1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17
18 #ifndef ANDROID_AUDIO_CORE_H
19 #define ANDROID_AUDIO_CORE_H
20
21 #include <stdbool.h>
22 #include <stdint.h>
23 #include <stdio.h>
24 #include <string.h>
25 #include <sys/cdefs.h>
26 #include <sys/types.h>
27
28 #include "audio-base-utils.h"
29 #include "audio-base.h"
30 #include "audio-hal-enums.h"
31 #include "audio_common-base.h"
32
33 /*
34 * Annotation to tell clang that we intend to fall through from one case to
35 * another in a switch. Sourced from android-base/macros.h.
36 */
37 #ifndef FALLTHROUGH_INTENDED
38 #ifdef __cplusplus
39 #define FALLTHROUGH_INTENDED [[fallthrough]]
40 #elif __has_attribute(fallthrough)
41 #define FALLTHROUGH_INTENDED __attribute__((__fallthrough__))
42 #else
43 #define FALLTHROUGH_INTENDED
44 #endif // __cplusplus
45 #endif // FALLTHROUGH_INTENDED
46
47 __BEGIN_DECLS
48
49 /* The enums were moved here mostly from
50 * frameworks/base/include/media/AudioSystem.h
51 */
52
53 /* represents an invalid uid for tracks; the calling or client uid is often substituted. */
54 #define AUDIO_UID_INVALID ((uid_t)-1)
55
56 /* device address used to refer to the standard remote submix */
57 #define AUDIO_REMOTE_SUBMIX_DEVICE_ADDRESS "0"
58
59 /* AudioFlinger and AudioPolicy services use I/O handles to identify audio sources and sinks */
60 typedef int audio_io_handle_t;
61
62 /* Null values for handles. */
63 enum {
64 AUDIO_IO_HANDLE_NONE = 0,
65 AUDIO_MODULE_HANDLE_NONE = 0,
66 AUDIO_PORT_HANDLE_NONE = 0,
67 AUDIO_PATCH_HANDLE_NONE = 0,
68 };
69
70 typedef enum {
71 #ifndef AUDIO_NO_SYSTEM_DECLARATIONS
72 AUDIO_MODE_INVALID = -2, // (-2)
73 AUDIO_MODE_CURRENT = -1, // (-1)
74 #endif // AUDIO_NO_SYSTEM_DECLARATIONS
75 AUDIO_MODE_NORMAL = HAL_AUDIO_MODE_NORMAL,
76 AUDIO_MODE_RINGTONE = HAL_AUDIO_MODE_RINGTONE,
77 AUDIO_MODE_IN_CALL = HAL_AUDIO_MODE_IN_CALL,
78 AUDIO_MODE_IN_COMMUNICATION = HAL_AUDIO_MODE_IN_COMMUNICATION,
79 AUDIO_MODE_CALL_SCREEN = HAL_AUDIO_MODE_CALL_SCREEN,
80 #ifndef AUDIO_NO_SYSTEM_DECLARATIONS
81 AUDIO_MODE_MAX = AUDIO_MODE_CALL_SCREEN,
82 AUDIO_MODE_CNT = AUDIO_MODE_MAX + 1,
83 #endif // AUDIO_NO_SYSTEM_DECLARATIONS
84 } audio_mode_t;
85
86 /* Do not change these values without updating their counterparts
87 * in frameworks/base/media/java/android/media/AudioAttributes.java
88 */
89 typedef enum {
90 AUDIO_FLAG_NONE = 0x0,
91 AUDIO_FLAG_AUDIBILITY_ENFORCED = 0x1,
92 AUDIO_FLAG_SECURE = 0x2,
93 AUDIO_FLAG_SCO = 0x4,
94 AUDIO_FLAG_BEACON = 0x8,
95 AUDIO_FLAG_HW_AV_SYNC = 0x10,
96 AUDIO_FLAG_HW_HOTWORD = 0x20,
97 AUDIO_FLAG_BYPASS_INTERRUPTION_POLICY = 0x40,
98 AUDIO_FLAG_BYPASS_MUTE = 0x80,
99 AUDIO_FLAG_LOW_LATENCY = 0x100,
100 AUDIO_FLAG_DEEP_BUFFER = 0x200,
101 AUDIO_FLAG_NO_MEDIA_PROJECTION = 0X400,
102 AUDIO_FLAG_MUTE_HAPTIC = 0x800,
103 AUDIO_FLAG_NO_SYSTEM_CAPTURE = 0X1000,
104 AUDIO_FLAG_CAPTURE_PRIVATE = 0X2000,
105 AUDIO_FLAG_CONTENT_SPATIALIZED = 0X4000,
106 AUDIO_FLAG_NEVER_SPATIALIZE = 0X8000,
107 } audio_flags_mask_t;
108
109 /* Audio attributes */
110 #define AUDIO_ATTRIBUTES_TAGS_MAX_SIZE 256
111 typedef struct {
112 audio_content_type_t content_type;
113 audio_usage_t usage;
114 audio_source_t source;
115 audio_flags_mask_t flags;
116 char tags[AUDIO_ATTRIBUTES_TAGS_MAX_SIZE]; /* UTF8 */
117 } __attribute__((packed)) audio_attributes_t; // sent through Binder;
118
119 static const audio_attributes_t AUDIO_ATTRIBUTES_INITIALIZER = {
120 /* .content_type = */ AUDIO_CONTENT_TYPE_UNKNOWN,
121 /* .usage = */ AUDIO_USAGE_UNKNOWN,
122 /* .source = */ AUDIO_SOURCE_DEFAULT,
123 /* .flags = */ AUDIO_FLAG_NONE,
124 /* .tags = */ ""
125 };
126
attributes_initializer(audio_usage_t usage)127 static inline audio_attributes_t attributes_initializer(audio_usage_t usage)
128 {
129 audio_attributes_t attributes = AUDIO_ATTRIBUTES_INITIALIZER;
130 attributes.usage = usage;
131 return attributes;
132 }
133
attributes_initializer_flags(audio_flags_mask_t flags)134 static inline audio_attributes_t attributes_initializer_flags(audio_flags_mask_t flags)
135 {
136 audio_attributes_t attributes = AUDIO_ATTRIBUTES_INITIALIZER;
137 attributes.flags = flags;
138 return attributes;
139 }
140
audio_flags_to_audio_output_flags(const audio_flags_mask_t audio_flags,audio_output_flags_t * flags)141 static inline void audio_flags_to_audio_output_flags(
142 const audio_flags_mask_t audio_flags,
143 audio_output_flags_t *flags)
144 {
145 if ((audio_flags & AUDIO_FLAG_HW_AV_SYNC) != 0) {
146 *flags = (audio_output_flags_t)(*flags |
147 AUDIO_OUTPUT_FLAG_HW_AV_SYNC | AUDIO_OUTPUT_FLAG_DIRECT);
148 }
149 if ((audio_flags & AUDIO_FLAG_LOW_LATENCY) != 0) {
150 *flags = (audio_output_flags_t)(*flags | AUDIO_OUTPUT_FLAG_FAST);
151 }
152 // check deep buffer after flags have been modified above
153 if (*flags == AUDIO_OUTPUT_FLAG_NONE && (audio_flags & AUDIO_FLAG_DEEP_BUFFER) != 0) {
154 *flags = AUDIO_OUTPUT_FLAG_DEEP_BUFFER;
155 }
156 }
157
158
159 /* A unique ID allocated by AudioFlinger for use as an audio_io_handle_t, audio_session_t,
160 * audio_effect_handle_t, audio_module_handle_t, and audio_patch_handle_t.
161 * Audio port IDs (audio_port_handle_t) are allocated by AudioPolicy
162 * in a different namespace than AudioFlinger unique IDs.
163 */
164 typedef int audio_unique_id_t;
165
166 /* A unique ID with use AUDIO_UNIQUE_ID_USE_EFFECT */
167 typedef int audio_effect_handle_t;
168
169 /* Possible uses for an audio_unique_id_t */
170 typedef enum {
171 AUDIO_UNIQUE_ID_USE_UNSPECIFIED = 0,
172 AUDIO_UNIQUE_ID_USE_SESSION = 1, // audio_session_t
173 // for allocated sessions, not special AUDIO_SESSION_*
174 AUDIO_UNIQUE_ID_USE_MODULE = 2, // audio_module_handle_t
175 AUDIO_UNIQUE_ID_USE_EFFECT = 3, // audio_effect_handle_t
176 AUDIO_UNIQUE_ID_USE_PATCH = 4, // audio_patch_handle_t
177 AUDIO_UNIQUE_ID_USE_OUTPUT = 5, // audio_io_handle_t
178 AUDIO_UNIQUE_ID_USE_INPUT = 6, // audio_io_handle_t
179 AUDIO_UNIQUE_ID_USE_CLIENT = 7, // client-side players and recorders
180 // FIXME should move to a separate namespace;
181 // these IDs are allocated by AudioFlinger on client request,
182 // but are never used by AudioFlinger
183 AUDIO_UNIQUE_ID_USE_MAX = 8, // must be a power-of-two
184 AUDIO_UNIQUE_ID_USE_MASK = AUDIO_UNIQUE_ID_USE_MAX - 1
185 } audio_unique_id_use_t;
186
187 /* Return the use of an audio_unique_id_t */
audio_unique_id_get_use(audio_unique_id_t id)188 static inline audio_unique_id_use_t audio_unique_id_get_use(audio_unique_id_t id)
189 {
190 return (audio_unique_id_use_t) (id & AUDIO_UNIQUE_ID_USE_MASK);
191 }
192
193 typedef enum {
194 AUDIO_SESSION_DEVICE = HAL_AUDIO_SESSION_DEVICE,
195 AUDIO_SESSION_OUTPUT_STAGE = HAL_AUDIO_SESSION_OUTPUT_STAGE,
196 AUDIO_SESSION_OUTPUT_MIX = HAL_AUDIO_SESSION_OUTPUT_MIX,
197 #ifndef AUDIO_NO_SYSTEM_DECLARATIONS
198 AUDIO_SESSION_ALLOCATE = 0,
199 AUDIO_SESSION_NONE = 0,
200 #endif
201 } audio_session_t;
202
203 /* Reserved audio_unique_id_t values. FIXME: not a complete list. */
204 #define AUDIO_UNIQUE_ID_ALLOCATE AUDIO_SESSION_ALLOCATE
205
206 /* returns true if the audio session ID corresponds to a global
207 * effect sessions (e.g. OUTPUT_MIX, OUTPUT_STAGE, or DEVICE).
208 */
audio_is_global_session(audio_session_t session)209 static inline bool audio_is_global_session(audio_session_t session) {
210 return session <= AUDIO_SESSION_OUTPUT_MIX;
211 }
212
213 /* These constants are used instead of "magic numbers" for
214 * channel counts.
215 */
216 enum {
217 FCC_1 = 1,
218 FCC_2 = 2,
219 FCC_8 = 8,
220 FCC_12 = 12,
221 FCC_24 = 24,
222 FCC_26 = 26,
223 // FCC_LIMIT is the maximum PCM channel count supported through
224 // the mixing pipeline to the audio HAL.
225 //
226 // This can be adjusted onto a value such as FCC_12 or FCC_26
227 // if the device HAL can support it. Do not reduce below FCC_8.
228 FCC_LIMIT = FCC_12,
229 };
230
231 /* A channel mask per se only defines the presence or absence of a channel, not the order.
232 * But see AUDIO_INTERLEAVE_* below for the platform convention of order.
233 *
234 * audio_channel_mask_t is an opaque type and its internal layout should not
235 * be assumed as it may change in the future.
236 * Instead, always use the functions declared in this header to examine.
237 *
238 * These are the current representations:
239 *
240 * AUDIO_CHANNEL_REPRESENTATION_POSITION
241 * is a channel mask representation for position assignment.
242 * Each low-order bit corresponds to the spatial position of a transducer (output),
243 * or interpretation of channel (input).
244 * The user of a channel mask needs to know the context of whether it is for output or input.
245 * The constants AUDIO_CHANNEL_OUT_* or AUDIO_CHANNEL_IN_* apply to the bits portion.
246 * It is not permitted for no bits to be set.
247 *
248 * AUDIO_CHANNEL_REPRESENTATION_INDEX
249 * is a channel mask representation for index assignment.
250 * Each low-order bit corresponds to a selected channel.
251 * There is no platform interpretation of the various bits.
252 * There is no concept of output or input.
253 * It is not permitted for no bits to be set.
254 *
255 * All other representations are reserved for future use.
256 *
257 * Warning: current representation distinguishes between input and output, but this will not the be
258 * case in future revisions of the platform. Wherever there is an ambiguity between input and output
259 * that is currently resolved by checking the channel mask, the implementer should look for ways to
260 * fix it with additional information outside of the mask.
261 */
262
263 /* log(2) of maximum number of representations, not part of public API */
264 #define AUDIO_CHANNEL_REPRESENTATION_LOG2 2
265
266 /* The return value is undefined if the channel mask is invalid. */
audio_channel_mask_get_bits(audio_channel_mask_t channel)267 static inline uint32_t audio_channel_mask_get_bits(audio_channel_mask_t channel)
268 {
269 return channel & ((1 << AUDIO_CHANNEL_COUNT_MAX) - 1);
270 }
271
272 typedef enum {
273 AUDIO_CHANNEL_REPRESENTATION_POSITION = 0x0u,
274 AUDIO_CHANNEL_REPRESENTATION_INDEX = 0x2u,
275 } audio_channel_representation_t;
276
277 /* The return value is undefined if the channel mask is invalid. */
audio_channel_mask_get_representation(audio_channel_mask_t channel)278 static inline audio_channel_representation_t audio_channel_mask_get_representation(
279 audio_channel_mask_t channel)
280 {
281 // The right shift should be sufficient, but also "and" for safety in case mask is not 32 bits
282 return (audio_channel_representation_t)
283 ((channel >> AUDIO_CHANNEL_COUNT_MAX) & ((1 << AUDIO_CHANNEL_REPRESENTATION_LOG2) - 1));
284 }
285
286 #ifdef __cplusplus
287 // Some effects use `int32_t` directly for channel mask.
audio_channel_mask_get_representation(int32_t mask)288 static inline uint32_t audio_channel_mask_get_representation(int32_t mask) {
289 return audio_channel_mask_get_representation(static_cast<audio_channel_mask_t>(mask));
290 }
291 #endif
292
293 /* Returns true if the channel mask is valid,
294 * or returns false for AUDIO_CHANNEL_NONE, AUDIO_CHANNEL_INVALID, and other invalid values.
295 * This function is unable to determine whether a channel mask for position assignment
296 * is invalid because an output mask has an invalid output bit set,
297 * or because an input mask has an invalid input bit set.
298 * All other APIs that take a channel mask assume that it is valid.
299 */
audio_channel_mask_is_valid(audio_channel_mask_t channel)300 static inline bool audio_channel_mask_is_valid(audio_channel_mask_t channel)
301 {
302 uint32_t bits = audio_channel_mask_get_bits(channel);
303 audio_channel_representation_t representation = audio_channel_mask_get_representation(channel);
304 switch (representation) {
305 case AUDIO_CHANNEL_REPRESENTATION_POSITION:
306 case AUDIO_CHANNEL_REPRESENTATION_INDEX:
307 break;
308 default:
309 bits = 0;
310 break;
311 }
312 return bits != 0;
313 }
314
315 /* Not part of public API */
audio_channel_mask_from_representation_and_bits(audio_channel_representation_t representation,uint32_t bits)316 static inline audio_channel_mask_t audio_channel_mask_from_representation_and_bits(
317 audio_channel_representation_t representation, uint32_t bits)
318 {
319 return (audio_channel_mask_t) ((representation << AUDIO_CHANNEL_COUNT_MAX) | bits);
320 }
321
322 /**
323 * Expresses the convention when stereo audio samples are stored interleaved
324 * in an array. This should improve readability by allowing code to use
325 * symbolic indices instead of hard-coded [0] and [1].
326 *
327 * For multi-channel beyond stereo, the platform convention is that channels
328 * are interleaved in order from least significant channel mask bit to most
329 * significant channel mask bit, with unused bits skipped. Any exceptions
330 * to this convention will be noted at the appropriate API.
331 */
332 enum {
333 AUDIO_INTERLEAVE_LEFT = 0,
334 AUDIO_INTERLEAVE_RIGHT = 1,
335 };
336
337 /* This enum is deprecated */
338 typedef enum {
339 AUDIO_IN_ACOUSTICS_NONE = 0,
340 AUDIO_IN_ACOUSTICS_AGC_ENABLE = 0x0001,
341 AUDIO_IN_ACOUSTICS_AGC_DISABLE = 0,
342 AUDIO_IN_ACOUSTICS_NS_ENABLE = 0x0002,
343 AUDIO_IN_ACOUSTICS_NS_DISABLE = 0,
344 AUDIO_IN_ACOUSTICS_TX_IIR_ENABLE = 0x0004,
345 AUDIO_IN_ACOUSTICS_TX_DISABLE = 0,
346 } audio_in_acoustics_t;
347
348 /* Additional information about compressed streams offloaded to
349 * hardware playback
350 * The version and size fields must be initialized by the caller by using
351 * one of the constants defined here.
352 * Must be aligned to transmit as raw memory through Binder.
353 */
354 typedef struct {
355 uint16_t version; // version of the info structure
356 uint16_t size; // total size of the structure including version and size
357 uint32_t sample_rate; // sample rate in Hz
358 audio_channel_mask_t channel_mask; // channel mask
359 audio_format_t format; // audio format
360 audio_stream_type_t stream_type; // stream type
361 uint32_t bit_rate; // bit rate in bits per second
362 int64_t duration_us; // duration in microseconds, -1 if unknown
363 bool has_video; // true if stream is tied to a video stream
364 bool is_streaming; // true if streaming, false if local playback
365 uint32_t bit_width;
366 uint32_t offload_buffer_size; // offload fragment size
367 audio_usage_t usage;
368 audio_encapsulation_mode_t encapsulation_mode; // version 0.2:
369 int32_t content_id; // version 0.2: content id from tuner hal (0 if none)
370 int32_t sync_id; // version 0.2: sync id from tuner hal (0 if none)
371 } __attribute__((aligned(8))) audio_offload_info_t;
372
373 #define AUDIO_MAKE_OFFLOAD_INFO_VERSION(maj,min) \
374 ((((maj) & 0xff) << 8) | ((min) & 0xff))
375
376 #define AUDIO_OFFLOAD_INFO_VERSION_0_2 AUDIO_MAKE_OFFLOAD_INFO_VERSION(0, 2)
377 #define AUDIO_OFFLOAD_INFO_VERSION_CURRENT AUDIO_OFFLOAD_INFO_VERSION_0_2
378
379 static const audio_offload_info_t AUDIO_INFO_INITIALIZER = {
380 /* .version = */ AUDIO_OFFLOAD_INFO_VERSION_CURRENT,
381 /* .size = */ sizeof(audio_offload_info_t),
382 /* .sample_rate = */ 0,
383 /* .channel_mask = */ AUDIO_CHANNEL_NONE,
384 /* .format = */ AUDIO_FORMAT_DEFAULT,
385 /* .stream_type = */ AUDIO_STREAM_VOICE_CALL,
386 /* .bit_rate = */ 0,
387 /* .duration_us = */ 0,
388 /* .has_video = */ false,
389 /* .is_streaming = */ false,
390 /* .bit_width = */ 16,
391 /* .offload_buffer_size = */ 0,
392 /* .usage = */ AUDIO_USAGE_UNKNOWN,
393 /* .encapsulation_mode = */ AUDIO_ENCAPSULATION_MODE_NONE,
394 /* .content_id = */ 0,
395 /* .sync_id = */ 0,
396 };
397
398 /* common audio stream configuration parameters
399 * You should memset() the entire structure to zero before use to
400 * ensure forward compatibility
401 * Must be aligned to transmit as raw memory through Binder.
402 */
403 struct __attribute__((aligned(8))) audio_config {
404 uint32_t sample_rate;
405 audio_channel_mask_t channel_mask;
406 audio_format_t format;
407 audio_offload_info_t offload_info;
408 uint32_t frame_count;
409 };
410 typedef struct audio_config audio_config_t;
411
412 static const audio_config_t AUDIO_CONFIG_INITIALIZER = {
413 /* .sample_rate = */ 0,
414 /* .channel_mask = */ AUDIO_CHANNEL_NONE,
415 /* .format = */ AUDIO_FORMAT_DEFAULT,
416 /* .offload_info = */ {
417 /* .version = */ AUDIO_OFFLOAD_INFO_VERSION_CURRENT,
418 /* .size = */ sizeof(audio_offload_info_t),
419 /* .sample_rate = */ 0,
420 /* .channel_mask = */ AUDIO_CHANNEL_NONE,
421 /* .format = */ AUDIO_FORMAT_DEFAULT,
422 /* .stream_type = */ AUDIO_STREAM_VOICE_CALL,
423 /* .bit_rate = */ 0,
424 /* .duration_us = */ 0,
425 /* .has_video = */ false,
426 /* .is_streaming = */ false,
427 /* .bit_width = */ 16,
428 /* .offload_buffer_size = */ 0,
429 /* .usage = */ AUDIO_USAGE_UNKNOWN,
430 /* .encapsulation_mode = */ AUDIO_ENCAPSULATION_MODE_NONE,
431 /* .content_id = */ 0,
432 /* .sync_id = */ 0,
433 },
434 /* .frame_count = */ 0,
435 };
436
437 struct audio_config_base {
438 uint32_t sample_rate;
439 audio_channel_mask_t channel_mask;
440 audio_format_t format;
441 };
442
443 typedef struct audio_config_base audio_config_base_t;
444
445 static const audio_config_base_t AUDIO_CONFIG_BASE_INITIALIZER = {
446 /* .sample_rate = */ 0,
447 /* .channel_mask = */ AUDIO_CHANNEL_NONE,
448 /* .format = */ AUDIO_FORMAT_DEFAULT
449 };
450
451
audio_config_initializer(const audio_config_base_t * base)452 static inline audio_config_t audio_config_initializer(const audio_config_base_t *base)
453 {
454 audio_config_t config = AUDIO_CONFIG_INITIALIZER;
455 config.sample_rate = base->sample_rate;
456 config.channel_mask = base->channel_mask;
457 config.format = base->format;
458 return config;
459 }
460
461 /* audio hw module handle functions or structures referencing a module */
462 typedef int audio_module_handle_t;
463
464 /******************************
465 * Volume control
466 *****************************/
467
468 /** 3 dB headroom are allowed on float samples (3db = 10^(3/20) = 1.412538).
469 * See: https://developer.android.com/reference/android/media/AudioTrack.html#write(float[], int, int, int)
470 */
471 #define FLOAT_NOMINAL_RANGE_HEADROOM 1.412538
472
473 /* If the audio hardware supports gain control on some audio paths,
474 * the platform can expose them in the audio_policy_configuration.xml file. The audio HAL
475 * will then implement gain control functions that will use the following data
476 * structures. */
477
478 /* An audio_gain struct is a representation of a gain stage.
479 * A gain stage is always attached to an audio port. */
480 struct audio_gain {
481 audio_gain_mode_t mode; /* e.g. AUDIO_GAIN_MODE_JOINT */
482 audio_channel_mask_t channel_mask; /* channels which gain an be controlled.
483 N/A if AUDIO_GAIN_MODE_CHANNELS is not supported */
484 int min_value; /* minimum gain value in millibels */
485 int max_value; /* maximum gain value in millibels */
486 int default_value; /* default gain value in millibels */
487 unsigned int step_value; /* gain step in millibels */
488 unsigned int min_ramp_ms; /* minimum ramp duration in ms */
489 unsigned int max_ramp_ms; /* maximum ramp duration in ms */
490 };
491
492 /* The gain configuration structure is used to get or set the gain values of a
493 * given port */
494 struct audio_gain_config {
495 int index; /* index of the corresponding audio_gain in the
496 audio_port gains[] table */
497 audio_gain_mode_t mode; /* mode requested for this command */
498 audio_channel_mask_t channel_mask; /* channels which gain value follows.
499 N/A in joint mode */
500
501 // note this "8" is not FCC_8, so it won't need to be changed for > 8 channels
502 int values[sizeof(audio_channel_mask_t) * 8]; /* gain values in millibels
503 for each channel ordered from LSb to MSb in
504 channel mask. The number of values is 1 in joint
505 mode or __builtin_popcount(channel_mask) */
506 unsigned int ramp_duration_ms; /* ramp duration in ms */
507 };
508
509 /******************************
510 * Routing control
511 *****************************/
512
513 /* Types defined here are used to describe an audio source or sink at internal
514 * framework interfaces (audio policy, patch panel) or at the audio HAL.
515 * Sink and sources are grouped in a concept of “audio port” representing an
516 * audio end point at the edge of the system managed by the module exposing
517 * the interface. */
518
519 /* Each port has a unique ID or handle allocated by policy manager */
520 typedef int audio_port_handle_t;
521
522 /* the maximum length for the human-readable device name */
523 #define AUDIO_PORT_MAX_NAME_LEN 128
524
525 /* a union to store port configuration flags. Declared as a type so can be reused
526 in framework code */
527 union audio_io_flags {
528 audio_input_flags_t input;
529 audio_output_flags_t output;
530 };
531
532 /* maximum audio device address length */
533 #define AUDIO_DEVICE_MAX_ADDRESS_LEN 32
534
535 /* extension for audio port configuration structure when the audio port is a
536 * hardware device */
537 struct audio_port_config_device_ext {
538 audio_module_handle_t hw_module; /* module the device is attached to */
539 audio_devices_t type; /* device type (e.g AUDIO_DEVICE_OUT_SPEAKER) */
540 char address[AUDIO_DEVICE_MAX_ADDRESS_LEN]; /* device address. "" if N/A */
541 };
542
543 /* extension for audio port configuration structure when the audio port is a
544 * sub mix */
545 struct audio_port_config_mix_ext {
546 audio_module_handle_t hw_module; /* module the stream is attached to */
547 audio_io_handle_t handle; /* I/O handle of the input/output stream */
548 union {
549 //TODO: change use case for output streams: use strategy and mixer attributes
550 audio_stream_type_t stream;
551 audio_source_t source;
552 } usecase;
553 };
554
555 /* extension for audio port configuration structure when the audio port is an
556 * audio session */
557 struct audio_port_config_session_ext {
558 audio_session_t session; /* audio session */
559 };
560
561 typedef enum {
562 AUDIO_PORT_ROLE_NONE = 0,
563 AUDIO_PORT_ROLE_SOURCE = 1,
564 AUDIO_PORT_ROLE_SINK = 2,
565 } audio_port_role_t;
566
567 typedef enum {
568 AUDIO_PORT_TYPE_NONE = 0,
569 AUDIO_PORT_TYPE_DEVICE = 1,
570 AUDIO_PORT_TYPE_MIX = 2,
571 AUDIO_PORT_TYPE_SESSION = 3,
572 } audio_port_type_t;
573
574 enum {
575 AUDIO_PORT_CONFIG_SAMPLE_RATE = 0x1u,
576 AUDIO_PORT_CONFIG_CHANNEL_MASK = 0x2u,
577 AUDIO_PORT_CONFIG_FORMAT = 0x4u,
578 AUDIO_PORT_CONFIG_GAIN = 0x8u,
579 #ifndef AUDIO_NO_SYSTEM_DECLARATIONS
580 AUDIO_PORT_CONFIG_FLAGS = 0x10u,
581 #endif
582 AUDIO_PORT_CONFIG_ALL = AUDIO_PORT_CONFIG_SAMPLE_RATE |
583 AUDIO_PORT_CONFIG_CHANNEL_MASK |
584 AUDIO_PORT_CONFIG_FORMAT |
585 AUDIO_PORT_CONFIG_GAIN,
586 };
587
588 typedef enum {
589 AUDIO_LATENCY_LOW = 0,
590 AUDIO_LATENCY_NORMAL = 1,
591 } audio_mix_latency_class_t;
592
593 /* audio port configuration structure used to specify a particular configuration of
594 * an audio port */
595 struct audio_port_config {
596 audio_port_handle_t id; /* port unique ID */
597 audio_port_role_t role; /* sink or source */
598 audio_port_type_t type; /* device, mix ... */
599 unsigned int config_mask; /* e.g AUDIO_PORT_CONFIG_ALL */
600 unsigned int sample_rate; /* sampling rate in Hz */
601 audio_channel_mask_t channel_mask; /* channel mask if applicable */
602 audio_format_t format; /* format if applicable */
603 struct audio_gain_config gain; /* gain to apply if applicable */
604 #ifndef AUDIO_NO_SYSTEM_DECLARATIONS
605 union audio_io_flags flags; /* framework only: HW_AV_SYNC, DIRECT, ... */
606 #endif
607 union {
608 struct audio_port_config_device_ext device; /* device specific info */
609 struct audio_port_config_mix_ext mix; /* mix specific info */
610 struct audio_port_config_session_ext session; /* session specific info */
611 } ext;
612 };
613
614
615 /* max number of sampling rates in audio port */
616 #define AUDIO_PORT_MAX_SAMPLING_RATES 32
617 /* max number of channel masks in audio port */
618 #define AUDIO_PORT_MAX_CHANNEL_MASKS 32
619 /* max number of audio formats in audio port */
620 #define AUDIO_PORT_MAX_FORMATS 32
621 /* max number of audio profiles in audio port. The audio profiles are used in
622 * `struct audio_port_v7`. When converting between `struct audio_port` and
623 * `struct audio_port_v7`, the number of audio profiles in `struct audio_port_v7`
624 * must be the same as the number of formats in `struct audio_port`. Therefore,
625 * the maximum number of audio profiles must be the same as the maximum number
626 * of formats. */
627 #define AUDIO_PORT_MAX_AUDIO_PROFILES AUDIO_PORT_MAX_FORMATS
628 /* max number of extra audio descriptors in audio port. */
629 #define AUDIO_PORT_MAX_EXTRA_AUDIO_DESCRIPTORS AUDIO_PORT_MAX_FORMATS
630 /* max number of gain controls in audio port */
631 #define AUDIO_PORT_MAX_GAINS 16
632 /* max bytes of extra audio descriptor */
633 #define EXTRA_AUDIO_DESCRIPTOR_SIZE 32
634
635 /* extension for audio port structure when the audio port is a hardware device */
636 struct audio_port_device_ext {
637 audio_module_handle_t hw_module; /* module the device is attached to */
638 audio_devices_t type; /* device type (e.g AUDIO_DEVICE_OUT_SPEAKER) */
639 char address[AUDIO_DEVICE_MAX_ADDRESS_LEN];
640 #ifndef AUDIO_NO_SYSTEM_DECLARATIONS
641 uint32_t encapsulation_modes;
642 uint32_t encapsulation_metadata_types;
643 #endif
644 };
645
646 /* extension for audio port structure when the audio port is a sub mix */
647 struct audio_port_mix_ext {
648 audio_module_handle_t hw_module; /* module the stream is attached to */
649 audio_io_handle_t handle; /* I/O handle of the input.output stream */
650 audio_mix_latency_class_t latency_class; /* latency class */
651 // other attributes: routing strategies
652 };
653
654 /* extension for audio port structure when the audio port is an audio session */
655 struct audio_port_session_ext {
656 audio_session_t session; /* audio session */
657 };
658
659 struct audio_port {
660 audio_port_handle_t id; /* port unique ID */
661 audio_port_role_t role; /* sink or source */
662 audio_port_type_t type; /* device, mix ... */
663 char name[AUDIO_PORT_MAX_NAME_LEN];
664 unsigned int num_sample_rates; /* number of sampling rates in following array */
665 unsigned int sample_rates[AUDIO_PORT_MAX_SAMPLING_RATES];
666 unsigned int num_channel_masks; /* number of channel masks in following array */
667 audio_channel_mask_t channel_masks[AUDIO_PORT_MAX_CHANNEL_MASKS];
668 unsigned int num_formats; /* number of formats in following array */
669 audio_format_t formats[AUDIO_PORT_MAX_FORMATS];
670 unsigned int num_gains; /* number of gains in following array */
671 struct audio_gain gains[AUDIO_PORT_MAX_GAINS];
672 struct audio_port_config active_config; /* current audio port configuration */
673 union {
674 struct audio_port_device_ext device;
675 struct audio_port_mix_ext mix;
676 struct audio_port_session_ext session;
677 } ext;
678 };
679
680 typedef enum {
681 AUDIO_STANDARD_NONE = 0,
682 AUDIO_STANDARD_EDID = 1,
683 } audio_standard_t;
684
685 /**
686 * Configuration described by hardware descriptor for a format that is unrecognized
687 * by the platform.
688 */
689 struct audio_extra_audio_descriptor {
690 audio_standard_t standard;
691 unsigned int descriptor_length;
692 uint8_t descriptor[EXTRA_AUDIO_DESCRIPTOR_SIZE];
693 audio_encapsulation_type_t encapsulation_type;
694 };
695
696 /* configurations supported for a certain format */
697 struct audio_profile {
698 audio_format_t format;
699 unsigned int num_sample_rates; /* number of sampling rates in following array */
700 unsigned int sample_rates[AUDIO_PORT_MAX_SAMPLING_RATES];
701 unsigned int num_channel_masks; /* number of channel masks in following array */
702 audio_channel_mask_t channel_masks[AUDIO_PORT_MAX_CHANNEL_MASKS];
703 audio_encapsulation_type_t encapsulation_type;
704 };
705
706 struct audio_port_v7 {
707 audio_port_handle_t id; /* port unique ID */
708 audio_port_role_t role; /* sink or source */
709 audio_port_type_t type; /* device, mix ... */
710 char name[AUDIO_PORT_MAX_NAME_LEN];
711 unsigned int num_audio_profiles; /* number of audio profiles in the following
712 array */
713 struct audio_profile audio_profiles[AUDIO_PORT_MAX_AUDIO_PROFILES];
714 unsigned int num_extra_audio_descriptors; /* number of extra audio descriptors in
715 the following array */
716 struct audio_extra_audio_descriptor
717 extra_audio_descriptors[AUDIO_PORT_MAX_EXTRA_AUDIO_DESCRIPTORS];
718 unsigned int num_gains; /* number of gains in following array */
719 struct audio_gain gains[AUDIO_PORT_MAX_GAINS];
720 struct audio_port_config active_config; /* current audio port configuration */
721 union {
722 struct audio_port_device_ext device;
723 struct audio_port_mix_ext mix;
724 struct audio_port_session_ext session;
725 } ext;
726 };
727
728 /* Return true when a given uint8_t array is a valid short audio descriptor. This function just
729 * does basic validation by checking if the first value is not zero.
730 */
audio_is_valid_short_audio_descriptor(const uint8_t * shortAudioDescriptor,size_t length)731 static inline bool audio_is_valid_short_audio_descriptor(const uint8_t *shortAudioDescriptor,
732 size_t length) {
733 return length != 0 && *shortAudioDescriptor != 0;
734 }
735
audio_populate_audio_port_v7(const struct audio_port * port,struct audio_port_v7 * portV7)736 static inline void audio_populate_audio_port_v7(
737 const struct audio_port *port, struct audio_port_v7 *portV7) {
738 portV7->id = port->id;
739 portV7->role = port->role;
740 portV7->type = port->type;
741 strncpy(portV7->name, port->name, AUDIO_PORT_MAX_NAME_LEN);
742 portV7->name[AUDIO_PORT_MAX_NAME_LEN-1] = '\0';
743 portV7->num_audio_profiles =
744 port->num_formats > AUDIO_PORT_MAX_AUDIO_PROFILES ?
745 AUDIO_PORT_MAX_AUDIO_PROFILES : port->num_formats;
746 for (size_t i = 0; i < portV7->num_audio_profiles; ++i) {
747 portV7->audio_profiles[i].format = port->formats[i];
748 portV7->audio_profiles[i].num_sample_rates = port->num_sample_rates;
749 memcpy(portV7->audio_profiles[i].sample_rates, port->sample_rates,
750 port->num_sample_rates * sizeof(unsigned int));
751 portV7->audio_profiles[i].num_channel_masks = port->num_channel_masks;
752 memcpy(portV7->audio_profiles[i].channel_masks, port->channel_masks,
753 port->num_channel_masks * sizeof(audio_channel_mask_t));
754 }
755 portV7->num_gains = port->num_gains;
756 memcpy(portV7->gains, port->gains, port->num_gains * sizeof(struct audio_gain));
757 memcpy(&portV7->active_config, &port->active_config, sizeof(struct audio_port_config));
758 memcpy(&portV7->ext, &port->ext, sizeof(port->ext));
759 }
760
761 /* Populate the data in `struct audio_port` using data from `struct audio_port_v7`. As the
762 * `struct audio_port_v7` use audio profiles to describe its capabilities, it may contain more
763 * data for sample rates or channel masks than the data that can be held by `struct audio_port`.
764 * Return true if all the data from `struct audio_port_v7` are converted to `struct audio_port`.
765 * Otherwise, return false.
766 */
audio_populate_audio_port(const struct audio_port_v7 * portV7,struct audio_port * port)767 static inline bool audio_populate_audio_port(
768 const struct audio_port_v7 *portV7, struct audio_port *port) {
769 bool allDataConverted = true;
770 port->id = portV7->id;
771 port->role = portV7->role;
772 port->type = portV7->type;
773 strncpy(port->name, portV7->name, AUDIO_PORT_MAX_NAME_LEN);
774 port->name[AUDIO_PORT_MAX_NAME_LEN-1] = '\0';
775 port->num_formats =
776 portV7->num_audio_profiles > AUDIO_PORT_MAX_FORMATS ?
777 AUDIO_PORT_MAX_FORMATS : portV7->num_audio_profiles;
778 port->num_sample_rates = 0;
779 port->num_channel_masks = 0;
780 for (size_t i = 0; i < port->num_formats; ++i) {
781 port->formats[i] = portV7->audio_profiles[i].format;
782 for (size_t j = 0; j < portV7->audio_profiles[i].num_sample_rates; ++j) {
783 size_t k = 0;
784 for (; k < port->num_sample_rates; ++k) {
785 if (port->sample_rates[k] == portV7->audio_profiles[i].sample_rates[j]) {
786 break;
787 }
788 }
789 if (k == port->num_sample_rates) {
790 if (port->num_sample_rates >= AUDIO_PORT_MAX_SAMPLING_RATES) {
791 allDataConverted = false;
792 break;
793 }
794 port->sample_rates[port->num_sample_rates++] =
795 portV7->audio_profiles[i].sample_rates[j];
796 }
797 }
798 for (size_t j = 0; j < portV7->audio_profiles[i].num_channel_masks; ++j) {
799 size_t k = 0;
800 for (; k < port->num_channel_masks; ++k) {
801 if (port->channel_masks[k] == portV7->audio_profiles[i].channel_masks[j]) {
802 break;
803 }
804 }
805 if (k == port->num_channel_masks) {
806 if (port->num_channel_masks >= AUDIO_PORT_MAX_CHANNEL_MASKS) {
807 allDataConverted = false;
808 break;
809 }
810 port->channel_masks[port->num_channel_masks++] =
811 portV7->audio_profiles[i].channel_masks[j];
812 }
813 }
814 }
815 port->num_gains = portV7->num_gains;
816 memcpy(port->gains, portV7->gains, port->num_gains * sizeof(struct audio_gain));
817 memcpy(&port->active_config, &portV7->active_config, sizeof(struct audio_port_config));
818 memcpy(&port->ext, &portV7->ext, sizeof(port->ext));
819 return allDataConverted && portV7->num_extra_audio_descriptors == 0;
820 }
821
audio_gain_config_are_equal(const struct audio_gain_config * lhs,const struct audio_gain_config * rhs)822 static inline bool audio_gain_config_are_equal(
823 const struct audio_gain_config *lhs, const struct audio_gain_config *rhs) {
824 if (lhs->mode != rhs->mode) return false;
825 if (lhs->mode & AUDIO_GAIN_MODE_JOINT) {
826 if (lhs->values[0] != rhs->values[0]) return false;
827 }
828 if (lhs->mode & (AUDIO_GAIN_MODE_CHANNELS | AUDIO_GAIN_MODE_RAMP)) {
829 if (lhs->channel_mask != rhs->channel_mask) return false;
830 for (int i = 0; i < __builtin_popcount(lhs->channel_mask); ++i) {
831 if (lhs->values[i] != rhs->values[i]) return false;
832 }
833 }
834 return lhs->ramp_duration_ms == rhs->ramp_duration_ms;
835 }
836
audio_has_input_direction(audio_port_type_t type,audio_port_role_t role)837 static inline bool audio_has_input_direction(audio_port_type_t type, audio_port_role_t role) {
838 switch (type) {
839 case AUDIO_PORT_TYPE_DEVICE:
840 switch (role) {
841 case AUDIO_PORT_ROLE_SOURCE: return true;
842 case AUDIO_PORT_ROLE_SINK: return false;
843 default: return false;
844 }
845 case AUDIO_PORT_TYPE_MIX:
846 switch (role) {
847 case AUDIO_PORT_ROLE_SOURCE: return false;
848 case AUDIO_PORT_ROLE_SINK: return true;
849 default: return false;
850 }
851 default: return false;
852 }
853 }
854
audio_port_config_has_input_direction(const struct audio_port_config * port_cfg)855 static inline bool audio_port_config_has_input_direction(const struct audio_port_config *port_cfg) {
856 return audio_has_input_direction(port_cfg->type, port_cfg->role);
857 }
858
audio_port_configs_are_equal(const struct audio_port_config * lhs,const struct audio_port_config * rhs)859 static inline bool audio_port_configs_are_equal(
860 const struct audio_port_config *lhs, const struct audio_port_config *rhs) {
861 if (lhs->role != rhs->role || lhs->type != rhs->type) return false;
862 switch (lhs->type) {
863 case AUDIO_PORT_TYPE_NONE: break;
864 case AUDIO_PORT_TYPE_DEVICE:
865 if (lhs->ext.device.hw_module != rhs->ext.device.hw_module ||
866 lhs->ext.device.type != rhs->ext.device.type ||
867 strncmp(lhs->ext.device.address, rhs->ext.device.address,
868 AUDIO_DEVICE_MAX_ADDRESS_LEN) != 0) {
869 return false;
870 }
871 break;
872 case AUDIO_PORT_TYPE_MIX:
873 if (lhs->ext.mix.hw_module != rhs->ext.mix.hw_module ||
874 lhs->ext.mix.handle != rhs->ext.mix.handle) return false;
875 if (lhs->role == AUDIO_PORT_ROLE_SOURCE &&
876 lhs->ext.mix.usecase.stream != rhs->ext.mix.usecase.stream) return false;
877 else if (lhs->role == AUDIO_PORT_ROLE_SINK &&
878 lhs->ext.mix.usecase.source != rhs->ext.mix.usecase.source) return false;
879 break;
880 case AUDIO_PORT_TYPE_SESSION:
881 if (lhs->ext.session.session != rhs->ext.session.session) return false;
882 break;
883 default: return false;
884 }
885 return
886 lhs->config_mask == rhs->config_mask &&
887 #ifndef AUDIO_NO_SYSTEM_DECLARATIONS
888 ((lhs->config_mask & AUDIO_PORT_CONFIG_FLAGS) == 0 ||
889 (audio_port_config_has_input_direction(lhs) ?
890 lhs->flags.input == rhs->flags.input :
891 lhs->flags.output == rhs->flags.output)) &&
892 #endif
893 ((lhs->config_mask & AUDIO_PORT_CONFIG_SAMPLE_RATE) == 0 ||
894 lhs->sample_rate == rhs->sample_rate) &&
895 ((lhs->config_mask & AUDIO_PORT_CONFIG_CHANNEL_MASK) == 0 ||
896 lhs->channel_mask == rhs->channel_mask) &&
897 ((lhs->config_mask & AUDIO_PORT_CONFIG_FORMAT) == 0 ||
898 lhs->format == rhs->format) &&
899 ((lhs->config_mask & AUDIO_PORT_CONFIG_GAIN) == 0 ||
900 audio_gain_config_are_equal(&lhs->gain, &rhs->gain));
901 }
902
audio_gains_are_equal(const struct audio_gain * lhs,const struct audio_gain * rhs)903 static inline bool audio_gains_are_equal(const struct audio_gain* lhs, const struct audio_gain* rhs) {
904 return lhs->mode == rhs->mode &&
905 ((lhs->mode & AUDIO_GAIN_MODE_CHANNELS) != AUDIO_GAIN_MODE_CHANNELS ||
906 lhs->channel_mask == rhs->channel_mask) &&
907 lhs->min_value == rhs->min_value &&
908 lhs->max_value == rhs->max_value &&
909 lhs->default_value == rhs->default_value &&
910 lhs->step_value == rhs->step_value &&
911 lhs->min_ramp_ms == rhs->min_ramp_ms &&
912 lhs->max_ramp_ms == rhs->max_ramp_ms;
913 }
914
915 // Define the helper functions of compare two audio_port/audio_port_v7 only in
916 // C++ as it is easier to compare the device capabilities.
917 #ifdef __cplusplus
918 extern "C++" {
919 #include <map>
920 #include <set>
921 #include <type_traits>
922 #include <utility>
923 #include <vector>
924
925 namespace {
926
audio_gain_array_contains_all_elements_from(const struct audio_gain gains[],const size_t numGains,const struct audio_gain from[],size_t numFromGains)927 static inline bool audio_gain_array_contains_all_elements_from(
928 const struct audio_gain gains[], const size_t numGains,
929 const struct audio_gain from[], size_t numFromGains) {
930 for (size_t i = 0; i < numFromGains; ++i) {
931 size_t j = 0;
932 for (;j < numGains; ++j) {
933 if (audio_gains_are_equal(&from[i], &gains[j])) {
934 break;
935 }
936 }
937 if (j == numGains) {
938 return false;
939 }
940 }
941 return true;
942 }
943
944 template <typename T, std::enable_if_t<std::is_same<T, struct audio_port>::value
945 || std::is_same<T, struct audio_port_v7>::value, int> = 0>
946 static inline bool audio_ports_base_are_equal(const T* lhs, const T* rhs) {
947 if (lhs->id != rhs->id || lhs->role != rhs->role || lhs->type != rhs->type ||
948 strncmp(lhs->name, rhs->name, AUDIO_PORT_MAX_NAME_LEN) != 0 ||
949 lhs->num_gains != rhs->num_gains) {
950 return false;
951 }
952 switch (lhs->type) {
953 case AUDIO_PORT_TYPE_NONE: break;
954 case AUDIO_PORT_TYPE_DEVICE:
955 if (
956 #ifndef AUDIO_NO_SYSTEM_DECLARATIONS
957 lhs->ext.device.encapsulation_modes != rhs->ext.device.encapsulation_modes ||
958 lhs->ext.device.encapsulation_metadata_types !=
959 rhs->ext.device.encapsulation_metadata_types ||
960 #endif
961 lhs->ext.device.hw_module != rhs->ext.device.hw_module ||
962 lhs->ext.device.type != rhs->ext.device.type ||
963 strncmp(lhs->ext.device.address, rhs->ext.device.address,
964 AUDIO_DEVICE_MAX_ADDRESS_LEN) != 0) {
965 return false;
966 }
967 break;
968 case AUDIO_PORT_TYPE_MIX:
969 if (lhs->ext.mix.hw_module != rhs->ext.mix.hw_module ||
970 lhs->ext.mix.handle != rhs->ext.mix.handle ||
971 lhs->ext.mix.latency_class != rhs->ext.mix.latency_class) {
972 return false;
973 }
974 break;
975 case AUDIO_PORT_TYPE_SESSION:
976 if (lhs->ext.session.session != rhs->ext.session.session) {
977 return false;
978 }
979 break;
980 default:
981 return false;
982 }
983 if (!audio_gain_array_contains_all_elements_from(
984 lhs->gains, lhs->num_gains, rhs->gains, rhs->num_gains) ||
985 !audio_gain_array_contains_all_elements_from(
986 rhs->gains, rhs->num_gains, lhs->gains, lhs->num_gains)) {
987 return false;
988 }
989 return audio_port_configs_are_equal(&lhs->active_config, &rhs->active_config);
990 }
991
992 template <typename T, std::enable_if_t<std::is_same<T, audio_format_t>::value
993 || std::is_same<T, unsigned int>::value
994 || std::is_same<T, audio_channel_mask_t>::value, int> = 0>
995 static inline bool audio_capability_arrays_are_equal(
996 const T lhs[], unsigned int lsize, const T rhs[], unsigned int rsize) {
997 std::set<T> lhsSet(lhs, lhs + lsize);
998 std::set<T> rhsSet(rhs, rhs + rsize);
999 return lhsSet == rhsSet;
1000 }
1001
1002 using AudioProfileMap =
1003 std::map<audio_format_t,
1004 std::pair<std::set<unsigned int>, std::set<audio_channel_mask_t>>>;
1005 static inline AudioProfileMap getAudioProfileMap(
1006 const struct audio_profile profiles[], unsigned int size) {
1007 AudioProfileMap audioProfiles;
1008 for (size_t i = 0; i < size; ++i) {
1009 std::set<unsigned int> sampleRates(
1010 profiles[i].sample_rates, profiles[i].sample_rates + profiles[i].num_sample_rates);
1011 std::set<audio_channel_mask_t> channelMasks(
1012 profiles[i].channel_masks,
1013 profiles[i].channel_masks + profiles[i].num_channel_masks);
1014 audioProfiles.emplace(profiles[i].format, std::make_pair(sampleRates, channelMasks));
1015 }
1016 return audioProfiles;
1017 }
1018
1019 static inline bool audio_profile_arrays_are_equal(
1020 const struct audio_profile lhs[], unsigned int lsize,
1021 const struct audio_profile rhs[], unsigned int rsize) {
1022 return getAudioProfileMap(lhs, lsize) == getAudioProfileMap(rhs, rsize);
1023 }
1024
1025 using ExtraAudioDescriptorMap =std::map<audio_standard_t,
1026 std::map<audio_encapsulation_type_t,
1027 std::set<std::vector<uint8_t>>>>;
1028
1029 static inline ExtraAudioDescriptorMap getExtraAudioDescriptorMap(
1030 const struct audio_extra_audio_descriptor extraAudioDescriptors[],
1031 unsigned int numExtraAudioDescriptors) {
1032 ExtraAudioDescriptorMap extraAudioDescriptorMap;
1033 for (unsigned int i = 0; i < numExtraAudioDescriptors; ++i) {
1034 extraAudioDescriptorMap[extraAudioDescriptors[i].standard]
1035 [extraAudioDescriptors[i].encapsulation_type].insert(
1036 std::vector<uint8_t>(
1037 extraAudioDescriptors[i].descriptor,
1038 extraAudioDescriptors[i].descriptor
1039 + extraAudioDescriptors[i].descriptor_length));
1040 }
1041 return extraAudioDescriptorMap;
1042 }
1043
1044 static inline bool audio_extra_audio_descriptor_are_equal(
1045 const struct audio_extra_audio_descriptor lhs[], unsigned int lsize,
1046 const struct audio_extra_audio_descriptor rhs[], unsigned int rsize) {
1047 return getExtraAudioDescriptorMap(lhs, lsize) == getExtraAudioDescriptorMap(rhs, rsize);
1048 }
1049
1050 } // namespace
1051
1052 static inline bool audio_ports_are_equal(
1053 const struct audio_port* lhs, const struct audio_port* rhs) {
1054 if (!audio_ports_base_are_equal(lhs, rhs)) {
1055 return false;
1056 }
1057 return audio_capability_arrays_are_equal(
1058 lhs->formats, lhs->num_formats, rhs->formats, rhs->num_formats) &&
1059 audio_capability_arrays_are_equal(
1060 lhs->sample_rates, lhs->num_sample_rates,
1061 rhs->sample_rates, rhs->num_sample_rates) &&
1062 audio_capability_arrays_are_equal(
1063 lhs->channel_masks, lhs->num_channel_masks,
1064 rhs->channel_masks, rhs->num_channel_masks);
1065 }
1066
1067 static inline bool audio_ports_v7_are_equal(
1068 const struct audio_port_v7* lhs, const struct audio_port_v7* rhs) {
1069 if (!audio_ports_base_are_equal(lhs, rhs)) {
1070 return false;
1071 }
1072 return audio_profile_arrays_are_equal(
1073 lhs->audio_profiles, lhs->num_audio_profiles,
1074 rhs->audio_profiles, rhs->num_audio_profiles) &&
1075 audio_extra_audio_descriptor_are_equal(
1076 lhs->extra_audio_descriptors, lhs->num_extra_audio_descriptors,
1077 rhs->extra_audio_descriptors, rhs->num_extra_audio_descriptors);
1078 }
1079
1080 } // extern "C++"
1081 #endif // __cplusplus
1082
1083 /* An audio patch represents a connection between one or more source ports and
1084 * one or more sink ports. Patches are connected and disconnected by audio policy manager or by
1085 * applications via framework APIs.
1086 * Each patch is identified by a handle at the interface used to create that patch. For instance,
1087 * when a patch is created by the audio HAL, the HAL allocates and returns a handle.
1088 * This handle is unique to a given audio HAL hardware module.
1089 * But the same patch receives another system wide unique handle allocated by the framework.
1090 * This unique handle is used for all transactions inside the framework.
1091 */
1092 typedef int audio_patch_handle_t;
1093
1094 #define AUDIO_PATCH_PORTS_MAX 16
1095
1096 struct audio_patch {
1097 audio_patch_handle_t id; /* patch unique ID */
1098 unsigned int num_sources; /* number of sources in following array */
1099 struct audio_port_config sources[AUDIO_PATCH_PORTS_MAX];
1100 unsigned int num_sinks; /* number of sinks in following array */
1101 struct audio_port_config sinks[AUDIO_PATCH_PORTS_MAX];
1102 };
1103
1104
1105
1106 /* a HW synchronization source returned by the audio HAL */
1107 typedef uint32_t audio_hw_sync_t;
1108
1109 /* an invalid HW synchronization source indicating an error */
1110 #define AUDIO_HW_SYNC_INVALID 0
1111
1112 /** @TODO export from .hal */
1113 typedef enum {
1114 NONE = 0x0,
1115 /**
1116 * Only set this flag if applications can access the audio buffer memory
1117 * shared with the backend (usually DSP) _without_ security issue.
1118 *
1119 * Setting this flag also implies that Binder will allow passing the shared memory FD
1120 * to applications.
1121 *
1122 * That usually implies that the kernel will prevent any access to the
1123 * memory surrounding the audio buffer as it could lead to a security breach.
1124 *
1125 * For example, a "/dev/snd/" file descriptor generally is not shareable,
1126 * but an "anon_inode:dmabuffer" file descriptor is shareable.
1127 * See also Linux kernel's dma_buf.
1128 *
1129 * This flag is required to support AAudio exclusive mode:
1130 * See: https://source.android.com/devices/audio/aaudio
1131 */
1132 AUDIO_MMAP_APPLICATION_SHAREABLE = 0x1,
1133 } audio_mmap_buffer_flag;
1134
1135 /**
1136 * Mmap buffer descriptor returned by audio_stream->create_mmap_buffer().
1137 * note\ Used by streams opened in mmap mode.
1138 */
1139 struct audio_mmap_buffer_info {
1140 void* shared_memory_address; /**< base address of mmap memory buffer.
1141 For use by local process only */
1142 int32_t shared_memory_fd; /**< FD for mmap memory buffer */
1143 int32_t buffer_size_frames; /**< total buffer size in frames */
1144 int32_t burst_size_frames; /**< transfer size granularity in frames */
1145 audio_mmap_buffer_flag flags; /**< Attributes describing the buffer. */
1146 };
1147
1148 /**
1149 * Mmap buffer read/write position returned by audio_stream->get_mmap_position().
1150 * note\ Used by streams opened in mmap mode.
1151 */
1152 struct audio_mmap_position {
1153 int64_t time_nanoseconds; /**< timestamp in ns, CLOCK_MONOTONIC */
1154 int32_t position_frames; /**< increasing 32 bit frame count reset when stream->stop()
1155 is called */
1156 };
1157
1158 /** Metadata of a playback track for an in stream. */
1159 typedef struct playback_track_metadata {
1160 audio_usage_t usage;
1161 audio_content_type_t content_type;
1162 float gain; // Normalized linear volume. 0=silence, 1=0dbfs...
1163 } playback_track_metadata_t;
1164
1165 /** Metadata of a record track for an out stream. */
1166 typedef struct record_track_metadata {
1167 audio_source_t source;
1168 float gain; // Normalized linear volume. 0=silence, 1=0dbfs...
1169 // For record tracks originating from a software patch, the dest_device
1170 // fields provide information about the downstream device.
1171 audio_devices_t dest_device;
1172 char dest_device_address[AUDIO_DEVICE_MAX_ADDRESS_LEN];
1173 } record_track_metadata_t;
1174
1175 /** Metadata of a playback track for an in stream. */
1176 typedef struct playback_track_metadata_v7 {
1177 struct playback_track_metadata base;
1178 audio_channel_mask_t channel_mask;
1179 char tags[AUDIO_ATTRIBUTES_TAGS_MAX_SIZE]; /* UTF8 */
1180 } playback_track_metadata_v7_t;
1181
1182 /** Metadata of a record track for an out stream. */
1183 typedef struct record_track_metadata_v7 {
1184 struct record_track_metadata base;
1185 audio_channel_mask_t channel_mask;
1186 char tags[AUDIO_ATTRIBUTES_TAGS_MAX_SIZE]; /* UTF8 */
1187 } record_track_metadata_v7_t;
1188
1189 static inline void playback_track_metadata_to_v7(struct playback_track_metadata_v7 *dst,
1190 const struct playback_track_metadata *src) {
1191 dst->base = *src;
1192 dst->channel_mask = AUDIO_CHANNEL_NONE;
1193 dst->tags[0] = '\0';
1194 }
1195
1196 static inline void playback_track_metadata_from_v7(struct playback_track_metadata *dst,
1197 const struct playback_track_metadata_v7 *src) {
1198 *dst = src->base;
1199 }
1200
1201 static inline void record_track_metadata_to_v7(struct record_track_metadata_v7 *dst,
1202 const struct record_track_metadata *src) {
1203 dst->base = *src;
1204 dst->channel_mask = AUDIO_CHANNEL_NONE;
1205 dst->tags[0] = '\0';
1206 }
1207
1208 static inline void record_track_metadata_from_v7(struct record_track_metadata *dst,
1209 const struct record_track_metadata_v7 *src) {
1210 *dst = src->base;
1211 }
1212
1213 /******************************
1214 * Helper functions
1215 *****************************/
1216
1217 // see also: std::binary_search
1218 // search range [left, right)
1219 static inline bool audio_binary_search_device_array(const audio_devices_t audio_array[],
1220 size_t left, size_t right,
1221 audio_devices_t target)
1222 {
1223 if (right <= left || target < audio_array[left] || target > audio_array[right - 1]) {
1224 return false;
1225 }
1226
1227 while (left < right) {
1228 const size_t mid = left + (right - left) / 2;
1229 if (audio_array[mid] == target) {
1230 return true;
1231 } else if (audio_array[mid] < target) {
1232 left = mid + 1;
1233 } else {
1234 right = mid;
1235 }
1236 }
1237 return false;
1238 }
1239
1240 static inline bool audio_is_output_device(audio_devices_t device)
1241 {
1242 switch (device) {
1243 case AUDIO_DEVICE_OUT_SPEAKER_SAFE:
1244 case AUDIO_DEVICE_OUT_SPEAKER:
1245 case AUDIO_DEVICE_OUT_BLUETOOTH_A2DP:
1246 case AUDIO_DEVICE_OUT_WIRED_HEADSET:
1247 case AUDIO_DEVICE_OUT_USB_HEADSET:
1248 case AUDIO_DEVICE_OUT_BLUETOOTH_SCO:
1249 case AUDIO_DEVICE_OUT_EARPIECE:
1250 case AUDIO_DEVICE_OUT_REMOTE_SUBMIX:
1251 case AUDIO_DEVICE_OUT_TELEPHONY_TX:
1252 // Search the most common devices first as these devices are most likely
1253 // to be used. Put the most common devices in the order of the likelihood
1254 // of usage to get a quick return.
1255 return true;
1256 default:
1257 // Binary seach all devices if the device is not a most common device.
1258 return audio_binary_search_device_array(
1259 AUDIO_DEVICE_OUT_ALL_ARRAY, 0 /*left*/, AUDIO_DEVICE_OUT_CNT, device);
1260 }
1261 }
1262
1263 static inline bool audio_is_input_device(audio_devices_t device)
1264 {
1265 switch (device) {
1266 case AUDIO_DEVICE_IN_BUILTIN_MIC:
1267 case AUDIO_DEVICE_IN_BACK_MIC:
1268 case AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET:
1269 case AUDIO_DEVICE_IN_WIRED_HEADSET:
1270 case AUDIO_DEVICE_IN_USB_HEADSET:
1271 case AUDIO_DEVICE_IN_REMOTE_SUBMIX:
1272 case AUDIO_DEVICE_IN_TELEPHONY_RX:
1273 // Search the most common devices first as these devices are most likely
1274 // to be used. Put the most common devices in the order of the likelihood
1275 // of usage to get a quick return.
1276 return true;
1277 default:
1278 // Binary seach all devices if the device is not a most common device.
1279 return audio_binary_search_device_array(
1280 AUDIO_DEVICE_IN_ALL_ARRAY, 0 /*left*/, AUDIO_DEVICE_IN_CNT, device);
1281 }
1282 }
1283
1284 #ifdef __cplusplus
1285 // Some effects use `uint32_t` directly for device.
1286 static inline bool audio_is_input_device(uint32_t device) {
1287 return audio_is_input_device(static_cast<audio_devices_t>(device));
1288 }
1289 // This needs to be used when `audio_is_input_device` is passed
1290 // to an STL algorithm, as otherwise the compiler can't resolve
1291 // the overload at that point--the type of the container elements
1292 // doesn't appear in the predicate parameter type definition.
1293 const auto audio_call_is_input_device = [](auto x) { return audio_is_input_device(x); };
1294 #endif
1295
1296
1297 // TODO: this function expects a combination of audio device types as parameter. It should
1298 // be deprecated as audio device types should not be use as bit mask any more since R.
1299 static inline bool audio_is_output_devices(audio_devices_t device)
1300 {
1301 return (device & AUDIO_DEVICE_BIT_IN) == 0;
1302 }
1303
1304 static inline bool audio_is_a2dp_in_device(audio_devices_t device)
1305 {
1306 return device == AUDIO_DEVICE_IN_BLUETOOTH_A2DP;
1307 }
1308
1309 static inline bool audio_is_a2dp_out_device(audio_devices_t device)
1310 {
1311 return audio_binary_search_device_array(
1312 AUDIO_DEVICE_OUT_ALL_A2DP_ARRAY, 0 /*left*/, AUDIO_DEVICE_OUT_A2DP_CNT, device);
1313 }
1314
1315 // Deprecated - use audio_is_a2dp_out_device() instead
1316 static inline bool audio_is_a2dp_device(audio_devices_t device)
1317 {
1318 return audio_is_a2dp_out_device(device);
1319 }
1320
1321 static inline bool audio_is_bluetooth_out_sco_device(audio_devices_t device)
1322 {
1323 return audio_binary_search_device_array(
1324 AUDIO_DEVICE_OUT_ALL_SCO_ARRAY, 0 /*left*/, AUDIO_DEVICE_OUT_SCO_CNT, device);
1325 }
1326
1327 static inline bool audio_is_bluetooth_in_sco_device(audio_devices_t device)
1328 {
1329 return audio_binary_search_device_array(
1330 AUDIO_DEVICE_IN_ALL_SCO_ARRAY, 0 /*left*/, AUDIO_DEVICE_IN_SCO_CNT, device);
1331 }
1332
1333 static inline bool audio_is_bluetooth_sco_device(audio_devices_t device)
1334 {
1335 return audio_is_bluetooth_out_sco_device(device) ||
1336 audio_is_bluetooth_in_sco_device(device);
1337 }
1338
1339 static inline bool audio_is_hearing_aid_out_device(audio_devices_t device)
1340 {
1341 return device == AUDIO_DEVICE_OUT_HEARING_AID;
1342 }
1343
1344 static inline bool audio_is_usb_out_device(audio_devices_t device)
1345 {
1346 return audio_binary_search_device_array(
1347 AUDIO_DEVICE_OUT_ALL_USB_ARRAY, 0 /*left*/, AUDIO_DEVICE_OUT_USB_CNT, device);
1348 }
1349
1350 static inline bool audio_is_usb_in_device(audio_devices_t device)
1351 {
1352 return audio_binary_search_device_array(
1353 AUDIO_DEVICE_IN_ALL_USB_ARRAY, 0 /*left*/, AUDIO_DEVICE_IN_USB_CNT, device);
1354 }
1355
1356 /* OBSOLETE - use audio_is_usb_out_device() instead. */
1357 static inline bool audio_is_usb_device(audio_devices_t device)
1358 {
1359 return audio_is_usb_out_device(device);
1360 }
1361
1362 static inline bool audio_is_remote_submix_device(audio_devices_t device)
1363 {
1364 return device == AUDIO_DEVICE_OUT_REMOTE_SUBMIX ||
1365 device == AUDIO_DEVICE_IN_REMOTE_SUBMIX;
1366 }
1367
1368 static inline bool audio_is_digital_out_device(audio_devices_t device)
1369 {
1370 return audio_binary_search_device_array(
1371 AUDIO_DEVICE_OUT_ALL_DIGITAL_ARRAY, 0 /*left*/, AUDIO_DEVICE_OUT_DIGITAL_CNT, device);
1372 }
1373
1374 static inline bool audio_is_digital_in_device(audio_devices_t device)
1375 {
1376 return audio_binary_search_device_array(
1377 AUDIO_DEVICE_IN_ALL_DIGITAL_ARRAY, 0 /*left*/, AUDIO_DEVICE_IN_DIGITAL_CNT, device);
1378 }
1379
1380 static inline bool audio_device_is_digital(audio_devices_t device) {
1381 return audio_is_digital_in_device(device) ||
1382 audio_is_digital_out_device(device);
1383 }
1384
1385 static inline bool audio_is_ble_out_device(audio_devices_t device)
1386 {
1387 return audio_binary_search_device_array(
1388 AUDIO_DEVICE_OUT_ALL_BLE_ARRAY, 0 /*left*/, AUDIO_DEVICE_OUT_BLE_CNT, device);
1389 }
1390
1391 static inline bool audio_is_ble_in_device(audio_devices_t device)
1392 {
1393 return audio_binary_search_device_array(
1394 AUDIO_DEVICE_IN_ALL_BLE_ARRAY, 0 /*left*/, AUDIO_DEVICE_IN_BLE_CNT, device);
1395 }
1396
1397 static inline bool audio_is_ble_device(audio_devices_t device) {
1398 return audio_is_ble_in_device(device) ||
1399 audio_is_ble_out_device(device);
1400 }
1401
1402 /* Returns true if:
1403 * representation is valid, and
1404 * there is at least one channel bit set which _could_ correspond to an input channel, and
1405 * there are no channel bits set which could _not_ correspond to an input channel.
1406 * Otherwise returns false.
1407 */
1408 static inline bool audio_is_input_channel(audio_channel_mask_t channel)
1409 {
1410 uint32_t bits = audio_channel_mask_get_bits(channel);
1411 switch (audio_channel_mask_get_representation(channel)) {
1412 case AUDIO_CHANNEL_REPRESENTATION_POSITION:
1413 if (bits & ~AUDIO_CHANNEL_IN_ALL) {
1414 bits = 0;
1415 }
1416 FALLTHROUGH_INTENDED;
1417 case AUDIO_CHANNEL_REPRESENTATION_INDEX:
1418 return bits != 0;
1419 default:
1420 return false;
1421 }
1422 }
1423
1424 /* Returns true if:
1425 * representation is valid, and
1426 * there is at least one channel bit set which _could_ correspond to an output channel, and
1427 * there are no channel bits set which could _not_ correspond to an output channel.
1428 * Otherwise returns false.
1429 */
1430 static inline bool audio_is_output_channel(audio_channel_mask_t channel)
1431 {
1432 uint32_t bits = audio_channel_mask_get_bits(channel);
1433 switch (audio_channel_mask_get_representation(channel)) {
1434 case AUDIO_CHANNEL_REPRESENTATION_POSITION:
1435 if (bits & ~AUDIO_CHANNEL_OUT_ALL) {
1436 bits = 0;
1437 }
1438 FALLTHROUGH_INTENDED;
1439 case AUDIO_CHANNEL_REPRESENTATION_INDEX:
1440 return bits != 0;
1441 default:
1442 return false;
1443 }
1444 }
1445
1446 /* Returns the number of channels from an input channel mask,
1447 * used in the context of audio input or recording.
1448 * If a channel bit is set which could _not_ correspond to an input channel,
1449 * it is excluded from the count.
1450 * Returns zero if the representation is invalid.
1451 */
1452 static inline uint32_t audio_channel_count_from_in_mask(audio_channel_mask_t channel)
1453 {
1454 uint32_t bits = audio_channel_mask_get_bits(channel);
1455 switch (audio_channel_mask_get_representation(channel)) {
1456 case AUDIO_CHANNEL_REPRESENTATION_POSITION:
1457 // TODO: We can now merge with from_out_mask and remove anding
1458 bits &= AUDIO_CHANNEL_IN_ALL;
1459 FALLTHROUGH_INTENDED;
1460 case AUDIO_CHANNEL_REPRESENTATION_INDEX:
1461 return __builtin_popcount(bits);
1462 default:
1463 return 0;
1464 }
1465 }
1466
1467 #ifdef __cplusplus
1468 // FIXME(b/169889714): buffer_config_t uses `uint32_t` for the mask.
1469 // A lot of effects code thus use `uint32_t` directly.
1470 static inline uint32_t audio_channel_count_from_in_mask(uint32_t mask) {
1471 return audio_channel_count_from_in_mask(static_cast<audio_channel_mask_t>(mask));
1472 }
1473 #endif
1474
1475 /* Returns the number of channels from an output channel mask,
1476 * used in the context of audio output or playback.
1477 * If a channel bit is set which could _not_ correspond to an output channel,
1478 * it is excluded from the count.
1479 * Returns zero if the representation is invalid.
1480 */
1481 static inline uint32_t audio_channel_count_from_out_mask(audio_channel_mask_t channel)
1482 {
1483 uint32_t bits = audio_channel_mask_get_bits(channel);
1484 switch (audio_channel_mask_get_representation(channel)) {
1485 case AUDIO_CHANNEL_REPRESENTATION_POSITION:
1486 // TODO: We can now merge with from_in_mask and remove anding
1487 bits &= AUDIO_CHANNEL_OUT_ALL;
1488 FALLTHROUGH_INTENDED;
1489 case AUDIO_CHANNEL_REPRESENTATION_INDEX:
1490 return __builtin_popcount(bits);
1491 default:
1492 return 0;
1493 }
1494 }
1495
1496 #ifdef __cplusplus
1497 // FIXME(b/169889714): buffer_config_t uses `uint32_t` for the mask.
1498 // A lot of effects code thus use `uint32_t` directly.
1499 static inline uint32_t audio_channel_count_from_out_mask(uint32_t mask) {
1500 return audio_channel_count_from_out_mask(static_cast<audio_channel_mask_t>(mask));
1501 }
1502 #endif
1503
1504 /* Derive a channel mask for index assignment from a channel count.
1505 * Returns the matching channel mask,
1506 * or AUDIO_CHANNEL_NONE if the channel count is zero,
1507 * or AUDIO_CHANNEL_INVALID if the channel count exceeds AUDIO_CHANNEL_COUNT_MAX.
1508 */
1509 static inline audio_channel_mask_t audio_channel_mask_for_index_assignment_from_count(
1510 uint32_t channel_count)
1511 {
1512 if (channel_count == 0) {
1513 return AUDIO_CHANNEL_NONE;
1514 }
1515 if (channel_count > AUDIO_CHANNEL_COUNT_MAX) {
1516 return AUDIO_CHANNEL_INVALID;
1517 }
1518 uint32_t bits = (1 << channel_count) - 1;
1519 return audio_channel_mask_from_representation_and_bits(
1520 AUDIO_CHANNEL_REPRESENTATION_INDEX, bits);
1521 }
1522
1523 /* Derive an output channel mask for position assignment from a channel count.
1524 * This is to be used when the content channel mask is unknown. The 1, 2, 4, 5, 6, 7 and 8 channel
1525 * cases are mapped to the standard game/home-theater layouts, but note that 4 is mapped to quad,
1526 * and not stereo + FC + mono surround. A channel count of 3 is arbitrarily mapped to stereo + FC
1527 * for continuity with stereo.
1528 * Returns the matching channel mask,
1529 * or AUDIO_CHANNEL_NONE if the channel count is zero,
1530 * or AUDIO_CHANNEL_INVALID if the channel count exceeds that of the
1531 * configurations for which a default output channel mask is defined.
1532 */
1533 static inline audio_channel_mask_t audio_channel_out_mask_from_count(uint32_t channel_count)
1534 {
1535 uint32_t bits;
1536 switch (channel_count) {
1537 case 0:
1538 return AUDIO_CHANNEL_NONE;
1539 case 1:
1540 bits = AUDIO_CHANNEL_OUT_MONO;
1541 break;
1542 case 2:
1543 bits = AUDIO_CHANNEL_OUT_STEREO;
1544 break;
1545 case 3: // 2.1
1546 bits = AUDIO_CHANNEL_OUT_STEREO | AUDIO_CHANNEL_OUT_LOW_FREQUENCY;
1547 break;
1548 case 4: // 4.0
1549 bits = AUDIO_CHANNEL_OUT_QUAD;
1550 break;
1551 case 5: // 5.0
1552 bits = AUDIO_CHANNEL_OUT_QUAD | AUDIO_CHANNEL_OUT_FRONT_CENTER;
1553 break;
1554 case 6: // 5.1
1555 bits = AUDIO_CHANNEL_OUT_5POINT1;
1556 break;
1557 case 7: // 6.1
1558 bits = AUDIO_CHANNEL_OUT_5POINT1 | AUDIO_CHANNEL_OUT_BACK_CENTER;
1559 break;
1560 case FCC_8:
1561 bits = AUDIO_CHANNEL_OUT_7POINT1;
1562 break;
1563 case FCC_12:
1564 bits = AUDIO_CHANNEL_OUT_7POINT1POINT4;
1565 break;
1566 case FCC_24:
1567 bits = AUDIO_CHANNEL_OUT_22POINT2;
1568 break;
1569 default:
1570 return AUDIO_CHANNEL_INVALID;
1571 }
1572 return audio_channel_mask_from_representation_and_bits(
1573 AUDIO_CHANNEL_REPRESENTATION_POSITION, bits);
1574 }
1575
1576 /* Derive a default input channel mask from a channel count.
1577 * Assumes a position mask for mono and stereo, or an index mask for channel counts > 2.
1578 * Returns the matching channel mask,
1579 * or AUDIO_CHANNEL_NONE if the channel count is zero,
1580 * or AUDIO_CHANNEL_INVALID if the channel count exceeds that of the
1581 * configurations for which a default input channel mask is defined.
1582 */
1583 static inline audio_channel_mask_t audio_channel_in_mask_from_count(uint32_t channel_count)
1584 {
1585 uint32_t bits;
1586 switch (channel_count) {
1587 case 0:
1588 return AUDIO_CHANNEL_NONE;
1589 case 1:
1590 bits = AUDIO_CHANNEL_IN_MONO;
1591 break;
1592 case 2:
1593 bits = AUDIO_CHANNEL_IN_STEREO;
1594 break;
1595 default:
1596 if (channel_count <= FCC_LIMIT) {
1597 return audio_channel_mask_for_index_assignment_from_count(channel_count);
1598 }
1599 return AUDIO_CHANNEL_INVALID;
1600 }
1601 return audio_channel_mask_from_representation_and_bits(
1602 AUDIO_CHANNEL_REPRESENTATION_POSITION, bits);
1603 }
1604
1605 /* Derive a default haptic channel mask from a channel count.
1606 */
1607 static inline audio_channel_mask_t haptic_channel_mask_from_count(uint32_t channel_count)
1608 {
1609 switch(channel_count) {
1610 case 0:
1611 return AUDIO_CHANNEL_NONE;
1612 case 1:
1613 return AUDIO_CHANNEL_OUT_HAPTIC_A;
1614 case 2:
1615 return AUDIO_CHANNEL_OUT_HAPTIC_AB;
1616 default:
1617 return AUDIO_CHANNEL_INVALID;
1618 }
1619 }
1620
1621 static inline audio_channel_mask_t audio_channel_mask_in_to_out(audio_channel_mask_t in)
1622 {
1623 switch (in) {
1624 case AUDIO_CHANNEL_IN_MONO:
1625 return AUDIO_CHANNEL_OUT_MONO;
1626 case AUDIO_CHANNEL_IN_STEREO:
1627 return AUDIO_CHANNEL_OUT_STEREO;
1628 case AUDIO_CHANNEL_IN_5POINT1:
1629 return AUDIO_CHANNEL_OUT_5POINT1;
1630 case AUDIO_CHANNEL_IN_3POINT1POINT2:
1631 return AUDIO_CHANNEL_OUT_3POINT1POINT2;
1632 case AUDIO_CHANNEL_IN_3POINT0POINT2:
1633 return AUDIO_CHANNEL_OUT_3POINT0POINT2;
1634 case AUDIO_CHANNEL_IN_2POINT1POINT2:
1635 return AUDIO_CHANNEL_OUT_2POINT1POINT2;
1636 case AUDIO_CHANNEL_IN_2POINT0POINT2:
1637 return AUDIO_CHANNEL_OUT_2POINT0POINT2;
1638 default:
1639 return AUDIO_CHANNEL_INVALID;
1640 }
1641 }
1642
1643 static inline audio_channel_mask_t audio_channel_mask_out_to_in(audio_channel_mask_t out)
1644 {
1645 switch (out) {
1646 case AUDIO_CHANNEL_OUT_MONO:
1647 return AUDIO_CHANNEL_IN_MONO;
1648 case AUDIO_CHANNEL_OUT_STEREO:
1649 return AUDIO_CHANNEL_IN_STEREO;
1650 case AUDIO_CHANNEL_OUT_5POINT1:
1651 return AUDIO_CHANNEL_IN_5POINT1;
1652 case AUDIO_CHANNEL_OUT_3POINT1POINT2:
1653 return AUDIO_CHANNEL_IN_3POINT1POINT2;
1654 case AUDIO_CHANNEL_OUT_3POINT0POINT2:
1655 return AUDIO_CHANNEL_IN_3POINT0POINT2;
1656 case AUDIO_CHANNEL_OUT_2POINT1POINT2:
1657 return AUDIO_CHANNEL_IN_2POINT1POINT2;
1658 case AUDIO_CHANNEL_OUT_2POINT0POINT2:
1659 return AUDIO_CHANNEL_IN_2POINT0POINT2;
1660 default:
1661 return AUDIO_CHANNEL_INVALID;
1662 }
1663 }
1664
1665 static inline bool audio_channel_position_mask_is_out_canonical(audio_channel_mask_t channelMask)
1666 {
1667 if (audio_channel_mask_get_representation(channelMask)
1668 != AUDIO_CHANNEL_REPRESENTATION_POSITION) {
1669 return false;
1670 }
1671 const uint32_t audioChannelCount = audio_channel_count_from_out_mask(
1672 (audio_channel_mask_t)(channelMask & ~AUDIO_CHANNEL_HAPTIC_ALL));
1673 const uint32_t hapticChannelCount = audio_channel_count_from_out_mask(
1674 (audio_channel_mask_t)(channelMask & AUDIO_CHANNEL_HAPTIC_ALL));
1675 return channelMask == (audio_channel_mask_t)(
1676 audio_channel_out_mask_from_count(audioChannelCount) |
1677 haptic_channel_mask_from_count(hapticChannelCount));
1678 }
1679
1680 static inline bool audio_is_valid_format(audio_format_t format)
1681 {
1682 switch (format & AUDIO_FORMAT_MAIN_MASK) {
1683 case AUDIO_FORMAT_PCM:
1684 switch (format) {
1685 case AUDIO_FORMAT_PCM_16_BIT:
1686 case AUDIO_FORMAT_PCM_8_BIT:
1687 case AUDIO_FORMAT_PCM_32_BIT:
1688 case AUDIO_FORMAT_PCM_8_24_BIT:
1689 case AUDIO_FORMAT_PCM_FLOAT:
1690 case AUDIO_FORMAT_PCM_24_BIT_PACKED:
1691 return true;
1692 default:
1693 return false;
1694 }
1695 /* not reached */
1696 case AUDIO_FORMAT_MP3:
1697 case AUDIO_FORMAT_AMR_NB:
1698 case AUDIO_FORMAT_AMR_WB:
1699 return true;
1700 case AUDIO_FORMAT_AAC:
1701 switch (format) {
1702 case AUDIO_FORMAT_AAC:
1703 case AUDIO_FORMAT_AAC_MAIN:
1704 case AUDIO_FORMAT_AAC_LC:
1705 case AUDIO_FORMAT_AAC_SSR:
1706 case AUDIO_FORMAT_AAC_LTP:
1707 case AUDIO_FORMAT_AAC_HE_V1:
1708 case AUDIO_FORMAT_AAC_SCALABLE:
1709 case AUDIO_FORMAT_AAC_ERLC:
1710 case AUDIO_FORMAT_AAC_LD:
1711 case AUDIO_FORMAT_AAC_HE_V2:
1712 case AUDIO_FORMAT_AAC_ELD:
1713 case AUDIO_FORMAT_AAC_XHE:
1714 return true;
1715 default:
1716 return false;
1717 }
1718 /* not reached */
1719 case AUDIO_FORMAT_HE_AAC_V1:
1720 case AUDIO_FORMAT_HE_AAC_V2:
1721 case AUDIO_FORMAT_VORBIS:
1722 case AUDIO_FORMAT_OPUS:
1723 case AUDIO_FORMAT_AC3:
1724 return true;
1725 case AUDIO_FORMAT_E_AC3:
1726 switch (format) {
1727 case AUDIO_FORMAT_E_AC3:
1728 case AUDIO_FORMAT_E_AC3_JOC:
1729 return true;
1730 default:
1731 return false;
1732 }
1733 /* not reached */
1734 case AUDIO_FORMAT_DTS:
1735 case AUDIO_FORMAT_DTS_HD:
1736 case AUDIO_FORMAT_IEC60958:
1737 case AUDIO_FORMAT_IEC61937:
1738 case AUDIO_FORMAT_DOLBY_TRUEHD:
1739 case AUDIO_FORMAT_EVRC:
1740 case AUDIO_FORMAT_EVRCB:
1741 case AUDIO_FORMAT_EVRCWB:
1742 case AUDIO_FORMAT_EVRCNW:
1743 case AUDIO_FORMAT_AAC_ADIF:
1744 case AUDIO_FORMAT_WMA:
1745 case AUDIO_FORMAT_WMA_PRO:
1746 case AUDIO_FORMAT_AMR_WB_PLUS:
1747 case AUDIO_FORMAT_MP2:
1748 case AUDIO_FORMAT_QCELP:
1749 case AUDIO_FORMAT_DSD:
1750 case AUDIO_FORMAT_FLAC:
1751 case AUDIO_FORMAT_ALAC:
1752 case AUDIO_FORMAT_APE:
1753 return true;
1754 case AUDIO_FORMAT_AAC_ADTS:
1755 switch (format) {
1756 case AUDIO_FORMAT_AAC_ADTS:
1757 case AUDIO_FORMAT_AAC_ADTS_MAIN:
1758 case AUDIO_FORMAT_AAC_ADTS_LC:
1759 case AUDIO_FORMAT_AAC_ADTS_SSR:
1760 case AUDIO_FORMAT_AAC_ADTS_LTP:
1761 case AUDIO_FORMAT_AAC_ADTS_HE_V1:
1762 case AUDIO_FORMAT_AAC_ADTS_SCALABLE:
1763 case AUDIO_FORMAT_AAC_ADTS_ERLC:
1764 case AUDIO_FORMAT_AAC_ADTS_LD:
1765 case AUDIO_FORMAT_AAC_ADTS_HE_V2:
1766 case AUDIO_FORMAT_AAC_ADTS_ELD:
1767 case AUDIO_FORMAT_AAC_ADTS_XHE:
1768 return true;
1769 default:
1770 return false;
1771 }
1772 /* not reached */
1773 case AUDIO_FORMAT_SBC:
1774 case AUDIO_FORMAT_APTX:
1775 case AUDIO_FORMAT_APTX_HD:
1776 case AUDIO_FORMAT_AC4:
1777 case AUDIO_FORMAT_LDAC:
1778 return true;
1779 case AUDIO_FORMAT_MAT:
1780 switch (format) {
1781 case AUDIO_FORMAT_MAT:
1782 case AUDIO_FORMAT_MAT_1_0:
1783 case AUDIO_FORMAT_MAT_2_0:
1784 case AUDIO_FORMAT_MAT_2_1:
1785 return true;
1786 default:
1787 return false;
1788 }
1789 /* not reached */
1790 case AUDIO_FORMAT_AAC_LATM:
1791 switch (format) {
1792 case AUDIO_FORMAT_AAC_LATM:
1793 case AUDIO_FORMAT_AAC_LATM_LC:
1794 case AUDIO_FORMAT_AAC_LATM_HE_V1:
1795 case AUDIO_FORMAT_AAC_LATM_HE_V2:
1796 return true;
1797 default:
1798 return false;
1799 }
1800 /* not reached */
1801 case AUDIO_FORMAT_CELT:
1802 case AUDIO_FORMAT_APTX_ADAPTIVE:
1803 case AUDIO_FORMAT_LHDC:
1804 case AUDIO_FORMAT_LHDC_LL:
1805 case AUDIO_FORMAT_APTX_TWSP:
1806 case AUDIO_FORMAT_LC3:
1807 return true;
1808 case AUDIO_FORMAT_MPEGH:
1809 switch (format) {
1810 case AUDIO_FORMAT_MPEGH_BL_L3:
1811 case AUDIO_FORMAT_MPEGH_BL_L4:
1812 case AUDIO_FORMAT_MPEGH_LC_L3:
1813 case AUDIO_FORMAT_MPEGH_LC_L4:
1814 return true;
1815 default:
1816 return false;
1817 }
1818 /* not reached */
1819 case AUDIO_FORMAT_DTS_UHD:
1820 case AUDIO_FORMAT_DRA:
1821 return true;
1822 default:
1823 return false;
1824 }
1825 }
1826
1827 static inline bool audio_is_iec61937_compatible(audio_format_t format)
1828 {
1829 switch (format) {
1830 case AUDIO_FORMAT_AC3: // IEC 61937-3:2017
1831 case AUDIO_FORMAT_AC4: // IEC 61937-14:2017
1832 case AUDIO_FORMAT_E_AC3: // IEC 61937-3:2017
1833 case AUDIO_FORMAT_E_AC3_JOC: // IEC 61937-3:2017
1834 case AUDIO_FORMAT_MAT: // IEC 61937-9:2017
1835 case AUDIO_FORMAT_MAT_1_0: // IEC 61937-9:2017
1836 case AUDIO_FORMAT_MAT_2_0: // IEC 61937-9:2017
1837 case AUDIO_FORMAT_MAT_2_1: // IEC 61937-9:2017
1838 case AUDIO_FORMAT_MPEGH_BL_L3: // IEC 61937-13:2018
1839 case AUDIO_FORMAT_MPEGH_BL_L4: // IEC 61937-13:2018
1840 case AUDIO_FORMAT_MPEGH_LC_L3: // IEC 61937-13:2018
1841 case AUDIO_FORMAT_MPEGH_LC_L4: // IEC 61937-13:2018
1842 return true;
1843 default:
1844 return false;
1845 }
1846 }
1847
1848 /**
1849 * Extract the primary format, eg. PCM, AC3, etc.
1850 */
1851 static inline audio_format_t audio_get_main_format(audio_format_t format)
1852 {
1853 return (audio_format_t)(format & AUDIO_FORMAT_MAIN_MASK);
1854 }
1855
1856 /**
1857 * Is the data plain PCM samples that can be scaled and mixed?
1858 */
1859 static inline bool audio_is_linear_pcm(audio_format_t format)
1860 {
1861 return (audio_get_main_format(format) == AUDIO_FORMAT_PCM);
1862 }
1863
1864 /**
1865 * For this format, is the number of PCM audio frames directly proportional
1866 * to the number of data bytes?
1867 *
1868 * In other words, is the format transported as PCM audio samples,
1869 * but not necessarily scalable or mixable.
1870 * This returns true for real PCM, but also for AUDIO_FORMAT_IEC61937,
1871 * which is transported as 16 bit PCM audio, but where the encoded data
1872 * cannot be mixed or scaled.
1873 */
1874 static inline bool audio_has_proportional_frames(audio_format_t format)
1875 {
1876 audio_format_t mainFormat = audio_get_main_format(format);
1877 return (mainFormat == AUDIO_FORMAT_PCM
1878 || mainFormat == AUDIO_FORMAT_IEC61937);
1879 }
1880
1881 static inline size_t audio_bytes_per_sample(audio_format_t format)
1882 {
1883 size_t size = 0;
1884
1885 switch (format) {
1886 case AUDIO_FORMAT_PCM_32_BIT:
1887 case AUDIO_FORMAT_PCM_8_24_BIT:
1888 size = sizeof(int32_t);
1889 break;
1890 case AUDIO_FORMAT_PCM_24_BIT_PACKED:
1891 size = sizeof(uint8_t) * 3;
1892 break;
1893 case AUDIO_FORMAT_PCM_16_BIT:
1894 case AUDIO_FORMAT_IEC61937:
1895 size = sizeof(int16_t);
1896 break;
1897 case AUDIO_FORMAT_PCM_8_BIT:
1898 size = sizeof(uint8_t);
1899 break;
1900 case AUDIO_FORMAT_PCM_FLOAT:
1901 size = sizeof(float);
1902 break;
1903 default:
1904 break;
1905 }
1906 return size;
1907 }
1908
1909 static inline size_t audio_bytes_per_frame(uint32_t channel_count, audio_format_t format)
1910 {
1911 // cannot overflow for reasonable channel_count
1912 return channel_count * audio_bytes_per_sample(format);
1913 }
1914
1915 /* converts device address to string sent to audio HAL via set_parameters */
1916 static inline char *audio_device_address_to_parameter(audio_devices_t device, const char *address)
1917 {
1918 const size_t kSize = AUDIO_DEVICE_MAX_ADDRESS_LEN + sizeof("a2dp_source_address=");
1919 char param[kSize];
1920
1921 if (device == AUDIO_DEVICE_IN_BLUETOOTH_A2DP) {
1922 snprintf(param, kSize, "%s=%s", "a2dp_source_address", address);
1923 } else if (audio_is_a2dp_out_device(device)) {
1924 snprintf(param, kSize, "%s=%s", "a2dp_sink_address", address);
1925 } else if (audio_is_remote_submix_device(device)) {
1926 snprintf(param, kSize, "%s=%s", "mix", address);
1927 } else {
1928 snprintf(param, kSize, "%s", address);
1929 }
1930 return strdup(param);
1931 }
1932
1933 static inline bool audio_is_valid_audio_source(audio_source_t audioSource)
1934 {
1935 switch (audioSource) {
1936 case AUDIO_SOURCE_MIC:
1937 case AUDIO_SOURCE_VOICE_UPLINK:
1938 case AUDIO_SOURCE_VOICE_DOWNLINK:
1939 case AUDIO_SOURCE_VOICE_CALL:
1940 case AUDIO_SOURCE_CAMCORDER:
1941 case AUDIO_SOURCE_VOICE_RECOGNITION:
1942 case AUDIO_SOURCE_VOICE_COMMUNICATION:
1943 case AUDIO_SOURCE_REMOTE_SUBMIX:
1944 case AUDIO_SOURCE_UNPROCESSED:
1945 case AUDIO_SOURCE_VOICE_PERFORMANCE:
1946 case AUDIO_SOURCE_ECHO_REFERENCE:
1947 case AUDIO_SOURCE_FM_TUNER:
1948 #ifndef AUDIO_NO_SYSTEM_DECLARATIONS
1949 case AUDIO_SOURCE_HOTWORD:
1950 #endif // AUDIO_NO_SYSTEM_DECLARATIONS
1951 return true;
1952 default:
1953 return false;
1954 }
1955 }
1956
1957 #ifndef AUDIO_NO_SYSTEM_DECLARATIONS
1958
1959 static inline bool audio_port_config_has_hw_av_sync(const struct audio_port_config *port_cfg) {
1960 if (!(port_cfg->config_mask & AUDIO_PORT_CONFIG_FLAGS)) {
1961 return false;
1962 }
1963 return audio_port_config_has_input_direction(port_cfg) ?
1964 port_cfg->flags.input & AUDIO_INPUT_FLAG_HW_AV_SYNC
1965 : port_cfg->flags.output & AUDIO_OUTPUT_FLAG_HW_AV_SYNC;
1966 }
1967
1968 static inline bool audio_patch_has_hw_av_sync(const struct audio_patch *patch) {
1969 for (unsigned int i = 0; i < patch->num_sources; ++i) {
1970 if (audio_port_config_has_hw_av_sync(&patch->sources[i])) return true;
1971 }
1972 for (unsigned int i = 0; i < patch->num_sinks; ++i) {
1973 if (audio_port_config_has_hw_av_sync(&patch->sinks[i])) return true;
1974 }
1975 return false;
1976 }
1977
1978 static inline bool audio_patch_is_valid(const struct audio_patch *patch) {
1979 // Note that patch can have no sinks.
1980 return patch->num_sources != 0 && patch->num_sources <= AUDIO_PATCH_PORTS_MAX &&
1981 patch->num_sinks <= AUDIO_PATCH_PORTS_MAX;
1982 }
1983
1984 // Note that when checking for equality the order of ports must match.
1985 // Patches will not be equivalent if they contain the same ports but they are permuted differently.
1986 static inline bool audio_patches_are_equal(
1987 const struct audio_patch *lhs, const struct audio_patch *rhs) {
1988 if (!audio_patch_is_valid(lhs) || !audio_patch_is_valid(rhs)) return false;
1989 if (lhs->num_sources != rhs->num_sources || lhs->num_sinks != rhs->num_sinks) return false;
1990 for (unsigned int i = 0; i < lhs->num_sources; ++i) {
1991 if (!audio_port_configs_are_equal(&lhs->sources[i], &rhs->sources[i])) return false;
1992 }
1993 for (unsigned int i = 0; i < lhs->num_sinks; ++i) {
1994 if (!audio_port_configs_are_equal(&lhs->sinks[i], &rhs->sinks[i])) return false;
1995 }
1996 return true;
1997 }
1998
1999 #endif
2000
2001 // Unique effect ID (can be generated from the following site:
2002 // http://www.itu.int/ITU-T/asn1/uuid.html)
2003 // This struct is used for effects identification and in soundtrigger.
2004 typedef struct audio_uuid_s {
2005 uint32_t timeLow;
2006 uint16_t timeMid;
2007 uint16_t timeHiAndVersion;
2008 uint16_t clockSeq;
2009 uint8_t node[6];
2010 } audio_uuid_t;
2011
2012 /* A 3D point which could be used to represent geometric location
2013 * or orientation of a microphone.
2014 */
2015 struct audio_microphone_coordinate {
2016 float x;
2017 float y;
2018 float z;
2019 };
2020
2021 /* An number to indicate which group the microphone locate. Main body is
2022 * usually group 0. Developer could use this value to group the microphones
2023 * that locate on the same peripheral or attachments.
2024 */
2025 typedef int audio_microphone_group_t;
2026
2027 /* the maximum length for the microphone id */
2028 #define AUDIO_MICROPHONE_ID_MAX_LEN 32
2029 /* max number of frequency responses in a frequency response table */
2030 #define AUDIO_MICROPHONE_MAX_FREQUENCY_RESPONSES 256
2031 /* max number of microphone */
2032 #define AUDIO_MICROPHONE_MAX_COUNT 32
2033 /* the value of unknown spl */
2034 #define AUDIO_MICROPHONE_SPL_UNKNOWN -FLT_MAX
2035 /* the value of unknown sensitivity */
2036 #define AUDIO_MICROPHONE_SENSITIVITY_UNKNOWN -FLT_MAX
2037 /* the value of unknown coordinate */
2038 #define AUDIO_MICROPHONE_COORDINATE_UNKNOWN -FLT_MAX
2039 /* the value used as address when the address of bottom microphone is empty */
2040 #define AUDIO_BOTTOM_MICROPHONE_ADDRESS "bottom"
2041 /* the value used as address when the address of back microphone is empty */
2042 #define AUDIO_BACK_MICROPHONE_ADDRESS "back"
2043
2044 struct audio_microphone_characteristic_t {
2045 char device_id[AUDIO_MICROPHONE_ID_MAX_LEN];
2046 audio_port_handle_t id;
2047 audio_devices_t device;
2048 char address[AUDIO_DEVICE_MAX_ADDRESS_LEN];
2049 audio_microphone_channel_mapping_t channel_mapping[AUDIO_CHANNEL_COUNT_MAX];
2050 audio_microphone_location_t location;
2051 audio_microphone_group_t group;
2052 unsigned int index_in_the_group;
2053 float sensitivity;
2054 float max_spl;
2055 float min_spl;
2056 audio_microphone_directionality_t directionality;
2057 unsigned int num_frequency_responses;
2058 float frequency_responses[2][AUDIO_MICROPHONE_MAX_FREQUENCY_RESPONSES];
2059 struct audio_microphone_coordinate geometric_location;
2060 struct audio_microphone_coordinate orientation;
2061 };
2062
2063 typedef enum {
2064 #ifndef AUDIO_NO_SYSTEM_DECLARATIONS
2065 AUDIO_TIMESTRETCH_FALLBACK_CUT_REPEAT = -1, // (framework only) for speed <1.0 will truncate
2066 // frames, for speed > 1.0 will repeat frames
2067 AUDIO_TIMESTRETCH_FALLBACK_DEFAULT = 0, // (framework only) system determines behavior
2068 #endif
2069 /* Set all processed frames to zero. */
2070 AUDIO_TIMESTRETCH_FALLBACK_MUTE = HAL_AUDIO_TIMESTRETCH_FALLBACK_MUTE,
2071 /* Stop processing and indicate an error. */
2072 AUDIO_TIMESTRETCH_FALLBACK_FAIL = HAL_AUDIO_TIMESTRETCH_FALLBACK_FAIL,
2073 } audio_timestretch_fallback_mode_t;
2074
2075 // AUDIO_TIMESTRETCH_SPEED_MIN and AUDIO_TIMESTRETCH_SPEED_MAX define the min and max time stretch
2076 // speeds supported by the system. These are enforced by the system and values outside this range
2077 // will result in a runtime error.
2078 // Depending on the AudioPlaybackRate::mStretchMode, the effective limits might be narrower than
2079 // the ones specified here
2080 // AUDIO_TIMESTRETCH_SPEED_MIN_DELTA is the minimum absolute speed difference that might trigger a
2081 // parameter update
2082 #define AUDIO_TIMESTRETCH_SPEED_MIN 0.01f
2083 #define AUDIO_TIMESTRETCH_SPEED_MAX 20.0f
2084 #define AUDIO_TIMESTRETCH_SPEED_NORMAL 1.0f
2085 #define AUDIO_TIMESTRETCH_SPEED_MIN_DELTA 0.0001f
2086
2087 // AUDIO_TIMESTRETCH_PITCH_MIN and AUDIO_TIMESTRETCH_PITCH_MAX define the min and max time stretch
2088 // pitch shifting supported by the system. These are not enforced by the system and values
2089 // outside this range might result in a pitch different than the one requested.
2090 // Depending on the AudioPlaybackRate::mStretchMode, the effective limits might be narrower than
2091 // the ones specified here.
2092 // AUDIO_TIMESTRETCH_PITCH_MIN_DELTA is the minimum absolute pitch difference that might trigger a
2093 // parameter update
2094 #define AUDIO_TIMESTRETCH_PITCH_MIN 0.25f
2095 #define AUDIO_TIMESTRETCH_PITCH_MAX 4.0f
2096 #define AUDIO_TIMESTRETCH_PITCH_NORMAL 1.0f
2097 #define AUDIO_TIMESTRETCH_PITCH_MIN_DELTA 0.0001f
2098
2099 //Limits for AUDIO_TIMESTRETCH_STRETCH_VOICE mode
2100 #define TIMESTRETCH_SONIC_SPEED_MIN 0.1f
2101 #define TIMESTRETCH_SONIC_SPEED_MAX 6.0f
2102
2103 struct audio_playback_rate {
2104 float mSpeed;
2105 float mPitch;
2106 audio_timestretch_stretch_mode_t mStretchMode;
2107 audio_timestretch_fallback_mode_t mFallbackMode;
2108 };
2109
2110 typedef struct audio_playback_rate audio_playback_rate_t;
2111
2112 static const audio_playback_rate_t AUDIO_PLAYBACK_RATE_INITIALIZER = {
2113 /* .mSpeed = */ AUDIO_TIMESTRETCH_SPEED_NORMAL,
2114 /* .mPitch = */ AUDIO_TIMESTRETCH_PITCH_NORMAL,
2115 /* .mStretchMode = */ AUDIO_TIMESTRETCH_STRETCH_DEFAULT,
2116 /* .mFallbackMode = */ AUDIO_TIMESTRETCH_FALLBACK_FAIL
2117 };
2118
2119 #ifndef AUDIO_NO_SYSTEM_DECLARATIONS
2120 typedef enum {
2121 AUDIO_OFFLOAD_NOT_SUPPORTED = 0,
2122 AUDIO_OFFLOAD_SUPPORTED = 1,
2123 AUDIO_OFFLOAD_GAPLESS_SUPPORTED = 2
2124 } audio_offload_mode_t;
2125 #endif // AUDIO_NO_SYSTEM_DECLARATIONS
2126
2127 __END_DECLS
2128
2129 /**
2130 * List of known audio HAL modules. This is the base name of the audio HAL
2131 * library composed of the "audio." prefix, one of the base names below and
2132 * a suffix specific to the device.
2133 * e.g: audio.primary.goldfish.so or audio.a2dp.default.so
2134 *
2135 * The same module names are used in audio policy configuration files.
2136 */
2137
2138 #define AUDIO_HARDWARE_MODULE_ID_PRIMARY "primary"
2139 #define AUDIO_HARDWARE_MODULE_ID_A2DP "a2dp"
2140 #define AUDIO_HARDWARE_MODULE_ID_USB "usb"
2141 #define AUDIO_HARDWARE_MODULE_ID_REMOTE_SUBMIX "r_submix"
2142 #define AUDIO_HARDWARE_MODULE_ID_CODEC_OFFLOAD "codec_offload"
2143 #define AUDIO_HARDWARE_MODULE_ID_STUB "stub"
2144 #define AUDIO_HARDWARE_MODULE_ID_HEARING_AID "hearing_aid"
2145 #define AUDIO_HARDWARE_MODULE_ID_MSD "msd"
2146
2147 /**
2148 * Multi-Stream Decoder (MSD) HAL service name. MSD HAL is used to mix
2149 * encoded streams together with PCM streams, producing re-encoded
2150 * streams or PCM streams.
2151 *
2152 * The service must register itself using this name, and audioserver
2153 * tries to instantiate a device factory using this name as well.
2154 * Note that the HIDL implementation library file name *must* have the
2155 * suffix "msd" in order to be picked up by HIDL that is:
2156 *
2157 * android.hardware.audio@x.x-implmsd.so
2158 */
2159 #define AUDIO_HAL_SERVICE_NAME_MSD "msd"
2160
2161 /**
2162 * Parameter definitions.
2163 * Note that in the framework code it's recommended to use AudioParameter.h
2164 * instead of these preprocessor defines, and for sure avoid just copying
2165 * the constant values.
2166 */
2167
2168 #define AUDIO_PARAMETER_VALUE_ON "on"
2169 #define AUDIO_PARAMETER_VALUE_OFF "off"
2170
2171 /**
2172 * audio device parameters
2173 */
2174
2175 /* BT SCO Noise Reduction + Echo Cancellation parameters */
2176 #define AUDIO_PARAMETER_KEY_BT_NREC "bt_headset_nrec"
2177
2178 /* Get a new HW synchronization source identifier.
2179 * Return a valid source (positive integer) or AUDIO_HW_SYNC_INVALID if an error occurs
2180 * or no HW sync is available. */
2181 #define AUDIO_PARAMETER_HW_AV_SYNC "hw_av_sync"
2182
2183 /* Screen state */
2184 #define AUDIO_PARAMETER_KEY_SCREEN_STATE "screen_state"
2185
2186 /* User's preferred audio language setting (in ISO 639-2/T three-letter string code)
2187 * used to select a specific language presentation for next generation audio codecs. */
2188 #define AUDIO_PARAMETER_KEY_AUDIO_LANGUAGE_PREFERRED "audio_language_preferred"
2189
2190 /**
2191 * audio stream parameters
2192 */
2193
2194 #define AUDIO_PARAMETER_STREAM_ROUTING "routing" /* audio_devices_t */
2195 #define AUDIO_PARAMETER_STREAM_FORMAT "format" /* audio_format_t */
2196 #define AUDIO_PARAMETER_STREAM_CHANNELS "channels" /* audio_channel_mask_t */
2197 #define AUDIO_PARAMETER_STREAM_FRAME_COUNT "frame_count" /* size_t */
2198 #define AUDIO_PARAMETER_STREAM_INPUT_SOURCE "input_source" /* audio_source_t */
2199 #define AUDIO_PARAMETER_STREAM_SAMPLING_RATE "sampling_rate" /* uint32_t */
2200
2201 /* Request the presentation id to be decoded by a next gen audio decoder */
2202 #define AUDIO_PARAMETER_STREAM_PRESENTATION_ID "presentation_id" /* int32_t */
2203
2204 /* Request the program id to be decoded by a next gen audio decoder */
2205 #define AUDIO_PARAMETER_STREAM_PROGRAM_ID "program_id" /* int32_t */
2206
2207 #define AUDIO_PARAMETER_DEVICE_CONNECT "connect" /* audio_devices_t */
2208 #define AUDIO_PARAMETER_DEVICE_DISCONNECT "disconnect" /* audio_devices_t */
2209
2210 /* Enable mono audio playback if 1, else should be 0. */
2211 #define AUDIO_PARAMETER_MONO_OUTPUT "mono_output"
2212
2213 /* Set the HW synchronization source for an output stream. */
2214 #define AUDIO_PARAMETER_STREAM_HW_AV_SYNC "hw_av_sync"
2215
2216 /* Query supported formats. The response is a '|' separated list of strings from
2217 * audio_format_t enum e.g: "sup_formats=AUDIO_FORMAT_PCM_16_BIT" */
2218 #define AUDIO_PARAMETER_STREAM_SUP_FORMATS "sup_formats"
2219 /* Query supported channel masks. The response is a '|' separated list of strings from
2220 * audio_channel_mask_t enum e.g: "sup_channels=AUDIO_CHANNEL_OUT_STEREO|AUDIO_CHANNEL_OUT_MONO" */
2221 #define AUDIO_PARAMETER_STREAM_SUP_CHANNELS "sup_channels"
2222 /* Query supported sampling rates. The response is a '|' separated list of integer values e.g:
2223 * "sup_sampling_rates=44100|48000" */
2224 #define AUDIO_PARAMETER_STREAM_SUP_SAMPLING_RATES "sup_sampling_rates"
2225
2226 #define AUDIO_PARAMETER_VALUE_LIST_SEPARATOR "|"
2227
2228 /* Reconfigure offloaded A2DP codec */
2229 #define AUDIO_PARAMETER_RECONFIG_A2DP "reconfigA2dp"
2230 /* Query if HwModule supports reconfiguration of offloaded A2DP codec */
2231 #define AUDIO_PARAMETER_A2DP_RECONFIG_SUPPORTED "isReconfigA2dpSupported"
2232
2233 /**
2234 * For querying device supported encapsulation capabilities. All returned values are integer,
2235 * which are bit fields composed from using encapsulation capability values as position bits.
2236 * Encapsulation capability values are defined in audio_encapsulation_mode_t and
2237 * audio_encapsulation_metadata_type_t. For instance, if the supported encapsulation mode is
2238 * AUDIO_ENCAPSULATION_MODE_ELEMENTARY_STREAM, the returned value is
2239 * "supEncapsulationModes=1 << AUDIO_ENCAPSULATION_MODE_ELEMENTARY_STREAM".
2240 * When querying device supported encapsulation capabilities, the key should use device type
2241 * and address so that it is able to identify the device. The device will be a key. The device
2242 * type will be the value of key AUDIO_PARAMETER_STREAM_ROUTING.
2243 */
2244 #define AUDIO_PARAMETER_DEVICE_SUP_ENCAPSULATION_MODES "supEncapsulationModes"
2245 #define AUDIO_PARAMETER_DEVICE_SUP_ENCAPSULATION_METADATA_TYPES "supEncapsulationMetadataTypes"
2246
2247 /* Query additional delay in millisecond on each output device. */
2248 #define AUDIO_PARAMETER_DEVICE_ADDITIONAL_OUTPUT_DELAY "additional_output_device_delay"
2249 #define AUDIO_PARAMETER_DEVICE_MAX_ADDITIONAL_OUTPUT_DELAY "max_additional_output_device_delay"
2250
2251 /**
2252 * audio codec parameters
2253 */
2254
2255 #define AUDIO_OFFLOAD_CODEC_PARAMS "music_offload_codec_param"
2256 #define AUDIO_OFFLOAD_CODEC_BIT_PER_SAMPLE "music_offload_bit_per_sample"
2257 #define AUDIO_OFFLOAD_CODEC_BIT_RATE "music_offload_bit_rate"
2258 #define AUDIO_OFFLOAD_CODEC_AVG_BIT_RATE "music_offload_avg_bit_rate"
2259 #define AUDIO_OFFLOAD_CODEC_ID "music_offload_codec_id"
2260 #define AUDIO_OFFLOAD_CODEC_BLOCK_ALIGN "music_offload_block_align"
2261 #define AUDIO_OFFLOAD_CODEC_SAMPLE_RATE "music_offload_sample_rate"
2262 #define AUDIO_OFFLOAD_CODEC_ENCODE_OPTION "music_offload_encode_option"
2263 #define AUDIO_OFFLOAD_CODEC_NUM_CHANNEL "music_offload_num_channels"
2264 #define AUDIO_OFFLOAD_CODEC_DOWN_SAMPLING "music_offload_down_sampling"
2265 #define AUDIO_OFFLOAD_CODEC_DELAY_SAMPLES "delay_samples"
2266 #define AUDIO_OFFLOAD_CODEC_PADDING_SAMPLES "padding_samples"
2267
2268
2269 #endif // ANDROID_AUDIO_CORE_H
2270