/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "VtsHalEvsTest" // These values are called out in the EVS design doc (as of Mar 8, 2017) static const int kMaxStreamStartMilliseconds = 500; static const int kMinimumFramesPerSecond = 10; static const int kSecondsToMilliseconds = 1000; static const int kMillisecondsToMicroseconds = 1000; static const float kNanoToMilliseconds = 0.000001f; static const float kNanoToSeconds = 0.000000001f; #include "FrameHandler.h" #include "FrameHandlerUltrasonics.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace ::android::hardware::automotive::evs::V1_1; using namespace std::chrono_literals; using ::android::hardware::Return; using ::android::hardware::Void; using ::android::hardware::hidl_vec; using ::android::hardware::hidl_handle; using ::android::hardware::hidl_string; using ::android::sp; using ::android::wp; using ::android::hardware::camera::device::V3_2::Stream; using ::android::hardware::automotive::evs::V1_1::BufferDesc; using ::android::hardware::automotive::evs::V1_0::DisplayDesc; using ::android::hardware::automotive::evs::V1_0::DisplayState; using ::android::hardware::graphics::common::V1_0::PixelFormat; using ::android::frameworks::automotive::display::V1_0::HwDisplayConfig; using ::android::frameworks::automotive::display::V1_0::HwDisplayState; using IEvsCamera_1_0 = ::android::hardware::automotive::evs::V1_0::IEvsCamera; using IEvsCamera_1_1 = ::android::hardware::automotive::evs::V1_1::IEvsCamera; using IEvsDisplay_1_0 = ::android::hardware::automotive::evs::V1_0::IEvsDisplay; using IEvsDisplay_1_1 = ::android::hardware::automotive::evs::V1_1::IEvsDisplay; namespace { /* * Plese note that this is different from what is defined in * libhardware/modules/camera/3_4/metadata/types.h; this has one additional * field to store a framerate. */ typedef struct { int32_t id; int32_t width; int32_t height; int32_t format; int32_t direction; int32_t framerate; } RawStreamConfig; constexpr const size_t kStreamCfgSz = sizeof(RawStreamConfig) / sizeof(int32_t); } // anonymous namespace // The main test class for EVS class EvsHidlTest : public ::testing::TestWithParam { public: virtual void SetUp() override { // Make sure we can connect to the enumerator std::string service_name = GetParam(); pEnumerator = IEvsEnumerator::getService(service_name); ASSERT_NE(pEnumerator.get(), nullptr); LOG(INFO) << "Test target service: " << service_name; mIsHwModule = pEnumerator->isHardware(); } virtual void TearDown() override { // Attempt to close any active camera for (auto &&cam : activeCameras) { if (cam != nullptr) { pEnumerator->closeCamera(cam); } } activeCameras.clear(); } protected: void loadCameraList() { // SetUp() must run first! assert(pEnumerator != nullptr); // Get the camera list pEnumerator->getCameraList_1_1( [this](hidl_vec cameraList) { LOG(INFO) << "Camera list callback received " << cameraList.size() << " cameras"; cameraInfo.reserve(cameraList.size()); for (auto&& cam: cameraList) { LOG(INFO) << "Found camera " << cam.v1.cameraId; cameraInfo.push_back(cam); } } ); } void loadUltrasonicsArrayList() { // SetUp() must run first! assert(pEnumerator != nullptr); // Get the ultrasonics array list pEnumerator->getUltrasonicsArrayList([this](hidl_vec ultraList) { LOG(INFO) << "Ultrasonics array list callback received " << ultraList.size() << " arrays"; ultrasonicsArraysInfo.reserve(ultraList.size()); for (auto&& ultraArray : ultraList) { LOG(INFO) << "Found ultrasonics array " << ultraArray.ultrasonicsArrayId; ultrasonicsArraysInfo.push_back(ultraArray); } }); } bool isLogicalCamera(const camera_metadata_t *metadata) { if (metadata == nullptr) { // A logical camera device must have a valid camera metadata. return false; } // Looking for LOGICAL_MULTI_CAMERA capability from metadata. camera_metadata_ro_entry_t entry; int rc = find_camera_metadata_ro_entry(metadata, ANDROID_REQUEST_AVAILABLE_CAPABILITIES, &entry); if (0 != rc) { // No capabilities are found. return false; } for (size_t i = 0; i < entry.count; ++i) { uint8_t cap = entry.data.u8[i]; if (cap == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_LOGICAL_MULTI_CAMERA) { return true; } } return false; } std::unordered_set getPhysicalCameraIds(const std::string& id, bool& flag) { std::unordered_set physicalCameras; auto it = cameraInfo.begin(); while (it != cameraInfo.end()) { if (it->v1.cameraId == id) { break; } ++it; } if (it == cameraInfo.end()) { // Unknown camera is requested. Return an empty list. return physicalCameras; } const camera_metadata_t *metadata = reinterpret_cast(&it->metadata[0]); flag = isLogicalCamera(metadata); if (!flag) { // EVS assumes that the device w/o a valid metadata is a physical // device. LOG(INFO) << id << " is not a logical camera device."; physicalCameras.emplace(id); return physicalCameras; } // Look for physical camera identifiers camera_metadata_ro_entry entry; int rc = find_camera_metadata_ro_entry(metadata, ANDROID_LOGICAL_MULTI_CAMERA_PHYSICAL_IDS, &entry); if (rc != 0) { LOG(ERROR) << "No physical camera ID is found for a logical camera device"; } const uint8_t *ids = entry.data.u8; size_t start = 0; for (size_t i = 0; i < entry.count; ++i) { if (ids[i] == '\0') { if (start != i) { std::string id(reinterpret_cast(ids + start)); physicalCameras.emplace(id); } start = i + 1; } } LOG(INFO) << id << " consists of " << physicalCameras.size() << " physical camera devices"; return physicalCameras; } Stream getFirstStreamConfiguration(camera_metadata_t* metadata) { Stream targetCfg = {}; camera_metadata_entry_t streamCfgs; if (!find_camera_metadata_entry(metadata, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, &streamCfgs)) { // Stream configurations are found in metadata RawStreamConfig *ptr = reinterpret_cast(streamCfgs.data.i32); for (unsigned offset = 0; offset < streamCfgs.count; offset += kStreamCfgSz) { if (ptr->direction == ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT && ptr->format == HAL_PIXEL_FORMAT_RGBA_8888) { targetCfg.width = ptr->width; targetCfg.height = ptr->height; targetCfg.format = static_cast(ptr->format); break; } ++ptr; } } return targetCfg; } sp pEnumerator; // Every test needs access to the service std::vector cameraInfo; // Empty unless/until loadCameraList() is called bool mIsHwModule; // boolean to tell current module under testing // is HW module implementation. std::deque> activeCameras; // A list of active camera handles that are // needed to be cleaned up. std::vector ultrasonicsArraysInfo; // Empty unless/until // loadUltrasonicsArrayList() is called std::deque> activeUltrasonicsArrays; // A list of active ultrasonic array // handles that are to be cleaned up. }; // Test cases, their implementations, and corresponding requirements are // documented at go/aae-evs-public-api-test. /* * CameraOpenClean: * Opens each camera reported by the enumerator and then explicitly closes it via a * call to closeCamera. Then repeats the test to ensure all cameras can be reopened. */ TEST_P(EvsHidlTest, CameraOpenClean) { LOG(INFO) << "Starting CameraOpenClean test"; // Get the camera list loadCameraList(); // Open and close each camera twice for (auto&& cam: cameraInfo) { bool isLogicalCam = false; auto devices = getPhysicalCameraIds(cam.v1.cameraId, isLogicalCam); if (mIsHwModule && isLogicalCam) { LOG(INFO) << "Skip a logical device, " << cam.v1.cameraId << " for HW target."; continue; } // Read a target resolution from the metadata Stream targetCfg = getFirstStreamConfiguration(reinterpret_cast(cam.metadata.data())); ASSERT_GT(targetCfg.width, 0); ASSERT_GT(targetCfg.height, 0); for (int pass = 0; pass < 2; pass++) { sp pCam = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCam, nullptr); for (auto&& devName : devices) { bool matched = false; pCam->getPhysicalCameraInfo(devName, [&devName, &matched](const CameraDesc& info) { matched = devName == info.v1.cameraId; }); ASSERT_TRUE(matched); } // Store a camera handle for a clean-up activeCameras.push_back(pCam); // Verify that this camera self-identifies correctly pCam->getCameraInfo_1_1([&cam](CameraDesc desc) { LOG(DEBUG) << "Found camera " << desc.v1.cameraId; EXPECT_EQ(cam.v1.cameraId, desc.v1.cameraId); } ); // Verify methods for extended info const auto id = 0xFFFFFFFF; // meaningless id hidl_vec values; auto err = pCam->setExtendedInfo_1_1(id, values); if (isLogicalCam) { // Logical camera device does not support setExtendedInfo // method. ASSERT_EQ(EvsResult::INVALID_ARG, err); } else { ASSERT_NE(EvsResult::INVALID_ARG, err); } pCam->getExtendedInfo_1_1(id, [&isLogicalCam](const auto& result, const auto& data) { if (isLogicalCam) { ASSERT_EQ(EvsResult::INVALID_ARG, result); } else { ASSERT_NE(EvsResult::INVALID_ARG, result); ASSERT_EQ(0, data.size()); } }); // Explicitly close the camera so resources are released right away pEnumerator->closeCamera(pCam); activeCameras.clear(); } } } /* * CameraOpenAggressive: * Opens each camera reported by the enumerator twice in a row without an intervening closeCamera * call. This ensures that the intended "aggressive open" behavior works. This is necessary for * the system to be tolerant of shutdown/restart race conditions. */ TEST_P(EvsHidlTest, CameraOpenAggressive) { LOG(INFO) << "Starting CameraOpenAggressive test"; // Get the camera list loadCameraList(); // Open and close each camera twice for (auto&& cam: cameraInfo) { bool isLogicalCam = false; getPhysicalCameraIds(cam.v1.cameraId, isLogicalCam); if (mIsHwModule && isLogicalCam) { LOG(INFO) << "Skip a logical device, " << cam.v1.cameraId << " for HW target."; continue; } // Read a target resolution from the metadata Stream targetCfg = getFirstStreamConfiguration(reinterpret_cast(cam.metadata.data())); ASSERT_GT(targetCfg.width, 0); ASSERT_GT(targetCfg.height, 0); activeCameras.clear(); sp pCam = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCam, nullptr); // Store a camera handle for a clean-up activeCameras.push_back(pCam); // Verify that this camera self-identifies correctly pCam->getCameraInfo_1_1([&cam](CameraDesc desc) { LOG(DEBUG) << "Found camera " << desc.v1.cameraId; EXPECT_EQ(cam.v1.cameraId, desc.v1.cameraId); } ); sp pCam2 = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCam2, nullptr); // Store a camera handle for a clean-up activeCameras.push_back(pCam2); ASSERT_NE(pCam, pCam2); Return result = pCam->setMaxFramesInFlight(2); if (mIsHwModule) { // Verify that the old camera rejects calls via HW module. EXPECT_EQ(EvsResult::OWNERSHIP_LOST, EvsResult(result)); } else { // default implementation supports multiple clients. EXPECT_EQ(EvsResult::OK, EvsResult(result)); } // Close the superceded camera pEnumerator->closeCamera(pCam); activeCameras.pop_front(); // Verify that the second camera instance self-identifies correctly pCam2->getCameraInfo_1_1([&cam](CameraDesc desc) { LOG(DEBUG) << "Found camera " << desc.v1.cameraId; EXPECT_EQ(cam.v1.cameraId, desc.v1.cameraId); } ); // Close the second camera instance pEnumerator->closeCamera(pCam2); activeCameras.pop_front(); } // Sleep here to ensure the destructor cleanup has time to run so we don't break follow on tests sleep(1); // I hate that this is an arbitrary time to wait. :( b/36122635 } /* * CameraStreamPerformance: * Measure and qualify the stream start up time and streaming frame rate of each reported camera */ TEST_P(EvsHidlTest, CameraStreamPerformance) { LOG(INFO) << "Starting CameraStreamPerformance test"; // Get the camera list loadCameraList(); // Test each reported camera for (auto&& cam: cameraInfo) { bool isLogicalCam = false; auto devices = getPhysicalCameraIds(cam.v1.cameraId, isLogicalCam); if (mIsHwModule && isLogicalCam) { LOG(INFO) << "Skip a logical device " << cam.v1.cameraId; continue; } // Read a target resolution from the metadata Stream targetCfg = getFirstStreamConfiguration(reinterpret_cast(cam.metadata.data())); ASSERT_GT(targetCfg.width, 0); ASSERT_GT(targetCfg.height, 0); sp pCam = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCam, nullptr); // Store a camera handle for a clean-up activeCameras.push_back(pCam); // Set up a frame receiver object which will fire up its own thread sp frameHandler = new FrameHandler(pCam, cam, nullptr, FrameHandler::eAutoReturn); // Start the camera's video stream nsecs_t start = systemTime(SYSTEM_TIME_MONOTONIC); bool startResult = frameHandler->startStream(); ASSERT_TRUE(startResult); // Ensure the first frame arrived within the expected time frameHandler->waitForFrameCount(1); nsecs_t firstFrame = systemTime(SYSTEM_TIME_MONOTONIC); nsecs_t timeToFirstFrame = systemTime(SYSTEM_TIME_MONOTONIC) - start; // Extra delays are expected when we attempt to start a video stream on // the logical camera device. The amount of delay is expected the // number of physical camera devices multiplied by // kMaxStreamStartMilliseconds at most. EXPECT_LE(nanoseconds_to_milliseconds(timeToFirstFrame), kMaxStreamStartMilliseconds * devices.size()); printf("%s: Measured time to first frame %0.2f ms\n", cam.v1.cameraId.c_str(), timeToFirstFrame * kNanoToMilliseconds); LOG(INFO) << cam.v1.cameraId << ": Measured time to first frame " << std::scientific << timeToFirstFrame * kNanoToMilliseconds << " ms."; // Check aspect ratio unsigned width = 0, height = 0; frameHandler->getFrameDimension(&width, &height); EXPECT_GE(width, height); // Wait a bit, then ensure we get at least the required minimum number of frames sleep(5); nsecs_t end = systemTime(SYSTEM_TIME_MONOTONIC); // Even when the camera pointer goes out of scope, the FrameHandler object will // keep the stream alive unless we tell it to shutdown. // Also note that the FrameHandle and the Camera have a mutual circular reference, so // we have to break that cycle in order for either of them to get cleaned up. frameHandler->shutdown(); unsigned framesReceived = 0; frameHandler->getFramesCounters(&framesReceived, nullptr); framesReceived = framesReceived - 1; // Back out the first frame we already waited for nsecs_t runTime = end - firstFrame; float framesPerSecond = framesReceived / (runTime * kNanoToSeconds); printf("Measured camera rate %3.2f fps\n", framesPerSecond); LOG(INFO) << "Measured camera rate " << std::scientific << framesPerSecond << " fps."; EXPECT_GE(framesPerSecond, kMinimumFramesPerSecond); // Explicitly release the camera pEnumerator->closeCamera(pCam); activeCameras.clear(); } } /* * CameraStreamBuffering: * Ensure the camera implementation behaves properly when the client holds onto buffers for more * than one frame time. The camera must cleanly skip frames until the client is ready again. */ TEST_P(EvsHidlTest, CameraStreamBuffering) { LOG(INFO) << "Starting CameraStreamBuffering test"; // Arbitrary constant (should be > 1 and not too big) static const unsigned int kBuffersToHold = 6; // Get the camera list loadCameraList(); // Test each reported camera for (auto&& cam: cameraInfo) { bool isLogicalCam = false; getPhysicalCameraIds(cam.v1.cameraId, isLogicalCam); if (mIsHwModule && isLogicalCam) { LOG(INFO) << "Skip a logical device " << cam.v1.cameraId << " for HW target."; continue; } // Read a target resolution from the metadata Stream targetCfg = getFirstStreamConfiguration(reinterpret_cast(cam.metadata.data())); ASSERT_GT(targetCfg.width, 0); ASSERT_GT(targetCfg.height, 0); sp pCam = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCam, nullptr); // Store a camera handle for a clean-up activeCameras.push_back(pCam); // Ask for a very large number of buffers in flight to ensure it errors correctly Return badResult = pCam->setMaxFramesInFlight(0xFFFFFFFF); EXPECT_EQ(EvsResult::BUFFER_NOT_AVAILABLE, badResult); // Now ask for exactly two buffers in flight as we'll test behavior in that case Return goodResult = pCam->setMaxFramesInFlight(kBuffersToHold); EXPECT_EQ(EvsResult::OK, goodResult); // Set up a frame receiver object which will fire up its own thread. sp frameHandler = new FrameHandler(pCam, cam, nullptr, FrameHandler::eNoAutoReturn); // Start the camera's video stream bool startResult = frameHandler->startStream(); ASSERT_TRUE(startResult); // Check that the video stream stalls once we've gotten exactly the number of buffers // we requested since we told the frameHandler not to return them. sleep(1); // 1 second should be enough for at least 5 frames to be delivered worst case unsigned framesReceived = 0; frameHandler->getFramesCounters(&framesReceived, nullptr); ASSERT_EQ(kBuffersToHold, framesReceived) << "Stream didn't stall at expected buffer limit"; // Give back one buffer bool didReturnBuffer = frameHandler->returnHeldBuffer(); EXPECT_TRUE(didReturnBuffer); // Once we return a buffer, it shouldn't take more than 1/10 second to get a new one // filled since we require 10fps minimum -- but give a 10% allowance just in case. usleep(110 * kMillisecondsToMicroseconds); frameHandler->getFramesCounters(&framesReceived, nullptr); EXPECT_EQ(kBuffersToHold+1, framesReceived) << "Stream should've resumed"; // Even when the camera pointer goes out of scope, the FrameHandler object will // keep the stream alive unless we tell it to shutdown. // Also note that the FrameHandle and the Camera have a mutual circular reference, so // we have to break that cycle in order for either of them to get cleaned up. frameHandler->shutdown(); // Explicitly release the camera pEnumerator->closeCamera(pCam); activeCameras.clear(); } } /* * CameraToDisplayRoundTrip: * End to end test of data flowing from the camera to the display. Each delivered frame of camera * imagery is simply copied to the display buffer and presented on screen. This is the one test * which a human could observe to see the operation of the system on the physical display. */ TEST_P(EvsHidlTest, CameraToDisplayRoundTrip) { LOG(INFO) << "Starting CameraToDisplayRoundTrip test"; // Get the camera list loadCameraList(); // Request available display IDs uint8_t targetDisplayId = 0; pEnumerator->getDisplayIdList([&targetDisplayId](auto ids) { ASSERT_GT(ids.size(), 0); targetDisplayId = ids[0]; }); // Request exclusive access to the first EVS display sp pDisplay = pEnumerator->openDisplay_1_1(targetDisplayId); ASSERT_NE(pDisplay, nullptr); LOG(INFO) << "Display " << targetDisplayId << " is alreay in use."; // Get the display descriptor pDisplay->getDisplayInfo_1_1([](const HwDisplayConfig& config, const HwDisplayState& state) { ASSERT_GT(config.size(), 0); ASSERT_GT(state.size(), 0); android::ui::DisplayMode* pConfig = (android::ui::DisplayMode*)config.data(); const auto width = pConfig->resolution.getWidth(); const auto height = pConfig->resolution.getHeight(); LOG(INFO) << " Resolution: " << width << "x" << height; ASSERT_GT(width, 0); ASSERT_GT(height, 0); android::ui::DisplayState* pState = (android::ui::DisplayState*)state.data(); ASSERT_NE(pState->layerStack, -1); }); // Test each reported camera for (auto&& cam: cameraInfo) { bool isLogicalCam = false; getPhysicalCameraIds(cam.v1.cameraId, isLogicalCam); if (mIsHwModule && isLogicalCam) { LOG(INFO) << "Skip a logical device " << cam.v1.cameraId << " for HW target."; continue; } // Read a target resolution from the metadata Stream targetCfg = getFirstStreamConfiguration(reinterpret_cast(cam.metadata.data())); ASSERT_GT(targetCfg.width, 0); ASSERT_GT(targetCfg.height, 0); sp pCam = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCam, nullptr); // Store a camera handle for a clean-up activeCameras.push_back(pCam); // Set up a frame receiver object which will fire up its own thread. sp frameHandler = new FrameHandler(pCam, cam, pDisplay, FrameHandler::eAutoReturn); // Activate the display pDisplay->setDisplayState(DisplayState::VISIBLE_ON_NEXT_FRAME); // Start the camera's video stream bool startResult = frameHandler->startStream(); ASSERT_TRUE(startResult); // Wait a while to let the data flow static const int kSecondsToWait = 5; const int streamTimeMs = kSecondsToWait * kSecondsToMilliseconds - kMaxStreamStartMilliseconds; const unsigned minimumFramesExpected = streamTimeMs * kMinimumFramesPerSecond / kSecondsToMilliseconds; sleep(kSecondsToWait); unsigned framesReceived = 0; unsigned framesDisplayed = 0; frameHandler->getFramesCounters(&framesReceived, &framesDisplayed); EXPECT_EQ(framesReceived, framesDisplayed); EXPECT_GE(framesDisplayed, minimumFramesExpected); // Turn off the display (yes, before the stream stops -- it should be handled) pDisplay->setDisplayState(DisplayState::NOT_VISIBLE); // Shut down the streamer frameHandler->shutdown(); // Explicitly release the camera pEnumerator->closeCamera(pCam); activeCameras.clear(); } // Explicitly release the display pEnumerator->closeDisplay(pDisplay); } /* * MultiCameraStream: * Verify that each client can start and stop video streams on the same * underlying camera. */ TEST_P(EvsHidlTest, MultiCameraStream) { LOG(INFO) << "Starting MultiCameraStream test"; if (mIsHwModule) { // This test is not for HW module implementation. return; } // Get the camera list loadCameraList(); // Test each reported camera for (auto&& cam: cameraInfo) { // Read a target resolution from the metadata Stream targetCfg = getFirstStreamConfiguration(reinterpret_cast(cam.metadata.data())); ASSERT_GT(targetCfg.width, 0); ASSERT_GT(targetCfg.height, 0); // Create two camera clients. sp pCam0 = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCam0, nullptr); // Store a camera handle for a clean-up activeCameras.push_back(pCam0); sp pCam1 = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCam1, nullptr); // Store a camera handle for a clean-up activeCameras.push_back(pCam1); // Set up per-client frame receiver objects which will fire up its own thread sp frameHandler0 = new FrameHandler(pCam0, cam, nullptr, FrameHandler::eAutoReturn); ASSERT_NE(frameHandler0, nullptr); sp frameHandler1 = new FrameHandler(pCam1, cam, nullptr, FrameHandler::eAutoReturn); ASSERT_NE(frameHandler1, nullptr); // Start the camera's video stream via client 0 bool startResult = false; startResult = frameHandler0->startStream() && frameHandler1->startStream(); ASSERT_TRUE(startResult); // Ensure the stream starts frameHandler0->waitForFrameCount(1); frameHandler1->waitForFrameCount(1); nsecs_t firstFrame = systemTime(SYSTEM_TIME_MONOTONIC); // Wait a bit, then ensure both clients get at least the required minimum number of frames sleep(5); nsecs_t end = systemTime(SYSTEM_TIME_MONOTONIC); unsigned framesReceived0 = 0, framesReceived1 = 0; frameHandler0->getFramesCounters(&framesReceived0, nullptr); frameHandler1->getFramesCounters(&framesReceived1, nullptr); framesReceived0 = framesReceived0 - 1; // Back out the first frame we already waited for framesReceived1 = framesReceived1 - 1; // Back out the first frame we already waited for nsecs_t runTime = end - firstFrame; float framesPerSecond0 = framesReceived0 / (runTime * kNanoToSeconds); float framesPerSecond1 = framesReceived1 / (runTime * kNanoToSeconds); LOG(INFO) << "Measured camera rate " << std::scientific << framesPerSecond0 << " fps and " << framesPerSecond1 << " fps"; EXPECT_GE(framesPerSecond0, kMinimumFramesPerSecond); EXPECT_GE(framesPerSecond1, kMinimumFramesPerSecond); // Shutdown one client frameHandler0->shutdown(); // Read frame counters again frameHandler0->getFramesCounters(&framesReceived0, nullptr); frameHandler1->getFramesCounters(&framesReceived1, nullptr); // Wait a bit again sleep(5); unsigned framesReceivedAfterStop0 = 0, framesReceivedAfterStop1 = 0; frameHandler0->getFramesCounters(&framesReceivedAfterStop0, nullptr); frameHandler1->getFramesCounters(&framesReceivedAfterStop1, nullptr); EXPECT_EQ(framesReceived0, framesReceivedAfterStop0); EXPECT_LT(framesReceived1, framesReceivedAfterStop1); // Shutdown another frameHandler1->shutdown(); // Explicitly release the camera pEnumerator->closeCamera(pCam0); pEnumerator->closeCamera(pCam1); activeCameras.clear(); // TODO(b/145459970, b/145457727): below sleep() is added to ensure the // destruction of active camera objects; this may be related with two // issues. sleep(1); } } /* * CameraParameter: * Verify that a client can adjust a camera parameter. */ TEST_P(EvsHidlTest, CameraParameter) { LOG(INFO) << "Starting CameraParameter test"; // Get the camera list loadCameraList(); // Test each reported camera Return result = EvsResult::OK; for (auto&& cam: cameraInfo) { bool isLogicalCam = false; getPhysicalCameraIds(cam.v1.cameraId, isLogicalCam); if (isLogicalCam) { // TODO(b/145465724): Support camera parameter programming on // logical devices. LOG(INFO) << "Skip a logical device " << cam.v1.cameraId; continue; } // Read a target resolution from the metadata Stream targetCfg = getFirstStreamConfiguration(reinterpret_cast(cam.metadata.data())); ASSERT_GT(targetCfg.width, 0); ASSERT_GT(targetCfg.height, 0); // Create a camera client sp pCam = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCam, nullptr); // Store a camera activeCameras.push_back(pCam); // Get the parameter list std::vector cmds; pCam->getParameterList([&cmds](hidl_vec cmdList) { cmds.reserve(cmdList.size()); for (auto &&cmd : cmdList) { cmds.push_back(cmd); } } ); if (cmds.size() < 1) { continue; } // Set up per-client frame receiver objects which will fire up its own thread sp frameHandler = new FrameHandler(pCam, cam, nullptr, FrameHandler::eAutoReturn); ASSERT_NE(frameHandler, nullptr); // Start the camera's video stream bool startResult = frameHandler->startStream(); ASSERT_TRUE(startResult); // Ensure the stream starts frameHandler->waitForFrameCount(1); result = pCam->setMaster(); ASSERT_EQ(EvsResult::OK, result); for (auto &cmd : cmds) { // Get a valid parameter value range int32_t minVal, maxVal, step; pCam->getIntParameterRange( cmd, [&minVal, &maxVal, &step](int32_t val0, int32_t val1, int32_t val2) { minVal = val0; maxVal = val1; step = val2; } ); EvsResult result = EvsResult::OK; if (cmd == CameraParam::ABSOLUTE_FOCUS) { // Try to turn off auto-focus std::vector values; pCam->setIntParameter(CameraParam::AUTO_FOCUS, 0, [&result, &values](auto status, auto effectiveValues) { result = status; if (status == EvsResult::OK) { for (auto &&v : effectiveValues) { values.push_back(v); } } }); ASSERT_EQ(EvsResult::OK, result); for (auto &&v : values) { ASSERT_EQ(v, 0); } } // Try to program a parameter with a random value [minVal, maxVal] int32_t val0 = minVal + (std::rand() % (maxVal - minVal)); std::vector values; // Rounding down val0 = val0 - (val0 % step); pCam->setIntParameter(cmd, val0, [&result, &values](auto status, auto effectiveValues) { result = status; if (status == EvsResult::OK) { for (auto &&v : effectiveValues) { values.push_back(v); } } }); ASSERT_EQ(EvsResult::OK, result); values.clear(); pCam->getIntParameter(cmd, [&result, &values](auto status, auto readValues) { result = status; if (status == EvsResult::OK) { for (auto &&v : readValues) { values.push_back(v); } } }); ASSERT_EQ(EvsResult::OK, result); for (auto &&v : values) { ASSERT_EQ(val0, v) << "Values are not matched."; } } result = pCam->unsetMaster(); ASSERT_EQ(EvsResult::OK, result); // Shutdown frameHandler->shutdown(); // Explicitly release the camera pEnumerator->closeCamera(pCam); activeCameras.clear(); } } /* * CameraPrimaryClientRelease * Verify that non-primary client gets notified when the primary client either * terminates or releases a role. */ TEST_P(EvsHidlTest, CameraPrimaryClientRelease) { LOG(INFO) << "Starting CameraPrimaryClientRelease test"; if (mIsHwModule) { // This test is not for HW module implementation. return; } // Get the camera list loadCameraList(); // Test each reported camera for (auto&& cam: cameraInfo) { bool isLogicalCam = false; getPhysicalCameraIds(cam.v1.cameraId, isLogicalCam); if (isLogicalCam) { // TODO(b/145465724): Support camera parameter programming on // logical devices. LOG(INFO) << "Skip a logical device " << cam.v1.cameraId; continue; } // Read a target resolution from the metadata Stream targetCfg = getFirstStreamConfiguration(reinterpret_cast(cam.metadata.data())); ASSERT_GT(targetCfg.width, 0); ASSERT_GT(targetCfg.height, 0); // Create two camera clients. sp pCamPrimary = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCamPrimary, nullptr); // Store a camera handle for a clean-up activeCameras.push_back(pCamPrimary); sp pCamSecondary = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCamSecondary, nullptr); // Store a camera handle for a clean-up activeCameras.push_back(pCamSecondary); // Set up per-client frame receiver objects which will fire up its own thread sp frameHandlerPrimary = new FrameHandler(pCamPrimary, cam, nullptr, FrameHandler::eAutoReturn); ASSERT_NE(frameHandlerPrimary, nullptr); sp frameHandlerSecondary = new FrameHandler(pCamSecondary, cam, nullptr, FrameHandler::eAutoReturn); ASSERT_NE(frameHandlerSecondary, nullptr); // Set one client as the primary client EvsResult result = pCamPrimary->setMaster(); ASSERT_TRUE(result == EvsResult::OK); // Try to set another client as the primary client. result = pCamSecondary->setMaster(); ASSERT_TRUE(result == EvsResult::OWNERSHIP_LOST); // Start the camera's video stream via a primary client client. bool startResult = frameHandlerPrimary->startStream(); ASSERT_TRUE(startResult); // Ensure the stream starts frameHandlerPrimary->waitForFrameCount(1); // Start the camera's video stream via another client startResult = frameHandlerSecondary->startStream(); ASSERT_TRUE(startResult); // Ensure the stream starts frameHandlerSecondary->waitForFrameCount(1); // Non-primary client expects to receive a primary client role relesed // notification. EvsEventDesc aTargetEvent = {}; EvsEventDesc aNotification = {}; bool listening = false; std::mutex eventLock; std::condition_variable eventCond; std::thread listener = std::thread( [&aNotification, &frameHandlerSecondary, &listening, &eventCond]() { // Notify that a listening thread is running. listening = true; eventCond.notify_all(); EvsEventDesc aTargetEvent; aTargetEvent.aType = EvsEventType::MASTER_RELEASED; if (!frameHandlerSecondary->waitForEvent(aTargetEvent, aNotification, true)) { LOG(WARNING) << "A timer is expired before a target event is fired."; } } ); // Wait until a listening thread starts. std::unique_lock lock(eventLock); auto timer = std::chrono::system_clock::now(); while (!listening) { timer += 1s; eventCond.wait_until(lock, timer); } lock.unlock(); // Release a primary client role. pCamPrimary->unsetMaster(); // Join a listening thread. if (listener.joinable()) { listener.join(); } // Verify change notifications. ASSERT_EQ(EvsEventType::MASTER_RELEASED, static_cast(aNotification.aType)); // Non-primary becomes a primary client. result = pCamSecondary->setMaster(); ASSERT_TRUE(result == EvsResult::OK); // Previous primary client fails to become a primary client. result = pCamPrimary->setMaster(); ASSERT_TRUE(result == EvsResult::OWNERSHIP_LOST); listening = false; listener = std::thread( [&aNotification, &frameHandlerPrimary, &listening, &eventCond]() { // Notify that a listening thread is running. listening = true; eventCond.notify_all(); EvsEventDesc aTargetEvent; aTargetEvent.aType = EvsEventType::MASTER_RELEASED; if (!frameHandlerPrimary->waitForEvent(aTargetEvent, aNotification, true)) { LOG(WARNING) << "A timer is expired before a target event is fired."; } } ); // Wait until a listening thread starts. timer = std::chrono::system_clock::now(); lock.lock(); while (!listening) { eventCond.wait_until(lock, timer + 1s); } lock.unlock(); // Closing current primary client. frameHandlerSecondary->shutdown(); // Join a listening thread. if (listener.joinable()) { listener.join(); } // Verify change notifications. ASSERT_EQ(EvsEventType::MASTER_RELEASED, static_cast(aNotification.aType)); // Closing streams. frameHandlerPrimary->shutdown(); // Explicitly release the camera pEnumerator->closeCamera(pCamPrimary); pEnumerator->closeCamera(pCamSecondary); activeCameras.clear(); } } /* * MultiCameraParameter: * Verify that primary and non-primary clients behave as expected when they try to adjust * camera parameters. */ TEST_P(EvsHidlTest, MultiCameraParameter) { LOG(INFO) << "Starting MultiCameraParameter test"; if (mIsHwModule) { // This test is not for HW module implementation. return; } // Get the camera list loadCameraList(); // Test each reported camera for (auto&& cam: cameraInfo) { bool isLogicalCam = false; getPhysicalCameraIds(cam.v1.cameraId, isLogicalCam); if (isLogicalCam) { // TODO(b/145465724): Support camera parameter programming on // logical devices. LOG(INFO) << "Skip a logical device " << cam.v1.cameraId; continue; } // Read a target resolution from the metadata Stream targetCfg = getFirstStreamConfiguration(reinterpret_cast(cam.metadata.data())); ASSERT_GT(targetCfg.width, 0); ASSERT_GT(targetCfg.height, 0); // Create two camera clients. sp pCamPrimary = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCamPrimary, nullptr); // Store a camera handle for a clean-up activeCameras.push_back(pCamPrimary); sp pCamSecondary = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCamSecondary, nullptr); // Store a camera handle for a clean-up activeCameras.push_back(pCamSecondary); // Get the parameter list std::vector camPrimaryCmds, camSecondaryCmds; pCamPrimary->getParameterList([&camPrimaryCmds](hidl_vec cmdList) { camPrimaryCmds.reserve(cmdList.size()); for (auto &&cmd : cmdList) { camPrimaryCmds.push_back(cmd); } } ); pCamSecondary->getParameterList([&camSecondaryCmds](hidl_vec cmdList) { camSecondaryCmds.reserve(cmdList.size()); for (auto &&cmd : cmdList) { camSecondaryCmds.push_back(cmd); } } ); if (camPrimaryCmds.size() < 1 || camSecondaryCmds.size() < 1) { // Skip a camera device if it does not support any parameter. continue; } // Set up per-client frame receiver objects which will fire up its own thread sp frameHandlerPrimary = new FrameHandler(pCamPrimary, cam, nullptr, FrameHandler::eAutoReturn); ASSERT_NE(frameHandlerPrimary, nullptr); sp frameHandlerSecondary = new FrameHandler(pCamSecondary, cam, nullptr, FrameHandler::eAutoReturn); ASSERT_NE(frameHandlerSecondary, nullptr); // Set one client as the primary client. EvsResult result = pCamPrimary->setMaster(); ASSERT_EQ(EvsResult::OK, result); // Try to set another client as the primary client. result = pCamSecondary->setMaster(); ASSERT_EQ(EvsResult::OWNERSHIP_LOST, result); // Start the camera's video stream via a primary client client. bool startResult = frameHandlerPrimary->startStream(); ASSERT_TRUE(startResult); // Ensure the stream starts frameHandlerPrimary->waitForFrameCount(1); // Start the camera's video stream via another client startResult = frameHandlerSecondary->startStream(); ASSERT_TRUE(startResult); // Ensure the stream starts frameHandlerSecondary->waitForFrameCount(1); int32_t val0 = 0; std::vector values; EvsEventDesc aNotification0 = {}; EvsEventDesc aNotification1 = {}; for (auto &cmd : camPrimaryCmds) { // Get a valid parameter value range int32_t minVal, maxVal, step; pCamPrimary->getIntParameterRange( cmd, [&minVal, &maxVal, &step](int32_t val0, int32_t val1, int32_t val2) { minVal = val0; maxVal = val1; step = val2; } ); EvsResult result = EvsResult::OK; if (cmd == CameraParam::ABSOLUTE_FOCUS) { // Try to turn off auto-focus values.clear(); pCamPrimary->setIntParameter(CameraParam::AUTO_FOCUS, 0, [&result, &values](auto status, auto effectiveValues) { result = status; if (status == EvsResult::OK) { for (auto &&v : effectiveValues) { values.push_back(v); } } }); ASSERT_EQ(EvsResult::OK, result); for (auto &&v : values) { ASSERT_EQ(v, 0); } } // Calculate a parameter value to program. val0 = minVal + (std::rand() % (maxVal - minVal)); val0 = val0 - (val0 % step); // Prepare and start event listeners. bool listening0 = false; bool listening1 = false; std::condition_variable eventCond; std::thread listener0 = std::thread( [cmd, val0, &aNotification0, &frameHandlerPrimary, &listening0, &listening1, &eventCond]() { listening0 = true; if (listening1) { eventCond.notify_all(); } EvsEventDesc aTargetEvent; aTargetEvent.aType = EvsEventType::PARAMETER_CHANGED; aTargetEvent.payload[0] = static_cast(cmd); aTargetEvent.payload[1] = val0; if (!frameHandlerPrimary->waitForEvent(aTargetEvent, aNotification0)) { LOG(WARNING) << "A timer is expired before a target event is fired."; } } ); std::thread listener1 = std::thread( [cmd, val0, &aNotification1, &frameHandlerSecondary, &listening0, &listening1, &eventCond]() { listening1 = true; if (listening0) { eventCond.notify_all(); } EvsEventDesc aTargetEvent; aTargetEvent.aType = EvsEventType::PARAMETER_CHANGED; aTargetEvent.payload[0] = static_cast(cmd); aTargetEvent.payload[1] = val0; if (!frameHandlerSecondary->waitForEvent(aTargetEvent, aNotification1)) { LOG(WARNING) << "A timer is expired before a target event is fired."; } } ); // Wait until a listening thread starts. std::mutex eventLock; std::unique_lock lock(eventLock); auto timer = std::chrono::system_clock::now(); while (!listening0 || !listening1) { eventCond.wait_until(lock, timer + 1s); } lock.unlock(); // Try to program a parameter values.clear(); pCamPrimary->setIntParameter(cmd, val0, [&result, &values](auto status, auto effectiveValues) { result = status; if (status == EvsResult::OK) { for (auto &&v : effectiveValues) { values.push_back(v); } } }); ASSERT_EQ(EvsResult::OK, result); for (auto &&v : values) { ASSERT_EQ(val0, v) << "Values are not matched."; } // Join a listening thread. if (listener0.joinable()) { listener0.join(); } if (listener1.joinable()) { listener1.join(); } // Verify a change notification ASSERT_EQ(EvsEventType::PARAMETER_CHANGED, static_cast(aNotification0.aType)); ASSERT_EQ(EvsEventType::PARAMETER_CHANGED, static_cast(aNotification1.aType)); ASSERT_EQ(cmd, static_cast(aNotification0.payload[0])); ASSERT_EQ(cmd, static_cast(aNotification1.payload[0])); for (auto &&v : values) { ASSERT_EQ(v, static_cast(aNotification0.payload[1])); ASSERT_EQ(v, static_cast(aNotification1.payload[1])); } // Clients expects to receive a parameter change notification // whenever a primary client client adjusts it. values.clear(); pCamPrimary->getIntParameter(cmd, [&result, &values](auto status, auto readValues) { result = status; if (status == EvsResult::OK) { for (auto &&v : readValues) { values.push_back(v); } } }); ASSERT_EQ(EvsResult::OK, result); for (auto &&v : values) { ASSERT_EQ(val0, v) << "Values are not matched."; } } // Try to adjust a parameter via non-primary client values.clear(); pCamSecondary->setIntParameter(camSecondaryCmds[0], val0, [&result, &values](auto status, auto effectiveValues) { result = status; if (status == EvsResult::OK) { for (auto &&v : effectiveValues) { values.push_back(v); } } }); ASSERT_EQ(EvsResult::INVALID_ARG, result); // Non-primary client attempts to be a primary client result = pCamSecondary->setMaster(); ASSERT_EQ(EvsResult::OWNERSHIP_LOST, result); // Primary client retires from a primary client role bool listening = false; std::condition_variable eventCond; std::thread listener = std::thread( [&aNotification0, &frameHandlerSecondary, &listening, &eventCond]() { listening = true; eventCond.notify_all(); EvsEventDesc aTargetEvent; aTargetEvent.aType = EvsEventType::MASTER_RELEASED; if (!frameHandlerSecondary->waitForEvent(aTargetEvent, aNotification0, true)) { LOG(WARNING) << "A timer is expired before a target event is fired."; } } ); std::mutex eventLock; auto timer = std::chrono::system_clock::now(); std::unique_lock lock(eventLock); while (!listening) { eventCond.wait_until(lock, timer + 1s); } lock.unlock(); result = pCamPrimary->unsetMaster(); ASSERT_EQ(EvsResult::OK, result); if (listener.joinable()) { listener.join(); } ASSERT_EQ(EvsEventType::MASTER_RELEASED, static_cast(aNotification0.aType)); // Try to adjust a parameter after being retired values.clear(); pCamPrimary->setIntParameter(camPrimaryCmds[0], val0, [&result, &values](auto status, auto effectiveValues) { result = status; if (status == EvsResult::OK) { for (auto &&v : effectiveValues) { values.push_back(v); } } }); ASSERT_EQ(EvsResult::INVALID_ARG, result); // Non-primary client becomes a primary client result = pCamSecondary->setMaster(); ASSERT_EQ(EvsResult::OK, result); // Try to adjust a parameter via new primary client for (auto &cmd : camSecondaryCmds) { // Get a valid parameter value range int32_t minVal, maxVal, step; pCamSecondary->getIntParameterRange( cmd, [&minVal, &maxVal, &step](int32_t val0, int32_t val1, int32_t val2) { minVal = val0; maxVal = val1; step = val2; } ); EvsResult result = EvsResult::OK; values.clear(); if (cmd == CameraParam::ABSOLUTE_FOCUS) { // Try to turn off auto-focus values.clear(); pCamSecondary->setIntParameter(CameraParam::AUTO_FOCUS, 0, [&result, &values](auto status, auto effectiveValues) { result = status; if (status == EvsResult::OK) { for (auto &&v : effectiveValues) { values.push_back(v); } } }); ASSERT_EQ(EvsResult::OK, result); for (auto &&v : values) { ASSERT_EQ(v, 0); } } // Calculate a parameter value to program. This is being rounding down. val0 = minVal + (std::rand() % (maxVal - minVal)); val0 = val0 - (val0 % step); // Prepare and start event listeners. bool listening0 = false; bool listening1 = false; std::condition_variable eventCond; std::thread listener0 = std::thread( [&]() { listening0 = true; if (listening1) { eventCond.notify_all(); } EvsEventDesc aTargetEvent; aTargetEvent.aType = EvsEventType::PARAMETER_CHANGED; aTargetEvent.payload[0] = static_cast(cmd); aTargetEvent.payload[1] = val0; if (!frameHandlerPrimary->waitForEvent(aTargetEvent, aNotification0)) { LOG(WARNING) << "A timer is expired before a target event is fired."; } } ); std::thread listener1 = std::thread( [&]() { listening1 = true; if (listening0) { eventCond.notify_all(); } EvsEventDesc aTargetEvent; aTargetEvent.aType = EvsEventType::PARAMETER_CHANGED; aTargetEvent.payload[0] = static_cast(cmd); aTargetEvent.payload[1] = val0; if (!frameHandlerSecondary->waitForEvent(aTargetEvent, aNotification1)) { LOG(WARNING) << "A timer is expired before a target event is fired."; } } ); // Wait until a listening thread starts. std::mutex eventLock; std::unique_lock lock(eventLock); auto timer = std::chrono::system_clock::now(); while (!listening0 || !listening1) { eventCond.wait_until(lock, timer + 1s); } lock.unlock(); // Try to program a parameter values.clear(); pCamSecondary->setIntParameter(cmd, val0, [&result, &values](auto status, auto effectiveValues) { result = status; if (status == EvsResult::OK) { for (auto &&v : effectiveValues) { values.push_back(v); } } }); ASSERT_EQ(EvsResult::OK, result); // Clients expects to receive a parameter change notification // whenever a primary client client adjusts it. values.clear(); pCamSecondary->getIntParameter(cmd, [&result, &values](auto status, auto readValues) { result = status; if (status == EvsResult::OK) { for (auto &&v : readValues) { values.push_back(v); } } }); ASSERT_EQ(EvsResult::OK, result); for (auto &&v : values) { ASSERT_EQ(val0, v) << "Values are not matched."; } // Join a listening thread. if (listener0.joinable()) { listener0.join(); } if (listener1.joinable()) { listener1.join(); } // Verify a change notification ASSERT_EQ(EvsEventType::PARAMETER_CHANGED, static_cast(aNotification0.aType)); ASSERT_EQ(EvsEventType::PARAMETER_CHANGED, static_cast(aNotification1.aType)); ASSERT_EQ(cmd, static_cast(aNotification0.payload[0])); ASSERT_EQ(cmd, static_cast(aNotification1.payload[0])); for (auto &&v : values) { ASSERT_EQ(v, static_cast(aNotification0.payload[1])); ASSERT_EQ(v, static_cast(aNotification1.payload[1])); } } // New primary client retires from the role result = pCamSecondary->unsetMaster(); ASSERT_EQ(EvsResult::OK, result); // Shutdown frameHandlerPrimary->shutdown(); frameHandlerSecondary->shutdown(); // Explicitly release the camera pEnumerator->closeCamera(pCamPrimary); pEnumerator->closeCamera(pCamSecondary); activeCameras.clear(); } } /* * HighPriorityCameraClient: * EVS client, which owns the display, is priortized and therefore can take over * a primary client role from other EVS clients without the display. */ TEST_P(EvsHidlTest, HighPriorityCameraClient) { LOG(INFO) << "Starting HighPriorityCameraClient test"; if (mIsHwModule) { // This test is not for HW module implementation. return; } // Get the camera list loadCameraList(); // Request exclusive access to the EVS display sp pDisplay = pEnumerator->openDisplay(); ASSERT_NE(pDisplay, nullptr); // Test each reported camera for (auto&& cam: cameraInfo) { // Read a target resolution from the metadata Stream targetCfg = getFirstStreamConfiguration(reinterpret_cast(cam.metadata.data())); ASSERT_GT(targetCfg.width, 0); ASSERT_GT(targetCfg.height, 0); // Create two clients sp pCam0 = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCam0, nullptr); // Store a camera handle for a clean-up activeCameras.push_back(pCam0); sp pCam1 = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCam1, nullptr); // Store a camera handle for a clean-up activeCameras.push_back(pCam1); // Get the parameter list; this test will use the first command in both // lists. std::vector cam0Cmds, cam1Cmds; pCam0->getParameterList([&cam0Cmds](hidl_vec cmdList) { cam0Cmds.reserve(cmdList.size()); for (auto &&cmd : cmdList) { cam0Cmds.push_back(cmd); } } ); pCam1->getParameterList([&cam1Cmds](hidl_vec cmdList) { cam1Cmds.reserve(cmdList.size()); for (auto &&cmd : cmdList) { cam1Cmds.push_back(cmd); } } ); if (cam0Cmds.size() < 1 || cam1Cmds.size() < 1) { // Cannot execute this test. return; } // Set up a frame receiver object which will fire up its own thread. sp frameHandler0 = new FrameHandler(pCam0, cam, pDisplay, FrameHandler::eAutoReturn); sp frameHandler1 = new FrameHandler(pCam1, cam, nullptr, FrameHandler::eAutoReturn); // Activate the display pDisplay->setDisplayState(DisplayState::VISIBLE_ON_NEXT_FRAME); // Start the camera's video stream ASSERT_TRUE(frameHandler0->startStream()); ASSERT_TRUE(frameHandler1->startStream()); // Ensure the stream starts frameHandler0->waitForFrameCount(1); frameHandler1->waitForFrameCount(1); // Client 1 becomes a primary client and programs a parameter. EvsResult result = EvsResult::OK; // Get a valid parameter value range int32_t minVal, maxVal, step; pCam1->getIntParameterRange( cam1Cmds[0], [&minVal, &maxVal, &step](int32_t val0, int32_t val1, int32_t val2) { minVal = val0; maxVal = val1; step = val2; } ); // Client1 becomes a primary client result = pCam1->setMaster(); ASSERT_EQ(EvsResult::OK, result); std::vector values; EvsEventDesc aTargetEvent = {}; EvsEventDesc aNotification = {}; bool listening = false; std::mutex eventLock; std::condition_variable eventCond; if (cam1Cmds[0] == CameraParam::ABSOLUTE_FOCUS) { std::thread listener = std::thread( [&frameHandler0, &aNotification, &listening, &eventCond] { listening = true; eventCond.notify_all(); EvsEventDesc aTargetEvent; aTargetEvent.aType = EvsEventType::PARAMETER_CHANGED; aTargetEvent.payload[0] = static_cast(CameraParam::AUTO_FOCUS); aTargetEvent.payload[1] = 0; if (!frameHandler0->waitForEvent(aTargetEvent, aNotification)) { LOG(WARNING) << "A timer is expired before a target event is fired."; } } ); // Wait until a lister starts. std::unique_lock lock(eventLock); auto timer = std::chrono::system_clock::now(); while (!listening) { eventCond.wait_until(lock, timer + 1s); } lock.unlock(); // Try to turn off auto-focus pCam1->setIntParameter(CameraParam::AUTO_FOCUS, 0, [&result, &values](auto status, auto effectiveValues) { result = status; if (status == EvsResult::OK) { for (auto &&v : effectiveValues) { values.push_back(v); } } }); ASSERT_EQ(EvsResult::OK, result); for (auto &&v : values) { ASSERT_EQ(v, 0); } // Join a listener if (listener.joinable()) { listener.join(); } // Make sure AUTO_FOCUS is off. ASSERT_EQ(static_cast(aNotification.aType), EvsEventType::PARAMETER_CHANGED); } // Try to program a parameter with a random value [minVal, maxVal] after // rounding it down. int32_t val0 = minVal + (std::rand() % (maxVal - minVal)); val0 = val0 - (val0 % step); std::thread listener = std::thread( [&frameHandler1, &aNotification, &listening, &eventCond, &cam1Cmds, val0] { listening = true; eventCond.notify_all(); EvsEventDesc aTargetEvent; aTargetEvent.aType = EvsEventType::PARAMETER_CHANGED; aTargetEvent.payload[0] = static_cast(cam1Cmds[0]); aTargetEvent.payload[1] = val0; if (!frameHandler1->waitForEvent(aTargetEvent, aNotification)) { LOG(WARNING) << "A timer is expired before a target event is fired."; } } ); // Wait until a lister starts. listening = false; std::unique_lock lock(eventLock); auto timer = std::chrono::system_clock::now(); while (!listening) { eventCond.wait_until(lock, timer + 1s); } lock.unlock(); values.clear(); pCam1->setIntParameter(cam1Cmds[0], val0, [&result, &values](auto status, auto effectiveValues) { result = status; if (status == EvsResult::OK) { for (auto &&v : effectiveValues) { values.push_back(v); } } }); ASSERT_EQ(EvsResult::OK, result); for (auto &&v : values) { ASSERT_EQ(val0, v); } // Join a listener if (listener.joinable()) { listener.join(); } // Verify a change notification ASSERT_EQ(static_cast(aNotification.aType), EvsEventType::PARAMETER_CHANGED); ASSERT_EQ(static_cast(aNotification.payload[0]), cam1Cmds[0]); for (auto &&v : values) { ASSERT_EQ(v, static_cast(aNotification.payload[1])); } listener = std::thread( [&frameHandler1, &aNotification, &listening, &eventCond] { listening = true; eventCond.notify_all(); EvsEventDesc aTargetEvent; aTargetEvent.aType = EvsEventType::MASTER_RELEASED; if (!frameHandler1->waitForEvent(aTargetEvent, aNotification, true)) { LOG(WARNING) << "A timer is expired before a target event is fired."; } } ); // Wait until a lister starts. listening = false; lock.lock(); timer = std::chrono::system_clock::now(); while (!listening) { eventCond.wait_until(lock, timer + 1s); } lock.unlock(); // Client 0 steals a primary client role ASSERT_EQ(EvsResult::OK, pCam0->forceMaster(pDisplay)); // Join a listener if (listener.joinable()) { listener.join(); } ASSERT_EQ(static_cast(aNotification.aType), EvsEventType::MASTER_RELEASED); // Client 0 programs a parameter val0 = minVal + (std::rand() % (maxVal - minVal)); // Rounding down val0 = val0 - (val0 % step); if (cam0Cmds[0] == CameraParam::ABSOLUTE_FOCUS) { std::thread listener = std::thread( [&frameHandler1, &aNotification, &listening, &eventCond] { listening = true; eventCond.notify_all(); EvsEventDesc aTargetEvent; aTargetEvent.aType = EvsEventType::PARAMETER_CHANGED; aTargetEvent.payload[0] = static_cast(CameraParam::AUTO_FOCUS); aTargetEvent.payload[1] = 0; if (!frameHandler1->waitForEvent(aTargetEvent, aNotification)) { LOG(WARNING) << "A timer is expired before a target event is fired."; } } ); // Wait until a lister starts. std::unique_lock lock(eventLock); auto timer = std::chrono::system_clock::now(); while (!listening) { eventCond.wait_until(lock, timer + 1s); } lock.unlock(); // Try to turn off auto-focus values.clear(); pCam0->setIntParameter(CameraParam::AUTO_FOCUS, 0, [&result, &values](auto status, auto effectiveValues) { result = status; if (status == EvsResult::OK) { for (auto &&v : effectiveValues) { values.push_back(v); } } }); ASSERT_EQ(EvsResult::OK, result); for (auto &&v : values) { ASSERT_EQ(v, 0); } // Join a listener if (listener.joinable()) { listener.join(); } // Make sure AUTO_FOCUS is off. ASSERT_EQ(static_cast(aNotification.aType), EvsEventType::PARAMETER_CHANGED); } listener = std::thread( [&frameHandler0, &aNotification, &listening, &eventCond, &cam0Cmds, val0] { listening = true; eventCond.notify_all(); EvsEventDesc aTargetEvent; aTargetEvent.aType = EvsEventType::PARAMETER_CHANGED; aTargetEvent.payload[0] = static_cast(cam0Cmds[0]); aTargetEvent.payload[1] = val0; if (!frameHandler0->waitForEvent(aTargetEvent, aNotification)) { LOG(WARNING) << "A timer is expired before a target event is fired."; } } ); // Wait until a lister starts. listening = false; timer = std::chrono::system_clock::now(); lock.lock(); while (!listening) { eventCond.wait_until(lock, timer + 1s); } lock.unlock(); values.clear(); pCam0->setIntParameter(cam0Cmds[0], val0, [&result, &values](auto status, auto effectiveValues) { result = status; if (status == EvsResult::OK) { for (auto &&v : effectiveValues) { values.push_back(v); } } }); ASSERT_EQ(EvsResult::OK, result); // Join a listener if (listener.joinable()) { listener.join(); } // Verify a change notification ASSERT_EQ(static_cast(aNotification.aType), EvsEventType::PARAMETER_CHANGED); ASSERT_EQ(static_cast(aNotification.payload[0]), cam0Cmds[0]); for (auto &&v : values) { ASSERT_EQ(v, static_cast(aNotification.payload[1])); } // Turn off the display (yes, before the stream stops -- it should be handled) pDisplay->setDisplayState(DisplayState::NOT_VISIBLE); // Shut down the streamer frameHandler0->shutdown(); frameHandler1->shutdown(); // Explicitly release the camera pEnumerator->closeCamera(pCam0); pEnumerator->closeCamera(pCam1); activeCameras.clear(); } // Explicitly release the display pEnumerator->closeDisplay(pDisplay); } /* * CameraUseStreamConfigToDisplay: * End to end test of data flowing from the camera to the display. Similar to * CameraToDisplayRoundTrip test case but this case retrieves available stream * configurations from EVS and uses one of them to start a video stream. */ TEST_P(EvsHidlTest, CameraUseStreamConfigToDisplay) { LOG(INFO) << "Starting CameraUseStreamConfigToDisplay test"; // Get the camera list loadCameraList(); // Request exclusive access to the EVS display sp pDisplay = pEnumerator->openDisplay(); ASSERT_NE(pDisplay, nullptr); // Test each reported camera for (auto&& cam: cameraInfo) { // choose a configuration that has a frame rate faster than minReqFps. Stream targetCfg = {}; const int32_t minReqFps = 15; int32_t maxArea = 0; camera_metadata_entry_t streamCfgs; bool foundCfg = false; if (!find_camera_metadata_entry( reinterpret_cast(cam.metadata.data()), ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, &streamCfgs)) { // Stream configurations are found in metadata RawStreamConfig *ptr = reinterpret_cast(streamCfgs.data.i32); for (unsigned offset = 0; offset < streamCfgs.count; offset += kStreamCfgSz) { if (ptr->direction == ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT && ptr->format == HAL_PIXEL_FORMAT_RGBA_8888) { if (ptr->width * ptr->height > maxArea && ptr->framerate >= minReqFps) { targetCfg.width = ptr->width; targetCfg.height = ptr->height; maxArea = ptr->width * ptr->height; foundCfg = true; } } ++ptr; } } targetCfg.format = static_cast(HAL_PIXEL_FORMAT_RGBA_8888); if (!foundCfg) { // Current EVS camera does not provide stream configurations in the // metadata. continue; } sp pCam = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCam, nullptr); // Store a camera handle for a clean-up activeCameras.push_back(pCam); // Set up a frame receiver object which will fire up its own thread. sp frameHandler = new FrameHandler(pCam, cam, pDisplay, FrameHandler::eAutoReturn); // Activate the display pDisplay->setDisplayState(DisplayState::VISIBLE_ON_NEXT_FRAME); // Start the camera's video stream bool startResult = frameHandler->startStream(); ASSERT_TRUE(startResult); // Wait a while to let the data flow static const int kSecondsToWait = 5; const int streamTimeMs = kSecondsToWait * kSecondsToMilliseconds - kMaxStreamStartMilliseconds; const unsigned minimumFramesExpected = streamTimeMs * kMinimumFramesPerSecond / kSecondsToMilliseconds; sleep(kSecondsToWait); unsigned framesReceived = 0; unsigned framesDisplayed = 0; frameHandler->getFramesCounters(&framesReceived, &framesDisplayed); EXPECT_EQ(framesReceived, framesDisplayed); EXPECT_GE(framesDisplayed, minimumFramesExpected); // Turn off the display (yes, before the stream stops -- it should be handled) pDisplay->setDisplayState(DisplayState::NOT_VISIBLE); // Shut down the streamer frameHandler->shutdown(); // Explicitly release the camera pEnumerator->closeCamera(pCam); activeCameras.clear(); } // Explicitly release the display pEnumerator->closeDisplay(pDisplay); } /* * MultiCameraStreamUseConfig: * Verify that each client can start and stop video streams on the same * underlying camera with same configuration. */ TEST_P(EvsHidlTest, MultiCameraStreamUseConfig) { LOG(INFO) << "Starting MultiCameraStream test"; if (mIsHwModule) { // This test is not for HW module implementation. return; } // Get the camera list loadCameraList(); // Test each reported camera for (auto&& cam: cameraInfo) { // choose a configuration that has a frame rate faster than minReqFps. Stream targetCfg = {}; const int32_t minReqFps = 15; int32_t maxArea = 0; camera_metadata_entry_t streamCfgs; bool foundCfg = false; if (!find_camera_metadata_entry( reinterpret_cast(cam.metadata.data()), ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, &streamCfgs)) { // Stream configurations are found in metadata RawStreamConfig *ptr = reinterpret_cast(streamCfgs.data.i32); for (unsigned offset = 0; offset < streamCfgs.count; offset += kStreamCfgSz) { if (ptr->direction == ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT && ptr->format == HAL_PIXEL_FORMAT_RGBA_8888) { if (ptr->width * ptr->height > maxArea && ptr->framerate >= minReqFps) { targetCfg.width = ptr->width; targetCfg.height = ptr->height; maxArea = ptr->width * ptr->height; foundCfg = true; } } ++ptr; } } targetCfg.format = static_cast(HAL_PIXEL_FORMAT_RGBA_8888); if (!foundCfg) { LOG(INFO) << "Device " << cam.v1.cameraId << " does not provide a list of supported stream configurations, skipped"; continue; } // Create the first camera client with a selected stream configuration. sp pCam0 = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCam0, nullptr); // Store a camera handle for a clean-up activeCameras.push_back(pCam0); // Try to create the second camera client with different stream // configuration. int32_t id = targetCfg.id; targetCfg.id += 1; // EVS manager sees only the stream id. sp pCam1 = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_EQ(pCam1, nullptr); // Store a camera handle for a clean-up activeCameras.push_back(pCam0); // Try again with same stream configuration. targetCfg.id = id; pCam1 = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCam1, nullptr); // Set up per-client frame receiver objects which will fire up its own thread sp frameHandler0 = new FrameHandler(pCam0, cam, nullptr, FrameHandler::eAutoReturn); ASSERT_NE(frameHandler0, nullptr); sp frameHandler1 = new FrameHandler(pCam1, cam, nullptr, FrameHandler::eAutoReturn); ASSERT_NE(frameHandler1, nullptr); // Start the camera's video stream via client 0 bool startResult = false; startResult = frameHandler0->startStream() && frameHandler1->startStream(); ASSERT_TRUE(startResult); // Ensure the stream starts frameHandler0->waitForFrameCount(1); frameHandler1->waitForFrameCount(1); nsecs_t firstFrame = systemTime(SYSTEM_TIME_MONOTONIC); // Wait a bit, then ensure both clients get at least the required minimum number of frames sleep(5); nsecs_t end = systemTime(SYSTEM_TIME_MONOTONIC); unsigned framesReceived0 = 0, framesReceived1 = 0; frameHandler0->getFramesCounters(&framesReceived0, nullptr); frameHandler1->getFramesCounters(&framesReceived1, nullptr); framesReceived0 = framesReceived0 - 1; // Back out the first frame we already waited for framesReceived1 = framesReceived1 - 1; // Back out the first frame we already waited for nsecs_t runTime = end - firstFrame; float framesPerSecond0 = framesReceived0 / (runTime * kNanoToSeconds); float framesPerSecond1 = framesReceived1 / (runTime * kNanoToSeconds); LOG(INFO) << "Measured camera rate " << std::scientific << framesPerSecond0 << " fps and " << framesPerSecond1 << " fps"; EXPECT_GE(framesPerSecond0, kMinimumFramesPerSecond); EXPECT_GE(framesPerSecond1, kMinimumFramesPerSecond); // Shutdown one client frameHandler0->shutdown(); // Read frame counters again frameHandler0->getFramesCounters(&framesReceived0, nullptr); frameHandler1->getFramesCounters(&framesReceived1, nullptr); // Wait a bit again sleep(5); unsigned framesReceivedAfterStop0 = 0, framesReceivedAfterStop1 = 0; frameHandler0->getFramesCounters(&framesReceivedAfterStop0, nullptr); frameHandler1->getFramesCounters(&framesReceivedAfterStop1, nullptr); EXPECT_EQ(framesReceived0, framesReceivedAfterStop0); EXPECT_LT(framesReceived1, framesReceivedAfterStop1); // Shutdown another frameHandler1->shutdown(); // Explicitly release the camera pEnumerator->closeCamera(pCam0); pEnumerator->closeCamera(pCam1); activeCameras.clear(); } } /* * LogicalCameraMetadata: * Opens logical camera reported by the enumerator and validate its metadata by * checking its capability and locating supporting physical camera device * identifiers. */ TEST_P(EvsHidlTest, LogicalCameraMetadata) { LOG(INFO) << "Starting LogicalCameraMetadata test"; // Get the camera list loadCameraList(); // Open and close each camera twice for (auto&& cam: cameraInfo) { bool isLogicalCam = false; auto devices = getPhysicalCameraIds(cam.v1.cameraId, isLogicalCam); if (isLogicalCam) { ASSERT_GE(devices.size(), 1) << "Logical camera device must have at least one physical camera device ID in its metadata."; } } } /* * CameraStreamExternalBuffering: * This is same with CameraStreamBuffering except frame buffers are allocated by * the test client and then imported by EVS framework. */ TEST_P(EvsHidlTest, CameraStreamExternalBuffering) { LOG(INFO) << "Starting CameraStreamExternalBuffering test"; // Arbitrary constant (should be > 1 and not too big) static const unsigned int kBuffersToHold = 3; // Get the camera list loadCameraList(); // Acquire the graphics buffer allocator android::GraphicBufferAllocator& alloc(android::GraphicBufferAllocator::get()); const auto usage = GRALLOC_USAGE_HW_TEXTURE | GRALLOC_USAGE_SW_READ_RARELY | GRALLOC_USAGE_SW_WRITE_OFTEN; // Test each reported camera for (auto&& cam : cameraInfo) { // Read a target resolution from the metadata Stream targetCfg = getFirstStreamConfiguration(reinterpret_cast(cam.metadata.data())); ASSERT_GT(targetCfg.width, 0); ASSERT_GT(targetCfg.height, 0); // Allocate buffers to use hidl_vec buffers; buffers.resize(kBuffersToHold); for (auto i = 0; i < kBuffersToHold; ++i) { unsigned pixelsPerLine; buffer_handle_t memHandle = nullptr; android::status_t result = alloc.allocate(targetCfg.width, targetCfg.height, (android::PixelFormat)targetCfg.format, /* layerCount = */ 1, usage, &memHandle, &pixelsPerLine, /* graphicBufferId = */ 0, /* requestorName = */ "CameraStreamExternalBufferingTest"); if (result != android::NO_ERROR) { LOG(ERROR) << __FUNCTION__ << " failed to allocate memory."; // Release previous allocated buffers for (auto j = 0; j < i; j++) { alloc.free(buffers[i].buffer.nativeHandle); } return; } else { BufferDesc buf; AHardwareBuffer_Desc* pDesc = reinterpret_cast(&buf.buffer.description); pDesc->width = targetCfg.width; pDesc->height = targetCfg.height; pDesc->layers = 1; pDesc->format = static_cast(targetCfg.format); pDesc->usage = usage; pDesc->stride = pixelsPerLine; buf.buffer.nativeHandle = memHandle; buf.bufferId = i; // Unique number to identify this buffer buffers[i] = buf; } } bool isLogicalCam = false; getPhysicalCameraIds(cam.v1.cameraId, isLogicalCam); sp pCam = pEnumerator->openCamera_1_1(cam.v1.cameraId, targetCfg); ASSERT_NE(pCam, nullptr); // Store a camera handle for a clean-up activeCameras.push_back(pCam); // Request to import buffers EvsResult result = EvsResult::OK; int delta = 0; pCam->importExternalBuffers(buffers, [&] (auto _result, auto _delta) { result = _result; delta = _delta; }); if (isLogicalCam) { EXPECT_EQ(result, EvsResult::UNDERLYING_SERVICE_ERROR); continue; } EXPECT_EQ(result, EvsResult::OK); EXPECT_GE(delta, kBuffersToHold); // Set up a frame receiver object which will fire up its own thread. sp frameHandler = new FrameHandler(pCam, cam, nullptr, FrameHandler::eNoAutoReturn); // Start the camera's video stream bool startResult = frameHandler->startStream(); ASSERT_TRUE(startResult); // Check that the video stream stalls once we've gotten exactly the number of buffers // we requested since we told the frameHandler not to return them. sleep(1); // 1 second should be enough for at least 5 frames to be delivered worst case unsigned framesReceived = 0; frameHandler->getFramesCounters(&framesReceived, nullptr); ASSERT_LE(kBuffersToHold, framesReceived) << "Stream didn't stall at expected buffer limit"; // Give back one buffer bool didReturnBuffer = frameHandler->returnHeldBuffer(); EXPECT_TRUE(didReturnBuffer); // Once we return a buffer, it shouldn't take more than 1/10 second to get a new one // filled since we require 10fps minimum -- but give a 10% allowance just in case. unsigned framesReceivedAfter = 0; usleep(110 * kMillisecondsToMicroseconds); frameHandler->getFramesCounters(&framesReceivedAfter, nullptr); EXPECT_EQ(framesReceived + 1, framesReceivedAfter) << "Stream should've resumed"; // Even when the camera pointer goes out of scope, the FrameHandler object will // keep the stream alive unless we tell it to shutdown. // Also note that the FrameHandle and the Camera have a mutual circular reference, so // we have to break that cycle in order for either of them to get cleaned up. frameHandler->shutdown(); // Explicitly release the camera pEnumerator->closeCamera(pCam); activeCameras.clear(); // Release buffers for (auto& b : buffers) { alloc.free(b.buffer.nativeHandle); } buffers.resize(0); } } /* * UltrasonicsArrayOpenClean: * Opens each ultrasonics arrays reported by the enumerator and then explicitly closes it via a * call to closeUltrasonicsArray. Then repeats the test to ensure all ultrasonics arrays * can be reopened. */ TEST_P(EvsHidlTest, UltrasonicsArrayOpenClean) { LOG(INFO) << "Starting UltrasonicsArrayOpenClean test"; // Get the ultrasonics array list loadUltrasonicsArrayList(); // Open and close each ultrasonics array twice for (auto&& ultraInfo : ultrasonicsArraysInfo) { for (int pass = 0; pass < 2; pass++) { sp pUltrasonicsArray = pEnumerator->openUltrasonicsArray(ultraInfo.ultrasonicsArrayId); ASSERT_NE(pUltrasonicsArray, nullptr); // Verify that this ultrasonics array self-identifies correctly pUltrasonicsArray->getUltrasonicArrayInfo([&ultraInfo](UltrasonicsArrayDesc desc) { LOG(DEBUG) << "Found ultrasonics array " << ultraInfo.ultrasonicsArrayId; EXPECT_EQ(ultraInfo.ultrasonicsArrayId, desc.ultrasonicsArrayId); }); // Explicitly close the ultrasonics array so resources are released right away pEnumerator->closeUltrasonicsArray(pUltrasonicsArray); } } } // Starts a stream and verifies all data received is valid. TEST_P(EvsHidlTest, UltrasonicsVerifyStreamData) { LOG(INFO) << "Starting UltrasonicsVerifyStreamData"; // Get the ultrasonics array list loadUltrasonicsArrayList(); // For each ultrasonics array. for (auto&& ultraInfo : ultrasonicsArraysInfo) { LOG(DEBUG) << "Testing ultrasonics array: " << ultraInfo.ultrasonicsArrayId; sp pUltrasonicsArray = pEnumerator->openUltrasonicsArray(ultraInfo.ultrasonicsArrayId); ASSERT_NE(pUltrasonicsArray, nullptr); sp frameHandler = new FrameHandlerUltrasonics(pUltrasonicsArray); // Start stream. EvsResult result = pUltrasonicsArray->startStream(frameHandler); ASSERT_EQ(result, EvsResult::OK); // Wait 5 seconds to receive frames. sleep(5); // Stop stream. pUltrasonicsArray->stopStream(); EXPECT_GT(frameHandler->getReceiveFramesCount(), 0); EXPECT_TRUE(frameHandler->areAllFramesValid()); // Explicitly close the ultrasonics array so resources are released right away pEnumerator->closeUltrasonicsArray(pUltrasonicsArray); } } // Sets frames in flight before and after start of stream and verfies success. TEST_P(EvsHidlTest, UltrasonicsSetFramesInFlight) { LOG(INFO) << "Starting UltrasonicsSetFramesInFlight"; // Get the ultrasonics array list loadUltrasonicsArrayList(); // For each ultrasonics array. for (auto&& ultraInfo : ultrasonicsArraysInfo) { LOG(DEBUG) << "Testing ultrasonics array: " << ultraInfo.ultrasonicsArrayId; sp pUltrasonicsArray = pEnumerator->openUltrasonicsArray(ultraInfo.ultrasonicsArrayId); ASSERT_NE(pUltrasonicsArray, nullptr); EvsResult result = pUltrasonicsArray->setMaxFramesInFlight(10); EXPECT_EQ(result, EvsResult::OK); sp frameHandler = new FrameHandlerUltrasonics(pUltrasonicsArray); // Start stream. result = pUltrasonicsArray->startStream(frameHandler); ASSERT_EQ(result, EvsResult::OK); result = pUltrasonicsArray->setMaxFramesInFlight(5); EXPECT_EQ(result, EvsResult::OK); // Stop stream. pUltrasonicsArray->stopStream(); // Explicitly close the ultrasonics array so resources are released right away pEnumerator->closeUltrasonicsArray(pUltrasonicsArray); } } GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(EvsHidlTest); INSTANTIATE_TEST_SUITE_P( PerInstance, EvsHidlTest, testing::ValuesIn(android::hardware::getAllHalInstanceNames(IEvsEnumerator::descriptor)), android::hardware::PrintInstanceNameToString);