
473 // Evaluate the layers from front to back to determine what is visible. This
474 // also incrementally calculates the coverage information for each layer as
475 // well as the entire output.
476 for (auto layer : reversed(refreshArgs.layers)) {
477 // Incrementally process the coverage for each layer
478 ensureOutputLayerIfVisible(layer, coverage);
479
480 // TODO(b/121291683): Stop early if the output is completely covered and
481 // no more layers could even be visible underneath the ones on top.
482 }
483
484 setReleasedLayers(refreshArgs);
485
486 finalizePendingOutputLayers();
487 }
488
ensureOutputLayerIfVisible(sp<compositionengine::LayerFE> & layerFE,compositionengine::Output::CoverageState & coverage)489 void Output::ensureOutputLayerIfVisible(sp<compositionengine::LayerFE>& layerFE,
490 compositionengine::Output::CoverageState& coverage) {
491 // Ensure we have a snapshot of the basic geometry layer state. Limit the
492 // snapshots to once per frame for each candidate layer, as layers may
493 // appear on multiple outputs.
494 if (!coverage.latchedLayers.count(layerFE)) {
495 coverage.latchedLayers.insert(layerFE);
496 layerFE->prepareCompositionState(compositionengine::LayerFE::StateSubset::BasicGeometry);
497 }
498
499 // Only consider the layers on the given layer stack
500 if (!belongsInOutput(layerFE)) {
501 return;
502 }
503
504 // Obtain a read-only pointer to the front-end layer state
505 const auto* layerFEState = layerFE->getCompositionState();
506 if (CC_UNLIKELY(!layerFEState)) {
507 return;
508 }
509
510 // handle hidden surfaces by setting the visible region to empty
511 if (CC_UNLIKELY(!layerFEState->isVisible)) {
512 return;
513 }
514
515 /*
516 * opaqueRegion: area of a surface that is fully opaque.
517 */
518 Region opaqueRegion;
519
520 /*
521 * visibleRegion: area of a surface that is visible on screen and not fully
522 * transparent. This is essentially the layer's footprint minus the opaque
523 * regions above it. Areas covered by a translucent surface are considered
524 * visible.
525 */
526 Region visibleRegion;
527
528 /*
529 * coveredRegion: area of a surface that is covered by all visible regions
530 * above it (which includes the translucent areas).
531 */
532 Region coveredRegion;
533
534 /*
535 * transparentRegion: area of a surface that is hinted to be completely
536 * transparent. This is only used to tell when the layer has no visible non-
537 * transparent regions and can be removed from the layer list. It does not
538 * affect the visibleRegion of this layer or any layers beneath it. The hint
539 * may not be correct if apps don't respect the SurfaceView restrictions
540 * (which, sadly, some don't).
541 */
542 Region transparentRegion;
543
544 /*
545 * shadowRegion: Region cast by the layer's shadow.
546 */
547 Region shadowRegion;
548
549 const ui::Transform& tr = layerFEState->geomLayerTransform;
550
551 // Get the visible region
552 // TODO(b/121291683): Is it worth creating helper methods on LayerFEState
553 // for computations like this?
554 const Rect visibleRect(tr.transform(layerFEState->geomLayerBounds));
555 visibleRegion.set(visibleRect);
556
557 if (layerFEState->shadowRadius > 0.0f) {
558 // if the layer casts a shadow, offset the layers visible region and
559 // calculate the shadow region.
560 const auto inset = static_cast<int32_t>(ceilf(layerFEState->shadowRadius) * -1.0f);
561 Rect visibleRectWithShadows(visibleRect);
562 visibleRectWithShadows.inset(inset, inset, inset, inset);
563 visibleRegion.set(visibleRectWithShadows);
564 shadowRegion = visibleRegion.subtract(visibleRect);
565 }
566
567 if (visibleRegion.isEmpty()) {
568 return;
569 }
570
571 // Remove the transparent area from the visible region
572 if (!layerFEState->isOpaque) {
573 if (tr.preserveRects()) {
574 // transform the transparent region
575 transparentRegion = tr.transform(layerFEState->transparentRegionHint);
576 } else {
577 // transformation too complex, can't do the
578 // transparent region optimization.
579 transparentRegion.clear();
580 }
581 }
582
583 // compute the opaque region
584 const auto layerOrientation = tr.getOrientation();
585 if (layerFEState->isOpaque && ((layerOrientation & ui::Transform::ROT_INVALID) == 0)) {
586 // If we one of the simple category of transforms (0/90/180/270 rotation
587 // + any flip), then the opaque region is the layer's footprint.
588 // Otherwise we don't try and compute the opaque region since there may
589 // be errors at the edges, and we treat the entire layer as
590 // translucent.
591 opaqueRegion.set(visibleRect);
592 }
593
594 // Clip the covered region to the visible region
595 coveredRegion = coverage.aboveCoveredLayers.intersect(visibleRegion);
596
597 // Update accumAboveCoveredLayers for next (lower) layer
598 coverage.aboveCoveredLayers.orSelf(visibleRegion);
599
600 // subtract the opaque region covered by the layers above us
601 visibleRegion.subtractSelf(coverage.aboveOpaqueLayers);
602
603 if (visibleRegion.isEmpty()) {
604 return;
605 }
606
607 // Get coverage information for the layer as previously displayed,
608 // also taking over ownership from mOutputLayersorderedByZ.
609 auto prevOutputLayerIndex = findCurrentOutputLayerForLayer(layerFE);
610 auto prevOutputLayer =
611 prevOutputLayerIndex ? getOutputLayerOrderedByZByIndex(*prevOutputLayerIndex) : nullptr;
612
613 // Get coverage information for the layer as previously displayed
614 // TODO(b/121291683): Define kEmptyRegion as a constant in Region.h
615 const Region kEmptyRegion;
616 const Region& oldVisibleRegion =
617 prevOutputLayer ? prevOutputLayer->getState().visibleRegion : kEmptyRegion;
618 const Region& oldCoveredRegion =
619 prevOutputLayer ? prevOutputLayer->getState().coveredRegion : kEmptyRegion;
620
621 // compute this layer's dirty region
622 Region dirty;
623 if (layerFEState->contentDirty) {
624 // we need to invalidate the whole region
625 dirty = visibleRegion;
626 // as well, as the old visible region
627 dirty.orSelf(oldVisibleRegion);
628 } else {
629 /* compute the exposed region:
630 * the exposed region consists of two components:
631 * 1) what's VISIBLE now and was COVERED before
632 * 2) what's EXPOSED now less what was EXPOSED before
633 *
634 * note that (1) is conservative, we start with the whole visible region
635 * but only keep what used to be covered by something -- which mean it
636 * may have been exposed.
637 *
638 * (2) handles areas that were not covered by anything but got exposed
639 * because of a resize.
640 *
641 */
642 const Region newExposed = visibleRegion - coveredRegion;
643 const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
644 dirty = (visibleRegion & oldCoveredRegion) | (newExposed - oldExposed);
645 }
646 dirty.subtractSelf(coverage.aboveOpaqueLayers);
647
648 // accumulate to the screen dirty region
649 coverage.dirtyRegion.orSelf(dirty);
650
651 // Update accumAboveOpaqueLayers for next (lower) layer
652 coverage.aboveOpaqueLayers.orSelf(opaqueRegion);
653
654 // Compute the visible non-transparent region
655 Region visibleNonTransparentRegion = visibleRegion.subtract(transparentRegion);
656
657 // Perform the final check to see if this layer is visible on this output
658 // TODO(b/121291683): Why does this not use visibleRegion? (see outputSpaceVisibleRegion below)
659 const auto& outputState = getState();
660 Region drawRegion(outputState.transform.transform(visibleNonTransparentRegion));
661 drawRegion.andSelf(outputState.displaySpace.bounds);
662 if (drawRegion.isEmpty()) {
663 return;
664 }
665
666 Region visibleNonShadowRegion = visibleRegion.subtract(shadowRegion);
667
668 // The layer is visible. Either reuse the existing outputLayer if we have
669 // one, or create a new one if we do not.
670 auto result = ensureOutputLayer(prevOutputLayerIndex, layerFE);
671
672 // Store the layer coverage information into the layer state as some of it
673 // is useful later.
674 auto& outputLayerState = result->editState();
675 outputLayerState.visibleRegion = visibleRegion;
676 outputLayerState.visibleNonTransparentRegion = visibleNonTransparentRegion;
677 outputLayerState.coveredRegion = coveredRegion;
678 outputLayerState.outputSpaceVisibleRegion = outputState.transform.transform(
679 visibleNonShadowRegion.intersect(outputState.layerStackSpace.content));
680 outputLayerState.shadowRegion = shadowRegion;
681 }
682
setReleasedLayers(const compositionengine::CompositionRefreshArgs &)683 void Output::setReleasedLayers(const compositionengine::CompositionRefreshArgs&) {
684 // The base class does nothing with this call.
685 }
686
updateLayerStateFromFE(const CompositionRefreshArgs & args) const687 void Output::updateLayerStateFromFE(const CompositionRefreshArgs& args) const {
688 for (auto* layer : getOutputLayersOrderedByZ()) {
689 layer->getLayerFE().prepareCompositionState(
690 args.updatingGeometryThisFrame ? LayerFE::StateSubset::GeometryAndContent
691 : LayerFE::StateSubset::Content);
692 }
693 }
694
updateCompositionState(const compositionengine::CompositionRefreshArgs & refreshArgs)695 void Output::updateCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) {
696 ATRACE_CALL();
697 ALOGV(__FUNCTION__);
698
699 if (!getState().isEnabled) {
700 return;
701 }
702
703 mLayerRequestingBackgroundBlur = findLayerRequestingBackgroundComposition();
704 bool forceClientComposition = mLayerRequestingBackgroundBlur != nullptr;
705
706 for (auto* layer : getOutputLayersOrderedByZ()) {
707 layer->updateCompositionState(refreshArgs.updatingGeometryThisFrame,
708 refreshArgs.devOptForceClientComposition ||
709 forceClientComposition,
710 refreshArgs.internalDisplayRotationFlags);
711
712 if (mLayerRequestingBackgroundBlur == layer) {
713 forceClientComposition = false;
714 }
715 }
716 }
717
planComposition()718 void Output::planComposition() {
719 if (!mPlanner || !getState().isEnabled) {
720 return;
721 }
722
723 ATRACE_CALL();
724 ALOGV(__FUNCTION__);
725
726 mPlanner->plan(getOutputLayersOrderedByZ());
727 }
728
writeCompositionState(const compositionengine::CompositionRefreshArgs & refreshArgs)729 void Output::writeCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) {
730 ATRACE_CALL();
731 ALOGV(__FUNCTION__);
732
733 if (!getState().isEnabled) {
734 return;
735 }
736
737 editState().earliestPresentTime = refreshArgs.earliestPresentTime;
738 editState().previousPresentFence = refreshArgs.previousPresentFence;
739
740 compositionengine::OutputLayer* peekThroughLayer = nullptr;
741 sp<GraphicBuffer> previousOverride = nullptr;
742 bool includeGeometry = refreshArgs.updatingGeometryThisFrame;
743 uint32_t z = 0;
744 bool overrideZ = false;
745 for (auto* layer : getOutputLayersOrderedByZ()) {
746 if (layer == peekThroughLayer) {
747 // No longer needed, although it should not show up again, so
748 // resetting it is not truly needed either.
749 peekThroughLayer = nullptr;
750
751 // peekThroughLayer was already drawn ahead of its z order.
752 continue;
753 }
754 bool skipLayer = false;
755 const auto& overrideInfo = layer->getState().overrideInfo;
756 if (overrideInfo.buffer != nullptr) {
757 if (previousOverride && overrideInfo.buffer->getBuffer() == previousOverride) {
758 ALOGV("Skipping redundant buffer");
759 skipLayer = true;
760 } else {
761 // First layer with the override buffer.
762 if (overrideInfo.peekThroughLayer) {
763 peekThroughLayer = overrideInfo.peekThroughLayer;
764
765 // Draw peekThroughLayer first.
766 overrideZ = true;
767 includeGeometry = true;
768 constexpr bool isPeekingThrough = true;
769 peekThroughLayer->writeStateToHWC(includeGeometry, false, z++, overrideZ,
770 isPeekingThrough);
771 }
772
773 previousOverride = overrideInfo.buffer->getBuffer();
774 }
775 }
776
777 constexpr bool isPeekingThrough = false;
778 layer->writeStateToHWC(includeGeometry, skipLayer, z++, overrideZ, isPeekingThrough);
779 }
780 }
781
findLayerRequestingBackgroundComposition() const782 compositionengine::OutputLayer* Output::findLayerRequestingBackgroundComposition() const {
783 compositionengine::OutputLayer* layerRequestingBgComposition = nullptr;
784 for (auto* layer : getOutputLayersOrderedByZ()) {
785 auto* compState = layer->getLayerFE().getCompositionState();
786
787 // If any layer has a sideband stream, we will disable blurs. In that case, we don't
788 // want to force client composition because of the blur.
789 if (compState->sidebandStream != nullptr) {
790 return nullptr;
791 }
792 if (compState->isOpaque) {
793 continue;
794 }
795 if (compState->backgroundBlurRadius > 0 || compState->blurRegions.size() > 0) {
796 layerRequestingBgComposition = layer;
797 }
798 }
799 return layerRequestingBgComposition;
800 }
801
updateColorProfile(const compositionengine::CompositionRefreshArgs & refreshArgs)802 void Output::updateColorProfile(const compositionengine::CompositionRefreshArgs& refreshArgs) {
803 setColorProfile(pickColorProfile(refreshArgs));
804 }
805
806 // Returns a data space that fits all visible layers. The returned data space
807 // can only be one of
808 // - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced)
809 // - Dataspace::DISPLAY_P3
810 // - Dataspace::DISPLAY_BT2020
811 // The returned HDR data space is one of
812 // - Dataspace::UNKNOWN
813 // - Dataspace::BT2020_HLG
814 // - Dataspace::BT2020_PQ
getBestDataspace(ui::Dataspace * outHdrDataSpace,bool * outIsHdrClientComposition) const815 ui::Dataspace Output::getBestDataspace(ui::Dataspace* outHdrDataSpace,
816 bool* outIsHdrClientComposition) const {
817 ui::Dataspace bestDataSpace = ui::Dataspace::V0_SRGB;
818 *outHdrDataSpace = ui::Dataspace::UNKNOWN;
819
820 for (const auto* layer : getOutputLayersOrderedByZ()) {
821 switch (layer->getLayerFE().getCompositionState()->dataspace) {
822 case ui::Dataspace::V0_SCRGB:
823 case ui::Dataspace::V0_SCRGB_LINEAR:
824 case ui::Dataspace::BT2020:
825 case ui::Dataspace::BT2020_ITU:
826 case ui::Dataspace::BT2020_LINEAR:
827 case ui::Dataspace::DISPLAY_BT2020:
828 bestDataSpace = ui::Dataspace::DISPLAY_BT2020;
829 break;
830 case ui::Dataspace::DISPLAY_P3:
831 bestDataSpace = ui::Dataspace::DISPLAY_P3;
832 break;
833 case ui::Dataspace::BT2020_PQ:
834 case ui::Dataspace::BT2020_ITU_PQ:
835 bestDataSpace = ui::Dataspace::DISPLAY_P3;
836 *outHdrDataSpace = ui::Dataspace::BT2020_PQ;
837 *outIsHdrClientComposition =
838 layer->getLayerFE().getCompositionState()->forceClientComposition;
839 break;
840 case ui::Dataspace::BT2020_HLG:
841 case ui::Dataspace::BT2020_ITU_HLG:
842 bestDataSpace = ui::Dataspace::DISPLAY_P3;
843 // When there's mixed PQ content and HLG content, we set the HDR
844 // data space to be BT2020_PQ and convert HLG to PQ.
845 if (*outHdrDataSpace == ui::Dataspace::UNKNOWN) {
846 *outHdrDataSpace = ui::Dataspace::BT2020_HLG;
847 }
848 break;
849 default:
850 break;
851 }
852 }
853
854 return bestDataSpace;
855 }
856
pickColorProfile(const compositionengine::CompositionRefreshArgs & refreshArgs) const857 compositionengine::Output::ColorProfile Output::pickColorProfile(
858 const compositionengine::CompositionRefreshArgs& refreshArgs) const {
859 if (refreshArgs.outputColorSetting == OutputColorSetting::kUnmanaged) {
860 return ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN,
861 ui::RenderIntent::COLORIMETRIC,
862 refreshArgs.colorSpaceAgnosticDataspace};
863 }
864
865 ui::Dataspace hdrDataSpace;
866 bool isHdrClientComposition = false;
867 ui::Dataspace bestDataSpace = getBestDataspace(&hdrDataSpace, &isHdrClientComposition);
868
869 switch (refreshArgs.forceOutputColorMode) {
870 case ui::ColorMode::SRGB:
871 bestDataSpace = ui::Dataspace::V0_SRGB;
872 break;
873 case ui::ColorMode::DISPLAY_P3:
874 bestDataSpace = ui::Dataspace::DISPLAY_P3;
875 break;
876 default:
877 break;
878 }
879
880 // respect hdrDataSpace only when there is no legacy HDR support
881 const bool isHdr = hdrDataSpace != ui::Dataspace::UNKNOWN &&
882 !mDisplayColorProfile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition;
883 if (isHdr) {
884 bestDataSpace = hdrDataSpace;
885 }
886
887 ui::RenderIntent intent;
888 switch (refreshArgs.outputColorSetting) {
889 case OutputColorSetting::kManaged:
890 case OutputColorSetting::kUnmanaged:
891 intent = isHdr ? ui::RenderIntent::TONE_MAP_COLORIMETRIC
892 : ui::RenderIntent::COLORIMETRIC;
893 break;
894 case OutputColorSetting::kEnhanced:
895 intent = isHdr ? ui::RenderIntent::TONE_MAP_ENHANCE : ui::RenderIntent::ENHANCE;
896 break;
897 default: // vendor display color setting
898 intent = static_cast<ui::RenderIntent>(refreshArgs.outputColorSetting);
899 break;
900 }
901
902 ui::ColorMode outMode;
903 ui::Dataspace outDataSpace;
904 ui::RenderIntent outRenderIntent;
905 mDisplayColorProfile->getBestColorMode(bestDataSpace, intent, &outDataSpace, &outMode,
906 &outRenderIntent);
907
908 return ColorProfile{outMode, outDataSpace, outRenderIntent,
909 refreshArgs.colorSpaceAgnosticDataspace};
910 }
911
beginFrame()912 void Output::beginFrame() {
913 auto& outputState = editState();
914 const bool dirty = !getDirtyRegion(false).isEmpty();
915 const bool empty = getOutputLayerCount() == 0;
916 const bool wasEmpty = !outputState.lastCompositionHadVisibleLayers;
917
918 // If nothing has changed (!dirty), don't recompose.
919 // If something changed, but we don't currently have any visible layers,
920 // and didn't when we last did a composition, then skip it this time.
921 // The second rule does two things:
922 // - When all layers are removed from a display, we'll emit one black
923 // frame, then nothing more until we get new layers.
924 // - When a display is created with a private layer stack, we won't
925 // emit any black frames until a layer is added to the layer stack.
926 const bool mustRecompose = dirty && !(empty && wasEmpty);
927
928 const char flagPrefix[] = {'-', '+'};
929 static_cast<void>(flagPrefix);
930 ALOGV_IF("%s: %s composition for %s (%cdirty %cempty %cwasEmpty)", __FUNCTION__,
931 mustRecompose ? "doing" : "skipping", getName().c_str(), flagPrefix[dirty],
932 flagPrefix[empty], flagPrefix[wasEmpty]);
933
934 mRenderSurface->beginFrame(mustRecompose);
935
936 if (mustRecompose) {
937 outputState.lastCompositionHadVisibleLayers = !empty;
938 }
939 }
940
prepareFrame()941 void Output::prepareFrame() {
942 ATRACE_CALL();
943 ALOGV(__FUNCTION__);
944
945 const auto& outputState = getState();
946 if (!outputState.isEnabled) {
947 return;
948 }
949
950 chooseCompositionStrategy();
951
952 if (mPlanner) {
953 mPlanner->reportFinalPlan(getOutputLayersOrderedByZ());
954 }
955
956 mRenderSurface->prepareFrame(outputState.usesClientComposition,
957 outputState.usesDeviceComposition);
958 }
959
devOptRepaintFlash(const compositionengine::CompositionRefreshArgs & refreshArgs)960 void Output::devOptRepaintFlash(const compositionengine::CompositionRefreshArgs& refreshArgs) {
961 if (CC_LIKELY(!refreshArgs.devOptFlashDirtyRegionsDelay)) {
962 return;
963 }
964
965 if (getState().isEnabled) {
966 // transform the dirty region into this screen's coordinate space
967 const Region dirtyRegion = getDirtyRegion(refreshArgs.repaintEverything);
968 if (!dirtyRegion.isEmpty()) {
969 base::unique_fd readyFence;
970 // redraw the whole screen
971 static_cast<void>(composeSurfaces(dirtyRegion, refreshArgs));
972
973 mRenderSurface->queueBuffer(std::move(readyFence));
974 }
975 }
976
977 postFramebuffer();
978
979 std::this_thread::sleep_for(*refreshArgs.devOptFlashDirtyRegionsDelay);
980
981 prepareFrame();
982 }
983
finishFrame(const compositionengine::CompositionRefreshArgs & refreshArgs)984 void Output::finishFrame(const compositionengine::CompositionRefreshArgs& refreshArgs) {
985 ATRACE_CALL();
986 ALOGV(__FUNCTION__);
987
988 if (!getState().isEnabled) {
989 return;
990 }
991
992 // Repaint the framebuffer (if needed), getting the optional fence for when
993 // the composition completes.
994 auto optReadyFence = composeSurfaces(Region::INVALID_REGION, refreshArgs);
995 if (!optReadyFence) {
996 return;
997 }
998
999 // swap buffers (presentation)
1000 mRenderSurface->queueBuffer(std::move(*optReadyFence));
1001 }
1002
composeSurfaces(const Region & debugRegion,const compositionengine::CompositionRefreshArgs & refreshArgs)1003 std::optional<base::unique_fd> Output::composeSurfaces(
1004 const Region& debugRegion, const compositionengine::CompositionRefreshArgs& refreshArgs) {
1005 ATRACE_CALL();
1006 ALOGV(__FUNCTION__);
1007
1008 const auto& outputState = getState();
1009 OutputCompositionState& outputCompositionState = editState();
1010 const TracedOrdinal<bool> hasClientComposition = {"hasClientComposition",
1011 outputState.usesClientComposition};
1012
1013 auto& renderEngine = getCompositionEngine().getRenderEngine();
1014 const bool supportsProtectedContent = renderEngine.supportsProtectedContent();
1015
1016 // If we the display is secure, protected content support is enabled, and at
1017 // least one layer has protected content, we need to use a secure back
1018 // buffer.
1019 if (outputState.isSecure && supportsProtectedContent) {
1020 auto layers = getOutputLayersOrderedByZ();
1021 bool needsProtected = std::any_of(layers.begin(), layers.end(), [](auto* layer) {
1022 return layer->getLayerFE().getCompositionState()->hasProtectedContent;
1023 });
1024 if (needsProtected != renderEngine.isProtected()) {
1025 renderEngine.useProtectedContext(needsProtected);
1026 }
1027 if (needsProtected != mRenderSurface->isProtected() &&
1028 needsProtected == renderEngine.isProtected()) {
1029 mRenderSurface->setProtected(needsProtected);
1030 }
1031 } else if (!outputState.isSecure && renderEngine.isProtected()) {
1032 renderEngine.useProtectedContext(false);
1033 }
1034
1035 base::unique_fd fd;
1036
1037 std::shared_ptr<renderengine::ExternalTexture> tex;
1038
1039 // If we aren't doing client composition on this output, but do have a
1040 // flipClientTarget request for this frame on this output, we still need to
1041 // dequeue a buffer.
1042 if (hasClientComposition || outputState.flipClientTarget) {
1043 tex = mRenderSurface->dequeueBuffer(&fd);
1044 if (tex == nullptr) {
1045 ALOGW("Dequeuing buffer for display [%s] failed, bailing out of "
1046 "client composition for this frame",
1047 mName.c_str());
1048 return {};
1049 }
1050 }
1051
1052 base::unique_fd readyFence;
1053 if (!hasClientComposition) {
1054 setExpensiveRenderingExpected(false);
1055 return readyFence;
1056 }
1057
1058 ALOGV("hasClientComposition");
1059
1060 renderengine::DisplaySettings clientCompositionDisplay;
1061 clientCompositionDisplay.physicalDisplay = outputState.framebufferSpace.content;
1062 clientCompositionDisplay.clip = outputState.layerStackSpace.content;
1063 clientCompositionDisplay.orientation =
1064 ui::Transform::toRotationFlags(outputState.displaySpace.orientation);
1065 clientCompositionDisplay.outputDataspace = mDisplayColorProfile->hasWideColorGamut()
1066 ? outputState.dataspace
1067 : ui::Dataspace::UNKNOWN;
1068
1069 // If we have a valid current display brightness use that, otherwise fall back to the
1070 // display's max desired
1071 clientCompositionDisplay.maxLuminance = outputState.displayBrightnessNits > 0.f
1072 ? outputState.displayBrightnessNits
1073 : mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance();
1074 clientCompositionDisplay.sdrWhitePointNits = outputState.sdrWhitePointNits;
1075
1076 // Compute the global color transform matrix.
1077 if (!outputState.usesDeviceComposition && !getSkipColorTransform()) {
1078 clientCompositionDisplay.colorTransform = outputState.colorTransformMatrix;
1079 }
1080
1081 // Note: Updated by generateClientCompositionRequests
1082 clientCompositionDisplay.clearRegion = Region::INVALID_REGION;
1083
1084 // Generate the client composition requests for the layers on this output.
1085 std::vector<LayerFE::LayerSettings> clientCompositionLayers =
1086 generateClientCompositionRequests(supportsProtectedContent,
1087 clientCompositionDisplay.clearRegion,
1088 clientCompositionDisplay.outputDataspace);
1089 appendRegionFlashRequests(debugRegion, clientCompositionLayers);
1090
1091 // Check if the client composition requests were rendered into the provided graphic buffer. If
1092 // so, we can reuse the buffer and avoid client composition.
1093 if (mClientCompositionRequestCache) {
1094 if (mClientCompositionRequestCache->exists(tex->getBuffer()->getId(),
1095 clientCompositionDisplay,
1096 clientCompositionLayers)) {
1097 outputCompositionState.reusedClientComposition = true;
1098 setExpensiveRenderingExpected(false);
1099 return readyFence;
1100 }
1101 mClientCompositionRequestCache->add(tex->getBuffer()->getId(), clientCompositionDisplay,
1102 clientCompositionLayers);
1103 }
1104
1105 // We boost GPU frequency here because there will be color spaces conversion
1106 // or complex GPU shaders and it's expensive. We boost the GPU frequency so that
1107 // GPU composition can finish in time. We must reset GPU frequency afterwards,
1108 // because high frequency consumes extra battery.
1109 const bool expensiveBlurs =
1110 refreshArgs.blursAreExpensive && mLayerRequestingBackgroundBlur != nullptr;
1111 const bool expensiveRenderingExpected =
1112 clientCompositionDisplay.outputDataspace == ui::Dataspace::DISPLAY_P3 || expensiveBlurs;
1113 if (expensiveRenderingExpected) {
1114 setExpensiveRenderingExpected(true);
1115 }
1116
1117 std::vector<const renderengine::LayerSettings*> clientCompositionLayerPointers;
1118 clientCompositionLayerPointers.reserve(clientCompositionLayers.size());
1119 std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(),
1120 std::back_inserter(clientCompositionLayerPointers),
1121 [](LayerFE::LayerSettings& settings) -> renderengine::LayerSettings* {
1122 return &settings;
1123 });
1124
1125 const nsecs_t renderEngineStart = systemTime();
1126 // Only use the framebuffer cache when rendering to an internal display
1127 // TODO(b/173560331): This is only to help mitigate memory leaks from virtual displays because
1128 // right now we don't have a concrete eviction policy for output buffers: GLESRenderEngine
1129 // bounds its framebuffer cache but Skia RenderEngine has no current policy. The best fix is
1130 // probably to encapsulate the output buffer into a structure that dispatches resource cleanup
1131 // over to RenderEngine, in which case this flag can be removed from the drawLayers interface.
1132 const bool useFramebufferCache = outputState.layerStackInternal;
1133 status_t status =
1134 renderEngine.drawLayers(clientCompositionDisplay, clientCompositionLayerPointers, tex,
1135 useFramebufferCache, std::move(fd), &readyFence);
1136
1137 if (status != NO_ERROR && mClientCompositionRequestCache) {
1138 // If rendering was not successful, remove the request from the cache.
1139 mClientCompositionRequestCache->remove(tex->getBuffer()->getId());
1140 }
1141
1142 auto& timeStats = getCompositionEngine().getTimeStats();
1143 if (readyFence.get() < 0) {
1144 timeStats.recordRenderEngineDuration(renderEngineStart, systemTime());
1145 } else {
1146 timeStats.recordRenderEngineDuration(renderEngineStart,
1147 std::make_shared<FenceTime>(
1148 new Fence(dup(readyFence.get()))));
1149 }
1150
1151 return readyFence;
1152 }
1153
generateClientCompositionRequests(bool supportsProtectedContent,Region & clearRegion,ui::Dataspace outputDataspace)1154 std::vector<LayerFE::LayerSettings> Output::generateClientCompositionRequests(
1155 bool supportsProtectedContent, Region& clearRegion, ui::Dataspace outputDataspace) {
1156 std::vector<LayerFE::LayerSettings> clientCompositionLayers;
1157 ALOGV("Rendering client layers");
1158
1159 const auto& outputState = getState();
1160 const Region viewportRegion(outputState.layerStackSpace.content);
1161 bool firstLayer = true;
1162 // Used when a layer clears part of the buffer.
1163 Region stubRegion;
1164
1165 bool disableBlurs = false;
1166 sp<GraphicBuffer> previousOverrideBuffer = nullptr;
1167
1168 for (auto* layer : getOutputLayersOrderedByZ()) {
1169 const auto& layerState = layer->getState();
1170 const auto* layerFEState = layer->getLayerFE().getCompositionState();
1171 auto& layerFE = layer->getLayerFE();
1172
1173 const Region clip(viewportRegion.intersect(layerState.visibleRegion));
1174 ALOGV("Layer: %s", layerFE.getDebugName());
1175 if (clip.isEmpty()) {
1176 ALOGV(" Skipping for empty clip");
1177 firstLayer = false;
1178 continue;
1179 }
1180
1181 disableBlurs |= layerFEState->sidebandStream != nullptr;
1182
1183 const bool clientComposition = layer->requiresClientComposition();
1184
1185 // We clear the client target for non-client composed layers if
1186 // requested by the HWC. We skip this if the layer is not an opaque
1187 // rectangle, as by definition the layer must blend with whatever is
1188 // underneath. We also skip the first layer as the buffer target is
1189 // guaranteed to start out cleared.
1190 const bool clearClientComposition =
1191 layerState.clearClientTarget && layerFEState->isOpaque && !firstLayer;
1192
1193 ALOGV(" Composition type: client %d clear %d", clientComposition, clearClientComposition);
1194
1195 // If the layer casts a shadow but the content casting the shadow is occluded, skip
1196 // composing the non-shadow content and only draw the shadows.
1197 const bool realContentIsVisible = clientComposition &&
1198 !layerState.visibleRegion.subtract(layerState.shadowRegion).isEmpty();
1199
1200 if (clientComposition || clearClientComposition) {
1201 std::vector<LayerFE::LayerSettings> results;
1202 if (layer->getState().overrideInfo.buffer != nullptr) {
1203 if (layer->getState().overrideInfo.buffer->getBuffer() != previousOverrideBuffer) {
1204 results = layer->getOverrideCompositionList();
1205 previousOverrideBuffer = layer->getState().overrideInfo.buffer->getBuffer();
1206 ALOGV("Replacing [%s] with override in RE", layer->getLayerFE().getDebugName());
1207 } else {
1208 ALOGV("Skipping redundant override buffer for [%s] in RE",
1209 layer->getLayerFE().getDebugName());
1210 }
1211 } else {
1212 LayerFE::ClientCompositionTargetSettings::BlurSetting blurSetting = disableBlurs
1213 ? LayerFE::ClientCompositionTargetSettings::BlurSetting::Disabled
1214 : (layer->getState().overrideInfo.disableBackgroundBlur
1215 ? LayerFE::ClientCompositionTargetSettings::BlurSetting::
1216 BlurRegionsOnly
1217 : LayerFE::ClientCompositionTargetSettings::BlurSetting::
1218 Enabled);
1219 compositionengine::LayerFE::ClientCompositionTargetSettings
1220 targetSettings{.clip = clip,
1221 .needsFiltering = layer->needsFiltering() ||
1222 outputState.needsFiltering,
1223 .isSecure = outputState.isSecure,
1224 .supportsProtectedContent = supportsProtectedContent,
1225 .clearRegion = clientComposition ? clearRegion : stubRegion,
1226 .viewport = outputState.layerStackSpace.content,
1227 .dataspace = outputDataspace,
1228 .realContentIsVisible = realContentIsVisible,
1229 .clearContent = !clientComposition,
1230 .blurSetting = blurSetting};
1231 results = layerFE.prepareClientCompositionList(targetSettings);
1232 if (realContentIsVisible && !results.empty()) {
1233 layer->editState().clientCompositionTimestamp = systemTime();
1234 }
1235 }
1236
1237 clientCompositionLayers.insert(clientCompositionLayers.end(),
1238 std::make_move_iterator(results.begin()),
1239 std::make_move_iterator(results.end()));
1240 results.clear();
1241 }
1242
1243 firstLayer = false;
1244 }
1245
1246 return clientCompositionLayers;
1247 }
1248
appendRegionFlashRequests(const Region & flashRegion,std::vector<LayerFE::LayerSettings> & clientCompositionLayers)1249 void Output::appendRegionFlashRequests(
1250 const Region& flashRegion, std::vector<LayerFE::LayerSettings>& clientCompositionLayers) {
1251 if (flashRegion.isEmpty()) {
1252 return;
1253 }
1254
1255 LayerFE::LayerSettings layerSettings;
1256 layerSettings.source.buffer.buffer = nullptr;
1257 layerSettings.source.solidColor = half3(1.0, 0.0, 1.0);
1258 layerSettings.alpha = half(1.0);
1259
1260 for (const auto& rect : flashRegion) {
1261 layerSettings.geometry.boundaries = rect.toFloatRect();
1262 clientCompositionLayers.push_back(layerSettings);
1263 }
1264 }
1265
setExpensiveRenderingExpected(bool)1266 void Output::setExpensiveRenderingExpected(bool) {
1267 // The base class does nothing with this call.
1268 }
1269
postFramebuffer()1270 void Output::postFramebuffer() {
1271 ATRACE_CALL();
1272 ALOGV(__FUNCTION__);
1273
1274 if (!getState().isEnabled) {
1275 return;
1276 }
1277
1278 auto& outputState = editState();
1279 outputState.dirtyRegion.clear();
1280 mRenderSurface->flip();
1281
1282 auto frame = presentAndGetFrameFences();
1283
1284 mRenderSurface->onPresentDisplayCompleted();
1285
1286 for (auto* layer : getOutputLayersOrderedByZ()) {
1287 // The layer buffer from the previous frame (if any) is released
1288 // by HWC only when the release fence from this frame (if any) is
1289 // signaled. Always get the release fence from HWC first.
1290 sp<Fence> releaseFence = Fence::NO_FENCE;
1291
1292 if (auto hwcLayer = layer->getHwcLayer()) {
1293 if (auto f = frame.layerFences.find(hwcLayer); f != frame.layerFences.end()) {
1294 releaseFence = f->second;
1295 }
1296 }
1297
1298 // If the layer was client composited in the previous frame, we
1299 // need to merge with the previous client target acquire fence.
1300 // Since we do not track that, always merge with the current
1301 // client target acquire fence when it is available, even though
1302 // this is suboptimal.
1303 // TODO(b/121291683): Track previous frame client target acquire fence.
1304 if (outputState.usesClientComposition) {
1305 releaseFence =
1306 Fence::merge("LayerRelease", releaseFence, frame.clientTargetAcquireFence);
1307 }
1308
1309 layer->getLayerFE().onLayerDisplayed(releaseFence);
1310 }
1311
1312 // We've got a list of layers needing fences, that are disjoint with
1313 // OutputLayersOrderedByZ. The best we can do is to
1314 // supply them with the present fence.
1315 for (auto& weakLayer : mReleasedLayers) {
1316 if (auto layer = weakLayer.promote(); layer != nullptr) {
1317 layer->onLayerDisplayed(frame.presentFence);
1318 }
1319 }
1320
1321 // Clear out the released layers now that we're done with them.
1322 mReleasedLayers.clear();
1323 }
1324
renderCachedSets(const CompositionRefreshArgs & refreshArgs)1325 void Output::renderCachedSets(const CompositionRefreshArgs& refreshArgs) {
1326 if (mPlanner) {
1327 mPlanner->renderCachedSets(getState(), refreshArgs.nextInvalidateTime);
1328 }
1329 }
1330
dirtyEntireOutput()1331 void Output::dirtyEntireOutput() {
1332 auto& outputState = editState();
1333 outputState.dirtyRegion.set(outputState.displaySpace.bounds);
1334 }
1335
chooseCompositionStrategy()1336 void Output::chooseCompositionStrategy() {
1337 // The base output implementation can only do client composition
1338 auto& outputState = editState();
1339 outputState.usesClientComposition = true;
1340 outputState.usesDeviceComposition = false;
1341 outputState.reusedClientComposition = false;
1342 }
1343
getSkipColorTransform() const1344 bool Output::getSkipColorTransform() const {
1345 return true;
1346 }
1347
presentAndGetFrameFences()1348 compositionengine::Output::FrameFences Output::presentAndGetFrameFences() {
1349 compositionengine::Output::FrameFences result;
1350 if (getState().usesClientComposition) {
1351 result.clientTargetAcquireFence = mRenderSurface->getClientTargetAcquireFence();
1352 }
1353 return result;
1354 }
1355
1356 } // namespace impl
1357 } // namespace android::compositionengine
1358