1 /*
2 * Copyright 2021 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "powerhal-libperfmgr"
18 #define ATRACE_TAG (ATRACE_TAG_POWER | ATRACE_TAG_HAL)
19
20 #include <android-base/logging.h>
21 #include <android-base/parsedouble.h>
22 #include <android-base/properties.h>
23 #include <android-base/stringprintf.h>
24 #include <sys/syscall.h>
25 #include <time.h>
26 #include <utils/Trace.h>
27 #include <atomic>
28
29 #include "PowerHintSession.h"
30 #include "PowerSessionManager.h"
31
32 namespace aidl {
33 namespace google {
34 namespace hardware {
35 namespace power {
36 namespace impl {
37 namespace pixel {
38
39 using ::android::base::StringPrintf;
40 using std::chrono::duration_cast;
41 using std::chrono::nanoseconds;
42 using std::literals::chrono_literals::operator""s;
43
44 constexpr char kPowerHalAdpfPidPOver[] = "vendor.powerhal.adpf.pid_p.over";
45 constexpr char kPowerHalAdpfPidPUnder[] = "vendor.powerhal.adpf.pid_p.under";
46 constexpr char kPowerHalAdpfPidI[] = "vendor.powerhal.adpf.pid_i";
47 constexpr char kPowerHalAdpfPidDOver[] = "vendor.powerhal.adpf.pid_d.over";
48 constexpr char kPowerHalAdpfPidDUnder[] = "vendor.powerhal.adpf.pid_d.under";
49 constexpr char kPowerHalAdpfPidIInit[] = "vendor.powerhal.adpf.pid_i.init";
50 constexpr char kPowerHalAdpfPidIHighLimit[] = "vendor.powerhal.adpf.pid_i.high_limit";
51 constexpr char kPowerHalAdpfPidILowLimit[] = "vendor.powerhal.adpf.pid_i.low_limit";
52 constexpr char kPowerHalAdpfUclampEnable[] = "vendor.powerhal.adpf.uclamp";
53 constexpr char kPowerHalAdpfUclampMinGranularity[] = "vendor.powerhal.adpf.uclamp_min.granularity";
54 constexpr char kPowerHalAdpfUclampMinHighLimit[] = "vendor.powerhal.adpf.uclamp_min.high_limit";
55 constexpr char kPowerHalAdpfUclampMinLowLimit[] = "vendor.powerhal.adpf.uclamp_min.low_limit";
56 constexpr char kPowerHalAdpfStaleTimeFactor[] = "vendor.powerhal.adpf.stale_timeout_factor";
57 constexpr char kPowerHalAdpfPSamplingWindow[] = "vendor.powerhal.adpf.p.window";
58 constexpr char kPowerHalAdpfISamplingWindow[] = "vendor.powerhal.adpf.i.window";
59 constexpr char kPowerHalAdpfDSamplingWindow[] = "vendor.powerhal.adpf.d.window";
60
61 namespace {
62 /* there is no glibc or bionic wrapper */
63 struct sched_attr {
64 __u32 size;
65 __u32 sched_policy;
66 __u64 sched_flags;
67 __s32 sched_nice;
68 __u32 sched_priority;
69 __u64 sched_runtime;
70 __u64 sched_deadline;
71 __u64 sched_period;
72 __u32 sched_util_min;
73 __u32 sched_util_max;
74 };
75
sched_setattr(int pid,struct sched_attr * attr,unsigned int flags)76 static int sched_setattr(int pid, struct sched_attr *attr, unsigned int flags) {
77 static const bool kPowerHalAdpfUclamp =
78 ::android::base::GetBoolProperty(kPowerHalAdpfUclampEnable, true);
79 if (!kPowerHalAdpfUclamp) {
80 ALOGV("PowerHintSession:%s: skip", __func__);
81 return 0;
82 }
83 return syscall(__NR_sched_setattr, pid, attr, flags);
84 }
85
ns_to_100us(int64_t ns)86 static inline int64_t ns_to_100us(int64_t ns) {
87 return ns / 100000;
88 }
89
getDoubleProperty(const char * prop,double value)90 static double getDoubleProperty(const char *prop, double value) {
91 std::string result = ::android::base::GetProperty(prop, std::to_string(value).c_str());
92 if (!::android::base::ParseDouble(result.c_str(), &value)) {
93 ALOGE("PowerHintSession : failed to parse double in %s", prop);
94 }
95 return value;
96 }
97
98 static double sPidPOver = getDoubleProperty(kPowerHalAdpfPidPOver, 2.0);
99 static double sPidPUnder = getDoubleProperty(kPowerHalAdpfPidPUnder, 1.0);
100 static double sPidI = getDoubleProperty(kPowerHalAdpfPidI, 0.001);
101 static double sPidDOver = getDoubleProperty(kPowerHalAdpfPidDOver, 500.0);
102 static double sPidDUnder = getDoubleProperty(kPowerHalAdpfPidDUnder, 0.0);
103 static const int64_t sPidIInit =
104 (sPidI == 0) ? 0
105 : static_cast<int64_t>(::android::base::GetIntProperty<int64_t>(
106 kPowerHalAdpfPidIInit, 200) /
107 sPidI);
108 static const int64_t sPidIHighLimit =
109 (sPidI == 0) ? 0
110 : static_cast<int64_t>(::android::base::GetIntProperty<int64_t>(
111 kPowerHalAdpfPidIHighLimit, 512) /
112 sPidI);
113 static const int64_t sPidILowLimit =
114 (sPidI == 0) ? 0
115 : static_cast<int64_t>(::android::base::GetIntProperty<int64_t>(
116 kPowerHalAdpfPidILowLimit, -30) /
117 sPidI);
118 static const int32_t sUclampMinHighLimit =
119 ::android::base::GetUintProperty<uint32_t>(kPowerHalAdpfUclampMinHighLimit, 384);
120 static const int32_t sUclampMinLowLimit =
121 ::android::base::GetUintProperty<uint32_t>(kPowerHalAdpfUclampMinLowLimit, 2);
122 static const uint32_t sUclampMinGranularity =
123 ::android::base::GetUintProperty<uint32_t>(kPowerHalAdpfUclampMinGranularity, 5);
124 static const int64_t sStaleTimeFactor =
125 ::android::base::GetUintProperty<uint32_t>(kPowerHalAdpfStaleTimeFactor, 20);
126 static const int64_t sPSamplingWindow =
127 ::android::base::GetUintProperty<uint32_t>(kPowerHalAdpfPSamplingWindow, 1);
128 static const int64_t sISamplingWindow =
129 ::android::base::GetUintProperty<uint32_t>(kPowerHalAdpfISamplingWindow, 0);
130 static const int64_t sDSamplingWindow =
131 ::android::base::GetUintProperty<uint32_t>(kPowerHalAdpfDSamplingWindow, 1);
132
133 } // namespace
134
PowerHintSession(int32_t tgid,int32_t uid,const std::vector<int32_t> & threadIds,int64_t durationNanos,const nanoseconds adpfRate)135 PowerHintSession::PowerHintSession(int32_t tgid, int32_t uid, const std::vector<int32_t> &threadIds,
136 int64_t durationNanos, const nanoseconds adpfRate)
137 : kAdpfRate(adpfRate) {
138 mDescriptor = new AppHintDesc(tgid, uid, threadIds);
139 mDescriptor->duration = std::chrono::nanoseconds(durationNanos);
140 mStaleHandler = sp<StaleHandler>(new StaleHandler(this));
141 mPowerManagerHandler = PowerSessionManager::getInstance();
142
143 if (ATRACE_ENABLED()) {
144 const std::string idstr = getIdString();
145 std::string sz = StringPrintf("adpf.%s-target", idstr.c_str());
146 ATRACE_INT(sz.c_str(), (int64_t)mDescriptor->duration.count());
147 sz = StringPrintf("adpf.%s-active", idstr.c_str());
148 ATRACE_INT(sz.c_str(), mDescriptor->is_active.load());
149 sz = StringPrintf("adpf.%s-stale", idstr.c_str());
150 ATRACE_INT(sz.c_str(), isStale());
151 }
152 PowerSessionManager::getInstance()->addPowerSession(this);
153 // init boost
154 setUclamp(sUclampMinHighLimit);
155 ALOGV("PowerHintSession created: %s", mDescriptor->toString().c_str());
156 }
157
~PowerHintSession()158 PowerHintSession::~PowerHintSession() {
159 close();
160 ALOGV("PowerHintSession deleted: %s", mDescriptor->toString().c_str());
161 if (ATRACE_ENABLED()) {
162 const std::string idstr = getIdString();
163 std::string sz = StringPrintf("adpf.%s-target", idstr.c_str());
164 ATRACE_INT(sz.c_str(), 0);
165 sz = StringPrintf("adpf.%s-actl_last", idstr.c_str());
166 ATRACE_INT(sz.c_str(), 0);
167 sz = sz = StringPrintf("adpf.%s-active", idstr.c_str());
168 ATRACE_INT(sz.c_str(), 0);
169 }
170 delete mDescriptor;
171 }
172
getIdString() const173 std::string PowerHintSession::getIdString() const {
174 std::string idstr = StringPrintf("%" PRId32 "-%" PRId32 "-%" PRIxPTR, mDescriptor->tgid,
175 mDescriptor->uid, reinterpret_cast<uintptr_t>(this) & 0xffff);
176 return idstr;
177 }
178
updateUniveralBoostMode()179 void PowerHintSession::updateUniveralBoostMode() {
180 PowerHintMonitor::getInstance()->getLooper()->sendMessage(mPowerManagerHandler, NULL);
181 }
182
setUclamp(int32_t min,int32_t max)183 int PowerHintSession::setUclamp(int32_t min, int32_t max) {
184 std::lock_guard<std::mutex> guard(mLock);
185 min = std::max(0, min);
186 min = std::min(min, max);
187 max = std::max(0, max);
188 max = std::max(min, max);
189 if (ATRACE_ENABLED()) {
190 const std::string idstr = getIdString();
191 std::string sz = StringPrintf("adpf.%s-min", idstr.c_str());
192 ATRACE_INT(sz.c_str(), min);
193 }
194 for (const auto tid : mDescriptor->threadIds) {
195 sched_attr attr = {};
196 attr.size = sizeof(attr);
197
198 attr.sched_flags = (SCHED_FLAG_KEEP_ALL | SCHED_FLAG_UTIL_CLAMP);
199 attr.sched_util_min = min;
200 attr.sched_util_max = max;
201
202 int ret = sched_setattr(tid, &attr, 0);
203 if (ret) {
204 ALOGW("sched_setattr failed for thread %d, err=%d", tid, errno);
205 }
206 ALOGV("PowerHintSession tid: %d, uclamp(%d, %d)", tid, min, max);
207 }
208 mDescriptor->current_min = min;
209 return 0;
210 }
211
pause()212 ndk::ScopedAStatus PowerHintSession::pause() {
213 if (!mDescriptor->is_active.load())
214 return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
215 // Reset to default uclamp value.
216 setUclamp(0);
217 mDescriptor->is_active.store(false);
218 if (ATRACE_ENABLED()) {
219 const std::string idstr = getIdString();
220 std::string sz = StringPrintf("adpf.%s-active", idstr.c_str());
221 ATRACE_INT(sz.c_str(), mDescriptor->is_active.load());
222 }
223 updateUniveralBoostMode();
224 return ndk::ScopedAStatus::ok();
225 }
226
resume()227 ndk::ScopedAStatus PowerHintSession::resume() {
228 if (mDescriptor->is_active.load())
229 return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
230 mDescriptor->is_active.store(true);
231 mDescriptor->integral_error = std::max(sPidIInit, mDescriptor->integral_error);
232 // resume boost
233 setUclamp(sUclampMinHighLimit);
234 if (ATRACE_ENABLED()) {
235 const std::string idstr = getIdString();
236 std::string sz = StringPrintf("adpf.%s-active", idstr.c_str());
237 ATRACE_INT(sz.c_str(), mDescriptor->is_active.load());
238 }
239 updateUniveralBoostMode();
240 return ndk::ScopedAStatus::ok();
241 }
242
close()243 ndk::ScopedAStatus PowerHintSession::close() {
244 bool sessionClosedExpectedToBe = false;
245 if (!mSessionClosed.compare_exchange_strong(sessionClosedExpectedToBe, true)) {
246 return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
247 }
248 PowerHintMonitor::getInstance()->getLooper()->removeMessages(mStaleHandler);
249 setUclamp(0);
250 PowerSessionManager::getInstance()->removePowerSession(this);
251 updateUniveralBoostMode();
252 return ndk::ScopedAStatus::ok();
253 }
254
updateTargetWorkDuration(int64_t targetDurationNanos)255 ndk::ScopedAStatus PowerHintSession::updateTargetWorkDuration(int64_t targetDurationNanos) {
256 if (targetDurationNanos <= 0) {
257 ALOGE("Error: targetDurationNanos(%" PRId64 ") should bigger than 0", targetDurationNanos);
258 return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
259 }
260 ALOGV("update target duration: %" PRId64 " ns", targetDurationNanos);
261 double ratio =
262 targetDurationNanos == 0 ? 1.0 : mDescriptor->duration.count() / targetDurationNanos;
263 mDescriptor->integral_error =
264 std::max(sPidIInit, static_cast<int64_t>(mDescriptor->integral_error * ratio));
265
266 mDescriptor->duration = std::chrono::nanoseconds(targetDurationNanos);
267 if (ATRACE_ENABLED()) {
268 const std::string idstr = getIdString();
269 std::string sz = StringPrintf("adpf.%s-target", idstr.c_str());
270 ATRACE_INT(sz.c_str(), (int64_t)mDescriptor->duration.count());
271 }
272
273 return ndk::ScopedAStatus::ok();
274 }
275
reportActualWorkDuration(const std::vector<WorkDuration> & actualDurations)276 ndk::ScopedAStatus PowerHintSession::reportActualWorkDuration(
277 const std::vector<WorkDuration> &actualDurations) {
278 if (mDescriptor->duration.count() == 0LL) {
279 ALOGE("Expect to call updateTargetWorkDuration() first.");
280 return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
281 }
282 if (actualDurations.size() == 0) {
283 ALOGE("Error: duration.size() shouldn't be %zu.", actualDurations.size());
284 return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
285 }
286 if (!mDescriptor->is_active.load()) {
287 ALOGE("Error: shouldn't report duration during pause state.");
288 return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
289 }
290 if (PowerHintMonitor::getInstance()->isRunning() && isStale()) {
291 mDescriptor->integral_error = std::max(sPidIInit, mDescriptor->integral_error);
292 if (ATRACE_ENABLED()) {
293 const std::string idstr = getIdString();
294 std::string sz = StringPrintf("adpf.%s-wakeup", idstr.c_str());
295 ATRACE_INT(sz.c_str(), mDescriptor->integral_error);
296 ATRACE_INT(sz.c_str(), 0);
297 }
298 }
299 int64_t targetDurationNanos = (int64_t)mDescriptor->duration.count();
300 int64_t length = actualDurations.size();
301 int64_t p_start =
302 sPSamplingWindow == 0 || sPSamplingWindow > length ? 0 : length - sPSamplingWindow;
303 int64_t i_start =
304 sISamplingWindow == 0 || sISamplingWindow > length ? 0 : length - sISamplingWindow;
305 int64_t d_start =
306 sDSamplingWindow == 0 || sDSamplingWindow > length ? 0 : length - sDSamplingWindow;
307 int64_t dt = ns_to_100us(targetDurationNanos);
308 int64_t err_sum = 0;
309 int64_t derivative_sum = 0;
310 for (int64_t i = std::min({p_start, i_start, d_start}); i < length; i++) {
311 int64_t actualDurationNanos = actualDurations[i].durationNanos;
312 if (std::abs(actualDurationNanos) > targetDurationNanos * 20) {
313 ALOGW("The actual duration is way far from the target (%" PRId64 " >> %" PRId64 ")",
314 actualDurationNanos, targetDurationNanos);
315 }
316 // PID control algorithm
317 int64_t error = ns_to_100us(actualDurationNanos - targetDurationNanos);
318 if (i >= d_start) {
319 derivative_sum += error - mDescriptor->previous_error;
320 }
321 if (i >= p_start) {
322 err_sum += error;
323 }
324 if (i >= i_start) {
325 mDescriptor->integral_error = mDescriptor->integral_error + error * dt;
326 mDescriptor->integral_error = std::min(sPidIHighLimit, mDescriptor->integral_error);
327 mDescriptor->integral_error = std::max(sPidILowLimit, mDescriptor->integral_error);
328 }
329 mDescriptor->previous_error = error;
330 }
331 if (ATRACE_ENABLED()) {
332 const std::string idstr = getIdString();
333 std::string sz = StringPrintf("adpf.%s-err", idstr.c_str());
334 ATRACE_INT(sz.c_str(), err_sum / (length - p_start));
335 sz = StringPrintf("adpf.%s-integral", idstr.c_str());
336 ATRACE_INT(sz.c_str(), mDescriptor->integral_error);
337 sz = StringPrintf("adpf.%s-derivative", idstr.c_str());
338 ATRACE_INT(sz.c_str(), derivative_sum / dt / (length - d_start));
339 }
340 int64_t pOut = static_cast<int64_t>((err_sum > 0 ? sPidPOver : sPidPUnder) * err_sum /
341 (length - p_start));
342 int64_t iOut = static_cast<int64_t>(sPidI * mDescriptor->integral_error);
343 int64_t dOut = static_cast<int64_t>((derivative_sum > 0 ? sPidDOver : sPidDUnder) *
344 derivative_sum / dt / (length - d_start));
345
346 int64_t output = pOut + iOut + dOut;
347
348 if (ATRACE_ENABLED()) {
349 const std::string idstr = getIdString();
350 std::string sz = StringPrintf("adpf.%s-actl_last", idstr.c_str());
351 ATRACE_INT(sz.c_str(), actualDurations[length - 1].durationNanos);
352 sz = StringPrintf("adpf.%s-target", idstr.c_str());
353 ATRACE_INT(sz.c_str(), (int64_t)mDescriptor->duration.count());
354 sz = StringPrintf("adpf.%s-sample_size", idstr.c_str());
355 ATRACE_INT(sz.c_str(), length);
356 sz = StringPrintf("adpf.%s-pid.count", idstr.c_str());
357 ATRACE_INT(sz.c_str(), mDescriptor->update_count);
358 sz = StringPrintf("adpf.%s-pid.pOut", idstr.c_str());
359 ATRACE_INT(sz.c_str(), pOut);
360 sz = StringPrintf("adpf.%s-pid.iOut", idstr.c_str());
361 ATRACE_INT(sz.c_str(), iOut);
362 sz = StringPrintf("adpf.%s-pid.dOut", idstr.c_str());
363 ATRACE_INT(sz.c_str(), dOut);
364 sz = StringPrintf("adpf.%s-pid.output", idstr.c_str());
365 ATRACE_INT(sz.c_str(), output);
366 sz = StringPrintf("adpf.%s-stale", idstr.c_str());
367 ATRACE_INT(sz.c_str(), isStale());
368 sz = StringPrintf("adpf.%s-pid.overtime", idstr.c_str());
369 ATRACE_INT(sz.c_str(), err_sum > 0);
370 }
371 mDescriptor->update_count++;
372
373 mStaleHandler->updateStaleTimer();
374
375 /* apply to all the threads in the group */
376 if (output != 0) {
377 int next_min = std::min(sUclampMinHighLimit, static_cast<int>(output));
378 next_min = std::max(sUclampMinLowLimit, next_min);
379 if (std::abs(mDescriptor->current_min - next_min) > sUclampMinGranularity) {
380 setUclamp(next_min);
381 }
382 }
383
384 return ndk::ScopedAStatus::ok();
385 }
386
toString() const387 std::string AppHintDesc::toString() const {
388 std::string out =
389 StringPrintf("session %" PRIxPTR "\n", reinterpret_cast<uintptr_t>(this) & 0xffff);
390 const int64_t durationNanos = duration.count();
391 out.append(StringPrintf(" duration: %" PRId64 " ns\n", durationNanos));
392 out.append(StringPrintf(" uclamp.min: %d \n", current_min));
393 out.append(StringPrintf(" uid: %d, tgid: %d\n", uid, tgid));
394
395 out.append(" threadIds: [");
396 bool first = true;
397 for (int tid : threadIds) {
398 if (!first) {
399 out.append(", ");
400 }
401 out.append(std::to_string(tid));
402 first = false;
403 }
404 out.append("]\n");
405 return out;
406 }
407
isActive()408 bool PowerHintSession::isActive() {
409 return mDescriptor->is_active.load();
410 }
411
isStale()412 bool PowerHintSession::isStale() {
413 auto now = std::chrono::steady_clock::now();
414 return now >= mStaleHandler->getStaleTime();
415 }
416
getTidList() const417 const std::vector<int> &PowerHintSession::getTidList() const {
418 return mDescriptor->threadIds;
419 }
420
setStale()421 void PowerHintSession::setStale() {
422 if (ATRACE_ENABLED()) {
423 const std::string idstr = getIdString();
424 std::string sz = StringPrintf("adpf.%s-stale", idstr.c_str());
425 ATRACE_INT(sz.c_str(), 1);
426 }
427 // Reset to default uclamp value.
428 setUclamp(0);
429 // Deliver a task to check if all sessions are inactive.
430 updateUniveralBoostMode();
431 }
432
updateStaleTimer()433 void PowerHintSession::StaleHandler::updateStaleTimer() {
434 std::lock_guard<std::mutex> guard(mStaleLock);
435 if (PowerHintMonitor::getInstance()->isRunning()) {
436 auto when = getStaleTime();
437 auto now = std::chrono::steady_clock::now();
438 mLastUpdatedTime.store(now);
439 if (now > when) {
440 mSession->updateUniveralBoostMode();
441 }
442 if (!mIsMonitoringStale.load()) {
443 auto next = getStaleTime();
444 PowerHintMonitor::getInstance()->getLooper()->sendMessageDelayed(
445 duration_cast<nanoseconds>(next - now).count(), this, NULL);
446 mIsMonitoringStale.store(true);
447 }
448 if (ATRACE_ENABLED()) {
449 const std::string idstr = mSession->getIdString();
450 std::string sz = StringPrintf("adpf.%s-stale", idstr.c_str());
451 ATRACE_INT(sz.c_str(), 0);
452 }
453 }
454 }
455
getStaleTime()456 time_point<steady_clock> PowerHintSession::StaleHandler::getStaleTime() {
457 return mLastUpdatedTime.load() +
458 std::chrono::duration_cast<milliseconds>(mSession->kAdpfRate) * sStaleTimeFactor;
459 }
460
handleMessage(const Message &)461 void PowerHintSession::StaleHandler::handleMessage(const Message &) {
462 std::lock_guard<std::mutex> guard(mStaleLock);
463 auto now = std::chrono::steady_clock::now();
464 auto when = getStaleTime();
465 // Check if the session is stale based on the last_updated_time.
466 if (now > when) {
467 mSession->setStale();
468 mIsMonitoringStale.store(false);
469 return;
470 }
471 // Schedule for the next checking time.
472 PowerHintMonitor::getInstance()->getLooper()->sendMessageDelayed(
473 duration_cast<nanoseconds>(when - now).count(), this, NULL);
474 }
475
476 } // namespace pixel
477 } // namespace impl
478 } // namespace power
479 } // namespace hardware
480 } // namespace google
481 } // namespace aidl
482