# VPN Management (For System Applications Only) ## Overview A virtual private network (VPN) is a dedicated network established on a public network. On a VPN, the connection between any two nodes does not have an end-to-end physical link required by the traditional private network. Instead, user data is transmitted over a logical link because a VPN is a logical network deployed over the network platform (such as the Internet) provided by the public network service provider. > **NOTE** > To maximize the application running efficiency, most API calls are called asynchronously in callback or promise mode. The following code examples use the promise mode. For details about the APIs, see [API Reference](../reference/apis-network-kit/js-apis-net-vpn-sys.md). The following describes the development procedure specific to each application scenario. ## Available APIs For the complete list of APIs and example code, see [API Reference](../reference/apis-network-kit/js-apis-net-vpn-sys.md). | API | Description | | ----------------------------------------------------------------- | --------------------------------------------------- | | setUp(config: VpnConfig, callback: AsyncCallback\): void | Establishes a VPN. This API uses an asynchronous callback to return the result.| | protect(socketFd: number, callback: AsyncCallback\): void | Enables VPN tunnel protection. This API uses an asynchronous callback to return the result. | | destroy(callback: AsyncCallback\): void | Destroys a VPN. This API uses an asynchronous callback to return the result.| ## Starting a VPN 1. Establish a VPN tunnel. The following uses the UDP tunnel as an example. 2. Enable protection for the UDP tunnel. 3. Establish a VPN. 4. Process data of the virtual network interface card (vNIC), such as reading or writing data. 5. Destroy the VPN. This example shows how to develop an application using native C++ code. For details, see [Simple Native C++ Example (ArkTS) (API9)](https://gitee.com/openharmony/codelabs/tree/master/NativeAPI/NativeTemplateDemo). The sample application consists of two parts: JS code and C++ code. ## JS Code The JS code is used to implement the service logic, such as creating a tunnel, establishing a VPN, enabling VPN protection, and destroying a VPN. ```js import Want from '@ohos.app.ability.Want'; import VpnExtensionAbility from '@ohos.app.ability.VpnExtensionAbility'; import vpnExt from '@ohos.net.vpnExtension'; import hilog from '@ohos.hilog'; import common from '@ohos.app.ability.common'; // vpn_client is a portable .so file in C language, for example, import vpn_client from 'libvpn_client.so'. import socket from '@ohos.net.socket'; const TAG: string = "[MyVpnExtAbility]"; let g_tunFd = -1; let g_tunnelFd = -1; export default class MyVpnExtAbility extends VpnExtensionAbility { private VpnConnection: vpnExt.VpnConnection = vpnExt.createVpnConnection(this.context); private vpnServerIp: string = '192.168.85.185'; private tunIp: string = '10.0.0.8'; private blockedAppName: string = 'com.example.testvpn'; onCreate(want: Want) { console.info(TAG, `xdw onCreate, want: ${want.abilityName}`); // this.context.stopVpnExtensionAbility(want); this.VpnConnection = vpnExt.createVpnConnection(this.context); console.info("wmw createVpnConnection success") this.CreateTunnel(); this.Protect(); console.info("xdw step4"); } onRequest(want: Want, startId: number) { console.info(TAG, `xdw onRequest, want: ${want.abilityName}`); } onConnect(want: Want) { console.info(TAG, `xdw onConnect, want: ${want.abilityName}`); // Return a ServiceExtImpl object, through which the client can communicate with the ServiceExtensionAbility. let abilityName = want.parameters?.abilityName.toString(); let bundleName = want.parameters?.bundleName.toString(); return null; } onDisconnect(want: Want) { console.info(TAG, `xdw onDisconnect, want: ${want.abilityName}`); } onDestroy() { console.info(TAG, `xdw onDestroy`); this.Destroy(); } Destroy() { hilog.info(0x0000, 'developTag', '%{public}s', 'vpn Destroy'); // Disable the VPN. this.VpnConnection.destroy().then(() => { hilog.info(0x0000, 'developTag', '%{public}s', 'vpn Destroy Success'); }).catch((err: Error) => { hilog.error(0x0000, 'developTag', 'vpn Destroy Failed: %{public}s', JSON.stringify(err) ?? ''); }) } CreateTunnel() { console.info("xdw step1") // Connect to the VPN server. } Protect() { console.info("xdw step2") hilog.info(0x0000, 'developTag', '%{public}s', 'vpn Protect'); this.VpnConnection.protect(g_tunnelFd).then(() => { hilog.info(0x0000, 'developTag', '%{public}s', 'vpn Protect Success'); this.SetupVpn(); }).catch((err: Error) => { hilog.error(0x0000, 'developTag', 'vpn Protect Failed %{public}s', JSON.stringify(err) ?? ''); }) } SetupVpn() { console.info("xdw step3") hilog.info(0x0000, 'developTag', '%{public}s', 'vpn SetupVpn'); class Address { address: string; family: number; constructor(address: string, family: number) { this.address = address; this.family = family; } } class AddressWithPrefix { address: Address; prefixLength: number; constructor(address: Address, prefixLength: number) { this.address = address; this.prefixLength = prefixLength; } } class Config { addresses: AddressWithPrefix[]; dnsAddresses: string[]; trustedApplications: string[]; blockedApplications: string[]; constructor( tunIp: string, blockedAppName: string ) { this.addresses = [ new AddressWithPrefix(new Address(tunIp, 1), 24) ]; this.dnsAddresses = ["114.114.114.114"]; this.trustedApplications = []; this.blockedApplications = []; } } let config = new Config(this.tunIp, this.blockedAppName); try { this.VpnConnection.create(config); } catch (error) { hilog.error(0x0000, 'developTag', 'vpn setUp fail: %{public}s', JSON.stringify(error) ?? ''); } } } ``` ## C++ Code The C++ code is used for underlying service implementation, such as UDP tunnel client implementation and vNIC data read and write. ```c++ #include "napi/native_api.h" #include "hilog/log.h" #include #include #include #include #include #include #include #include #include #include #include #include #define BUFFER_SIZE 2048 #define VPN_LOG_TAG "NetMgrVpn" #define VPN_LOG_DOMAIN 0x15b0 #define MAKE_FILE_NAME (strrchr(__FILE__, '/') + 1) #define NETMANAGER_VPN_LOGE(fmt, ...) \ OH_LOG_Print(LOG_APP, LOG_ERROR, VPN_LOG_DOMAIN, VPN_LOG_TAG, "vpn [%{public}s %{public}d] " fmt, MAKE_FILE_NAME, \ __LINE__, ##__VA_ARGS__) #define NETMANAGER_VPN_LOGI(fmt, ...) \ OH_LOG_Print(LOG_APP, LOG_INFO, VPN_LOG_DOMAIN, VPN_LOG_TAG, "vpn [%{public}s %{public}d] " fmt, MAKE_FILE_NAME, \ __LINE__, ##__VA_ARGS__) #define NETMANAGER_VPN_LOGD(fmt, ...) \ OH_LOG_Print(LOG_APP, LOG_DEBUG, VPN_LOG_DOMAIN, VPN_LOG_TAG, "vpn [%{public}s %{public}d] " fmt, MAKE_FILE_NAME, \ __LINE__, ##__VA_ARGS__) struct FdInfo { int32_t tunFd = 0; int32_t tunnelFd = 0; struct sockaddr_in serverAddr; }; static FdInfo fdInfo; static bool threadRunF = false; static std::thread threadt1; static std::thread threadt2; // Obtain the IP address of the UDP server. static constexpr const int MAX_STRING_LENGTH = 1024; std::string GetStringFromValueUtf8(napi_env env, napi_value value) { std::string result; char str[MAX_STRING_LENGTH] = {0}; size_t length = 0; napi_get_value_string_utf8(env, value, str, MAX_STRING_LENGTH, &length); if (length > 0) { return result.append(str, length); } return result; } void HandleReadTunfd(FdInfo fdInfo) { uint8_t buffer[BUFFER_SIZE] = {0}; while (threadRunF) { int ret = read(fdInfo.tunFd, buffer, sizeof(buffer)); if (ret <= 0) { if (errno != 11) { NETMANAGER_VPN_LOGE("read tun device error: %{public}d, tunfd: %{public}d", errno, fdInfo.tunFd); } continue; } // Read data from the vNIC and send the data to the UDP server through the UDP tunnel. NETMANAGER_VPN_LOGD("buffer: %{public}s, len: %{public}d", buffer, ret); ret = sendto(fdInfo.tunnelFd, buffer, ret, 0, (struct sockaddr *)&fdInfo.serverAddr, sizeof(fdInfo.serverAddr)); if (ret <= 0) { NETMANAGER_VPN_LOGE("send to server[%{public}s:%{public}d] failed, ret: %{public}d, error: %{public}s", inet_ntoa(fdInfo.serverAddr.sin_addr), ntohs(fdInfo.serverAddr.sin_port), ret, strerror(errno)); continue; } } } void HandleTcpReceived(FdInfo fdInfo) { int addrlen = sizeof(struct sockaddr_in); uint8_t buffer[BUFFER_SIZE] = {0}; while (threadRunF) { int length = recvfrom(fdInfo.tunnelFd, buffer, sizeof(buffer), 0, (struct sockaddr *)&fdInfo.serverAddr, (socklen_t *)&addrlen); if (length < 0) { if (errno != 11) { NETMANAGER_VPN_LOGE("read tun device error: %{public}d, tunnelfd: %{public}d", errno, fdInfo.tunnelFd); } continue; } // Receive data from the UDP server and write the data to the vNIC. NETMANAGER_VPN_LOGD("from [%{public}s:%{public}d] data: %{public}s, len: %{public}d", inet_ntoa(fdInfo.serverAddr.sin_addr), ntohs(fdInfo.serverAddr.sin_port), buffer, length); int ret = write(fdInfo.tunFd, buffer, length); if (ret <= 0) { NETMANAGER_VPN_LOGE("error Write To Tunfd, errno: %{public}d", errno); } } } static napi_value UdpConnect(napi_env env, napi_callback_info info) { size_t argc = 2; napi_value args[2] = {nullptr}; napi_get_cb_info(env, info, &argc, args, nullptr, nullptr); int32_t port = 0; napi_get_value_int32(env, args[1], &port); std::string ipAddr = GetStringFromValueUtf8(env, args[0]); NETMANAGER_VPN_LOGI("ip: %{public}s port: %{public}d", ipAddr.c_str(), port); // Establish a UDP tunnel. int32_t sockFd = socket(AF_INET, SOCK_DGRAM, 0); if (sockFd == -1) { NETMANAGER_VPN_LOGE("socket() error"); return 0; } struct timeval timeout = {1, 0}; setsockopt(sockFd, SOL_SOCKET, SO_RCVTIMEO, (char *)&timeout, sizeof(struct timeval)); memset(&fdInfo.serverAddr, 0, sizeof(fdInfo.serverAddr)); fdInfo.serverAddr.sin_family = AF_INET; fdInfo.serverAddr.sin_addr.s_addr = inet_addr(ipAddr.c_str()); // server's IP addr fdInfo.serverAddr.sin_port = htons(port); // port NETMANAGER_VPN_LOGI("Connection successful"); napi_value tunnelFd; napi_create_int32(env, sockFd, &tunnelFd); return tunnelFd; } static napi_value StartVpn(napi_env env, napi_callback_info info) { size_t argc = 2; napi_value args[2] = {nullptr}; napi_get_cb_info(env, info, &argc, args, nullptr, nullptr); napi_get_value_int32(env, args[0], &fdInfo.tunFd); napi_get_value_int32(env, args[1], &fdInfo.tunnelFd); if (threadRunF) { threadRunF = false; threadt1.join(); threadt2.join(); } // Start two threads. One is used to read data from the vNIC, and the other is used to receive data from the server. threadRunF = true; std::thread tt1(HandleReadTunfd, fdInfo); std::thread tt2(HandleTcpReceived, fdInfo); threadt1 = std::move(tt1); threadt2 = std::move(tt2); NETMANAGER_VPN_LOGI("StartVpn successful"); napi_value retValue; napi_create_int32(env, 0, &retValue); return retValue; } static napi_value StopVpn(napi_env env, napi_callback_info info) { size_t argc = 1; napi_value args[1] = {nullptr}; napi_get_cb_info(env, info, &argc, args, nullptr, nullptr); int32_t tunnelFd; napi_get_value_int32(env, args[0], &tunnelFd); if (tunnelFd) { close(tunnelFd); tunnelFd = 0; } // Stop the two threads. if (threadRunF) { threadRunF = false; threadt1.join(); threadt2.join(); } NETMANAGER_VPN_LOGI("StopVpn successful"); napi_value retValue; napi_create_int32(env, 0, &retValue); return retValue; } EXTERN_C_START static napi_value Init(napi_env env, napi_value exports) { napi_property_descriptor desc[] = { {"udpConnect", nullptr, UdpConnect, nullptr, nullptr, nullptr, napi_default, nullptr}, {"startVpn", nullptr, StartVpn, nullptr, nullptr, nullptr, napi_default, nullptr}, {"stopVpn", nullptr, StopVpn, nullptr, nullptr, nullptr, napi_default, nullptr}, }; napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc); return exports; } EXTERN_C_END static napi_module demoModule = { .nm_version = 1, .nm_flags = 0, .nm_filename = nullptr, .nm_register_func = Init, .nm_modname = "entry", .nm_priv = ((void *)0), .reserved = {0}, }; extern "C" __attribute__((constructor)) void RegisterEntryModule(void) { napi_module_register(&demoModule); } ```