/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG (ATRACE_TAG_GRAPHICS | ATRACE_TAG_HAL) #include "ExynosDisplayDrmInterface.h" #include #include #include #include #include #include #include #include "ExynosHWCDebug.h" #include "ExynosHWCHelper.h" using namespace std::chrono_literals; constexpr uint32_t MAX_PLANE_NUM = 3; constexpr uint32_t CBCR_INDEX = 1; constexpr float DISPLAY_LUMINANCE_UNIT = 10000; constexpr auto nsecsPerMs = std::chrono::nanoseconds(1ms).count(); constexpr auto nsecsPerSec = std::chrono::nanoseconds(1s).count(); constexpr auto vsyncPeriodTag = "VsyncPeriod"; typedef struct _drmModeAtomicReqItem drmModeAtomicReqItem, *drmModeAtomicReqItemPtr; struct _drmModeAtomicReqItem { uint32_t object_id; uint32_t property_id; uint64_t value; }; struct _drmModeAtomicReq { uint32_t cursor; uint32_t size_items; drmModeAtomicReqItemPtr items; }; using namespace vendor::graphics; extern struct exynos_hwc_control exynosHWCControl; static const int32_t kUmPerInch = 25400; FramebufferManager::~FramebufferManager() { { Mutex::Autolock lock(mMutex); mRmFBThreadRunning = false; } mFlipDone.signal(); mRmFBThread.join(); } void FramebufferManager::init(int drmFd) { mDrmFd = drmFd; mRmFBThreadRunning = true; mRmFBThread = std::thread(&FramebufferManager::removeFBsThreadRoutine, this); pthread_setname_np(mRmFBThread.native_handle(), "RemoveFBsThread"); } uint32_t FramebufferManager::getBufHandleFromFd(int fd) { uint32_t gem_handle = 0; int ret = drmPrimeFDToHandle(mDrmFd, fd, &gem_handle); if (ret) { ALOGE("drmPrimeFDToHandle failed with fd %d error %d (%s)", fd, ret, strerror(errno)); } return gem_handle; } int FramebufferManager::addFB2WithModifiers(uint32_t width, uint32_t height, uint32_t pixel_format, const BufHandles handles, const uint32_t pitches[4], const uint32_t offsets[4], const uint64_t modifier[4], uint32_t *buf_id, uint32_t flags) { int ret = drmModeAddFB2WithModifiers(mDrmFd, width, height, pixel_format, handles.data(), pitches, offsets, modifier, buf_id, flags); if (ret) ALOGE("Failed to add fb error %d\n", ret); return ret; } bool FramebufferManager::checkShrink() { Mutex::Autolock lock(mMutex); mCacheShrinkPending = mCachedLayerBuffers.size() > MAX_CACHED_LAYERS; return mCacheShrinkPending; } void FramebufferManager::cleanup(const ExynosLayer *layer) { ATRACE_CALL(); Mutex::Autolock lock(mMutex); if (auto it = mCachedLayerBuffers.find(layer); it != mCachedLayerBuffers.end()) { mCleanBuffers.splice(mCleanBuffers.end(), std::move(it->second)); mCachedLayerBuffers.erase(it); } } void FramebufferManager::removeFBsThreadRoutine() { FBList cleanupBuffers; while (true) { { Mutex::Autolock lock(mMutex); if (!mRmFBThreadRunning) { break; } mFlipDone.wait(mMutex); cleanupBuffers.splice(cleanupBuffers.end(), mCleanBuffers); } ATRACE_NAME("cleanup framebuffers"); cleanupBuffers.clear(); } } int32_t FramebufferManager::getBuffer(const exynos_win_config_data &config, uint32_t &fbId) { ATRACE_CALL(); int ret = NO_ERROR; int drmFormat = DRM_FORMAT_UNDEFINED; uint32_t bpp = 0; uint32_t pitches[HWC_DRM_BO_MAX_PLANES] = {0}; uint32_t offsets[HWC_DRM_BO_MAX_PLANES] = {0}; uint64_t modifiers[HWC_DRM_BO_MAX_PLANES] = {0}; uint32_t bufferNum, planeNum = 0; BufHandles handles = {0}; uint32_t bufWidth, bufHeight = 0; if (config.protection) modifiers[0] |= DRM_FORMAT_MOD_PROTECTION; if (config.state == config.WIN_STATE_BUFFER) { bufWidth = config.src.f_w; bufHeight = config.src.f_h; uint32_t compressType = 0; if (config.compression) compressType = AFBC; else if (isFormatSBWC(config.format)) // TODO: b/175381083, change to new API compressType = COMP_ANY; auto exynosFormat = halFormatToExynosFormat(config.format, compressType); if (exynosFormat == nullptr) { ALOGE("%s:: unknown HAL format (%d)", __func__, config.format); return -EINVAL; } drmFormat = exynosFormat->drmFormat; if (drmFormat == DRM_FORMAT_UNDEFINED) { ALOGE("%s:: unknown drm format (%d)", __func__, config.format); return -EINVAL; } bpp = getBytePerPixelOfPrimaryPlane(config.format); if ((bufferNum = exynosFormat->bufferNum) == 0) { ALOGE("%s:: getBufferNumOfFormat(%d) error", __func__, config.format); return -EINVAL; } if (((planeNum = exynosFormat->planeNum) == 0) || (planeNum > MAX_PLANE_NUM)) { ALOGE("%s:: getPlaneNumOfFormat(%d) error, planeNum(%d)", __func__, config.format, planeNum); return -EINVAL; } fbId = findCachedFbId(config.layer, [bufferDesc = Framebuffer::BufferDesc{config.buffer_id, drmFormat, config.protection}]( auto &buffer) { return buffer->bufferDesc == bufferDesc; }); if (fbId != 0) { return NO_ERROR; } if (config.compression) { uint64_t compressed_modifier = AFBC_FORMAT_MOD_BLOCK_SIZE_16x16; switch (config.comp_src) { case DPP_COMP_SRC_G2D: compressed_modifier |= AFBC_FORMAT_MOD_SOURCE_G2D; break; case DPP_COMP_SRC_GPU: compressed_modifier |= AFBC_FORMAT_MOD_SOURCE_GPU; break; default: break; } modifiers[0] |= DRM_FORMAT_MOD_ARM_AFBC(compressed_modifier); } else { if (isFormatSBWC(config.format)) { if (isFormat10BitYUV420(config.format)) { modifiers[0] |= DRM_FORMAT_MOD_SAMSUNG_SBWC(SBWC_FORMAT_MOD_BLOCK_SIZE_32x5); } else { modifiers[0] |= DRM_FORMAT_MOD_SAMSUNG_SBWC(SBWC_FORMAT_MOD_BLOCK_SIZE_32x4); } } } for (uint32_t bufferIndex = 0; bufferIndex < bufferNum; bufferIndex++) { pitches[bufferIndex] = config.src.f_w * bpp; modifiers[bufferIndex] = modifiers[0]; handles[bufferIndex] = getBufHandleFromFd(config.fd_idma[bufferIndex]); if (handles[bufferIndex] == 0) { return -ENOMEM; } } if ((bufferNum == 1) && (planeNum > bufferNum)) { /* offset for cbcr */ offsets[CBCR_INDEX] = getExynosBufferYLength(config.src.f_w, config.src.f_h, config.format); for (uint32_t planeIndex = 1; planeIndex < planeNum; planeIndex++) { handles[planeIndex] = handles[0]; pitches[planeIndex] = pitches[0]; modifiers[planeIndex] = modifiers[0]; } } } else if (config.state == config.WIN_STATE_COLOR) { bufWidth = config.dst.w; bufHeight = config.dst.h; modifiers[0] |= DRM_FORMAT_MOD_SAMSUNG_COLORMAP; drmFormat = DRM_FORMAT_BGRA8888; bufferNum = 0; handles[0] = 0xff000000; bpp = getBytePerPixelOfPrimaryPlane(HAL_PIXEL_FORMAT_BGRA_8888); pitches[0] = config.dst.w * bpp; fbId = findCachedFbId(config.layer, [colorDesc = Framebuffer::SolidColorDesc{bufWidth, bufHeight}]( auto &buffer) { return buffer->colorDesc == colorDesc; }); if (fbId != 0) { return NO_ERROR; } } else { ALOGE("%s:: known config state(%d)", __func__, config.state); return -EINVAL; } ret = addFB2WithModifiers(bufWidth, bufHeight, drmFormat, handles, pitches, offsets, modifiers, &fbId, modifiers[0] ? DRM_MODE_FB_MODIFIERS : 0); for (uint32_t bufferIndex = 0; bufferIndex < bufferNum; bufferIndex++) { freeBufHandle(handles[bufferIndex]); } if (ret) { ALOGE("%s:: Failed to add FB, fb_id(%d), ret(%d), f_w: %d, f_h: %d, dst.w: %d, dst.h: %d, " "format: %d %4.4s, buf_handles[%d, %d, %d, %d], " "pitches[%d, %d, %d, %d], offsets[%d, %d, %d, %d], modifiers[%#" PRIx64 ", %#" PRIx64 ", %#" PRIx64 ", %#" PRIx64 "]", __func__, fbId, ret, config.src.f_w, config.src.f_h, config.dst.w, config.dst.h, drmFormat, (char *)&drmFormat, handles[0], handles[1], handles[2], handles[3], pitches[0], pitches[1], pitches[2], pitches[3], offsets[0], offsets[1], offsets[2], offsets[3], modifiers[0], modifiers[1], modifiers[2], modifiers[3]); return ret; } if (config.layer || config.buffer_id) { Mutex::Autolock lock(mMutex); auto &cachedBuffers = mCachedLayerBuffers[config.layer]; if (cachedBuffers.size() > MAX_CACHED_BUFFERS_PER_LAYER) { ALOGW("FBManager: cached buffers size %zu exceeds limitation while adding fbId %d", cachedBuffers.size(), fbId); printExynosLayer(config.layer); mCleanBuffers.splice(mCleanBuffers.end(), cachedBuffers); } if (config.state == config.WIN_STATE_COLOR) { cachedBuffers.emplace_front( new Framebuffer(mDrmFd, fbId, Framebuffer::SolidColorDesc{bufWidth, bufHeight})); } else { cachedBuffers.emplace_front( new Framebuffer(mDrmFd, fbId, Framebuffer::BufferDesc{config.buffer_id, drmFormat, config.protection})); mHasSecureFramebuffer |= (isFramebuffer(config.layer) && config.protection); } } else { ALOGW("FBManager: possible leakage fbId %d was created", fbId); } return 0; } void FramebufferManager::flip(bool hasSecureFrameBuffer) { bool needCleanup = false; { Mutex::Autolock lock(mMutex); destroyUnusedLayersLocked(); if (!hasSecureFrameBuffer) { destroySecureFramebufferLocked(); } needCleanup = mCleanBuffers.size() > 0; } if (needCleanup) { mFlipDone.signal(); } } void FramebufferManager::releaseAll() { Mutex::Autolock lock(mMutex); mCachedLayerBuffers.clear(); mCleanBuffers.clear(); } void FramebufferManager::freeBufHandle(uint32_t handle) { if (handle == 0) { return; } struct drm_gem_close gem_close { .handle = handle }; int ret = drmIoctl(mDrmFd, DRM_IOCTL_GEM_CLOSE, &gem_close); if (ret) { ALOGE("Failed to close gem handle 0x%x with error %d\n", handle, ret); } } void FramebufferManager::markInuseLayerLocked(const ExynosLayer *layer) { if (mCacheShrinkPending) { mCachedLayersInuse.insert(layer); } } void FramebufferManager::destroyUnusedLayersLocked() { if (!mCacheShrinkPending || mCachedLayersInuse.size() == mCachedLayerBuffers.size()) { mCachedLayersInuse.clear(); return; } ALOGW("FBManager: shrink cached layers from %zu to %zu", mCachedLayerBuffers.size(), mCachedLayersInuse.size()); for (auto layer = mCachedLayerBuffers.begin(); layer != mCachedLayerBuffers.end();) { if (mCachedLayersInuse.find(layer->first) == mCachedLayersInuse.end()) { mCleanBuffers.splice(mCleanBuffers.end(), std::move(layer->second)); layer = mCachedLayerBuffers.erase(layer); } else { ++layer; } } mCachedLayersInuse.clear(); } void FramebufferManager::destroySecureFramebufferLocked() { if (!mHasSecureFramebuffer) { return; } mHasSecureFramebuffer = false; for (auto &layer : mCachedLayerBuffers) { if (isFramebuffer(layer.first)) { auto &bufferList = layer.second; for (auto it = bufferList.begin(); it != bufferList.end(); ++it) { auto &buffer = *it; if (buffer->bufferDesc.isSecure) { // Assume the latest non-secure buffer in the front // TODO: have a better way to keep in-used buffers mCleanBuffers.splice(mCleanBuffers.end(), bufferList, it, bufferList.end()); return; } } } } } void ExynosDisplayDrmInterface::destroyLayer(ExynosLayer *layer) { mFBManager.cleanup(layer); } ExynosDisplayDrmInterface::ExynosDisplayDrmInterface(ExynosDisplay *exynosDisplay) { mType = INTERFACE_TYPE_DRM; init(exynosDisplay); } ExynosDisplayDrmInterface::~ExynosDisplayDrmInterface() { if (mActiveModeState.blob_id) mDrmDevice->DestroyPropertyBlob(mActiveModeState.blob_id); if (mActiveModeState.old_blob_id) mDrmDevice->DestroyPropertyBlob(mActiveModeState.old_blob_id); if (mDesiredModeState.blob_id) mDrmDevice->DestroyPropertyBlob(mDesiredModeState.blob_id); if (mDesiredModeState.old_blob_id) mDrmDevice->DestroyPropertyBlob(mDesiredModeState.old_blob_id); if (mPartialRegionState.blob_id) mDrmDevice->DestroyPropertyBlob(mPartialRegionState.blob_id); if (mHbmSvDimmingThreadRunning) { mHbmSvDimmingThreadRunning = false; mHbmSvDimmingCond.signal(); mDimmingThread.join(); } } void ExynosDisplayDrmInterface::init(ExynosDisplay *exynosDisplay) { mExynosDisplay = exynosDisplay; mDrmDevice = NULL; mDrmCrtc = NULL; mDrmConnector = NULL; } void ExynosDisplayDrmInterface::parseEnums(const DrmProperty &property, const std::vector> &enums, std::unordered_map &out_enums) { uint64_t value; int ret; for (auto &e : enums) { std::tie(value, ret) = property.GetEnumValueWithName(e.second); if (ret == NO_ERROR) out_enums[e.first] = value; else ALOGE("Fail to find enum value with name %s", e.second); } } void ExynosDisplayDrmInterface::parseBlendEnums(const DrmProperty &property) { const std::vector> blendEnums = { {HWC2_BLEND_MODE_NONE, "None"}, {HWC2_BLEND_MODE_PREMULTIPLIED, "Pre-multiplied"}, {HWC2_BLEND_MODE_COVERAGE, "Coverage"}, }; ALOGD("Init blend enums"); parseEnums(property, blendEnums, mBlendEnums); for (auto &e : mBlendEnums) { ALOGD("blend [hal: %d, drm: %" PRId64 "]", e.first, e.second); } } void ExynosDisplayDrmInterface::parseStandardEnums(const DrmProperty &property) { const std::vector> standardEnums = { {HAL_DATASPACE_STANDARD_UNSPECIFIED, "Unspecified"}, {HAL_DATASPACE_STANDARD_BT709, "BT709"}, {HAL_DATASPACE_STANDARD_BT601_625, "BT601_625"}, {HAL_DATASPACE_STANDARD_BT601_625_UNADJUSTED, "BT601_625_UNADJUSTED"}, {HAL_DATASPACE_STANDARD_BT601_525, "BT601_525"}, {HAL_DATASPACE_STANDARD_BT601_525_UNADJUSTED, "BT601_525_UNADJUSTED"}, {HAL_DATASPACE_STANDARD_BT2020, "BT2020"}, {HAL_DATASPACE_STANDARD_BT2020_CONSTANT_LUMINANCE, "BT2020_CONSTANT_LUMINANCE"}, {HAL_DATASPACE_STANDARD_BT470M, "BT470M"}, {HAL_DATASPACE_STANDARD_FILM, "FILM"}, {HAL_DATASPACE_STANDARD_DCI_P3, "DCI-P3"}, {HAL_DATASPACE_STANDARD_ADOBE_RGB, "Adobe RGB"}, }; ALOGD("Init standard enums"); parseEnums(property, standardEnums, mStandardEnums); for (auto &e : mStandardEnums) { ALOGD("standard [hal: %d, drm: %" PRId64 "]", e.first >> HAL_DATASPACE_STANDARD_SHIFT, e.second); } } void ExynosDisplayDrmInterface::parseTransferEnums(const DrmProperty &property) { const std::vector> transferEnums = { {HAL_DATASPACE_TRANSFER_UNSPECIFIED, "Unspecified"}, {HAL_DATASPACE_TRANSFER_LINEAR, "Linear"}, {HAL_DATASPACE_TRANSFER_SRGB, "sRGB"}, {HAL_DATASPACE_TRANSFER_SMPTE_170M, "SMPTE 170M"}, {HAL_DATASPACE_TRANSFER_GAMMA2_2, "Gamma 2.2"}, {HAL_DATASPACE_TRANSFER_GAMMA2_6, "Gamma 2.6"}, {HAL_DATASPACE_TRANSFER_GAMMA2_8, "Gamma 2.8"}, {HAL_DATASPACE_TRANSFER_ST2084, "ST2084"}, {HAL_DATASPACE_TRANSFER_HLG, "HLG"}, }; ALOGD("Init transfer enums"); parseEnums(property, transferEnums, mTransferEnums); for (auto &e : mTransferEnums) { ALOGD("transfer [hal: %d, drm: %" PRId64 "]", e.first >> HAL_DATASPACE_TRANSFER_SHIFT, e.second); } } void ExynosDisplayDrmInterface::parseRangeEnums(const DrmProperty &property) { const std::vector> rangeEnums = { {HAL_DATASPACE_RANGE_UNSPECIFIED, "Unspecified"}, {HAL_DATASPACE_RANGE_FULL, "Full"}, {HAL_DATASPACE_RANGE_LIMITED, "Limited"}, {HAL_DATASPACE_RANGE_EXTENDED, "Extended"}, }; ALOGD("Init range enums"); parseEnums(property, rangeEnums, mRangeEnums); for (auto &e : mRangeEnums) { ALOGD("range [hal: %d, drm: %" PRId64 "]", e.first >> HAL_DATASPACE_RANGE_SHIFT, e.second); } } void ExynosDisplayDrmInterface::parseColorModeEnums(const DrmProperty &property) { const std::vector> colorModeEnums = { {HAL_COLOR_MODE_NATIVE, "Native"}, {HAL_COLOR_MODE_DCI_P3, "DCI-P3"}, {HAL_COLOR_MODE_SRGB, "sRGB"}, }; ALOGD("Init color mode enums"); parseEnums(property, colorModeEnums, mColorModeEnums); for (auto &e : mColorModeEnums) { ALOGD("Colormode [hal: %d, drm: %" PRId64 "]", e.first, e.second); } } void ExynosDisplayDrmInterface::parseHbmModeEnums(const DrmProperty &property) { const std::vector> modeEnums = { {static_cast(HbmMode::OFF), "Off"}, {static_cast(HbmMode::ON_IRC_ON), "On IRC On"}, {static_cast(HbmMode::ON_IRC_OFF), "On IRC Off"}, }; parseEnums(property, modeEnums, mHbmModeEnums); for (auto &e : mHbmModeEnums) { ALOGD("hbm mode [hal: %d, drm: %" PRId64 "]", e.first, e.second); } } uint32_t ExynosDisplayDrmInterface::getDrmDisplayId(uint32_t type, uint32_t index) { return type+index; } int32_t ExynosDisplayDrmInterface::initDrmDevice(DrmDevice *drmDevice) { if (mExynosDisplay == NULL) { ALOGE("mExynosDisplay is not set"); return -EINVAL; } if ((mDrmDevice = drmDevice) == NULL) { ALOGE("drmDevice is NULL"); return -EINVAL; } mFBManager.init(mDrmDevice->fd()); uint32_t drmDisplayId = getDrmDisplayId(mExynosDisplay->mType, mExynosDisplay->mIndex); mReadbackInfo.init(mDrmDevice, drmDisplayId); if ((mDrmCrtc = mDrmDevice->GetCrtcForDisplay(drmDisplayId)) == NULL) { ALOGE("%s:: GetCrtcForDisplay is NULL (id: %d)", mExynosDisplay->mDisplayName.string(), drmDisplayId); return -EINVAL; } if ((mDrmConnector = mDrmDevice->GetConnectorForDisplay(drmDisplayId)) == NULL) { ALOGE("%s:: GetConnectorForDisplay is NULL (id: %d)", mExynosDisplay->mDisplayName.string(), drmDisplayId); return -EINVAL; } ALOGD("%s:: display type: %d, index: %d, drmDisplayId: %d, " "crtc id: %d, connector id: %d", __func__, mExynosDisplay->mType, mExynosDisplay->mIndex, drmDisplayId, mDrmCrtc->id(), mDrmConnector->id()); for (uint32_t i = 0; i < mDrmDevice->planes().size(); i++) { auto &plane = mDrmDevice->planes().at(i); uint32_t plane_id = plane->id(); ExynosMPP *exynosMPP = mExynosDisplay->mResourceManager->getOtfMPPWithChannel(i); if (exynosMPP == NULL) HWC_LOGE(mExynosDisplay, "getOtfMPPWithChannel fail, ch(%d)", plane_id); mExynosMPPsForPlane[plane_id] = exynosMPP; } if (mExynosDisplay->mMaxWindowNum != getMaxWindowNum()) { ALOGE("%s:: Invalid max window number (mMaxWindowNum: %d, getMaxWindowNum(): %d", __func__, mExynosDisplay->mMaxWindowNum, getMaxWindowNum()); return -EINVAL; } getLowPowerDrmModeModeInfo(); mDrmVSyncWorker.Init(mDrmDevice, drmDisplayId); mDrmVSyncWorker.RegisterCallback(std::shared_ptr(this)); if (!mDrmDevice->planes().empty()) { auto &plane = mDrmDevice->planes().front(); parseBlendEnums(plane->blend_property()); parseStandardEnums(plane->standard_property()); parseTransferEnums(plane->transfer_property()); parseRangeEnums(plane->range_property()); } chosePreferredConfig(); parseColorModeEnums(mDrmCrtc->color_mode_property()); getBrightnessInterfaceSupport(); return NO_ERROR; } void ExynosDisplayDrmInterface::Callback( int display, int64_t timestamp) { Mutex::Autolock lock(mExynosDisplay->getDisplayMutex()); bool configApplied = mVsyncCallback.Callback(display, timestamp); if (configApplied) { if (mVsyncCallback.getDesiredVsyncPeriod()) { mExynosDisplay->resetConfigRequestStateLocked(); mDrmConnector->set_active_mode(mActiveModeState.mode); mVsyncCallback.resetDesiredVsyncPeriod(); } /* * Disable vsync if vsync config change is done */ if (!mVsyncCallback.getVSyncEnabled()) { mDrmVSyncWorker.VSyncControl(false); mVsyncCallback.resetVsyncTimeStamp(); } } else { mExynosDisplay->updateConfigRequestAppliedTime(); } if (!mExynosDisplay->mPlugState || !mVsyncCallback.getVSyncEnabled()) { return; } ExynosDevice *exynosDevice = mExynosDisplay->mDevice; auto vsync_2_4CallbackInfo = exynosDevice->mCallbackInfos[HWC2_CALLBACK_VSYNC_2_4]; if (vsync_2_4CallbackInfo.funcPointer && vsync_2_4CallbackInfo.callbackData) { ((HWC2_PFN_VSYNC_2_4)vsync_2_4CallbackInfo.funcPointer)( vsync_2_4CallbackInfo.callbackData, mExynosDisplay->mDisplayId, timestamp, mExynosDisplay->mVsyncPeriod); ATRACE_INT(vsyncPeriodTag, static_cast(mExynosDisplay->mVsyncPeriod)); return; } auto vsyncCallbackInfo = exynosDevice->mCallbackInfos[HWC2_CALLBACK_VSYNC]; if (vsyncCallbackInfo.funcPointer && vsyncCallbackInfo.callbackData) ((HWC2_PFN_VSYNC)vsyncCallbackInfo.funcPointer)(vsyncCallbackInfo.callbackData, mExynosDisplay->mDisplayId, timestamp); } bool ExynosDisplayDrmInterface::ExynosVsyncCallback::Callback( int display, int64_t timestamp) { /* * keep vsync period if mVsyncTimeStamp * is not initialized since vsync is enabled */ if (mVsyncTimeStamp > 0) { mVsyncPeriod = timestamp - mVsyncTimeStamp; } mVsyncTimeStamp = timestamp; /* There was no config chage request */ if (!mDesiredVsyncPeriod) return true; /* * mDesiredVsyncPeriod is nanoseconds * Compare with milliseconds */ if (mDesiredVsyncPeriod / nsecsPerMs == mVsyncPeriod / nsecsPerMs) return true; return false; } int32_t ExynosDisplayDrmInterface::getLowPowerDrmModeModeInfo() { int ret; uint64_t blobId; std::tie(ret, blobId) = mDrmConnector->lp_mode().value(); if (ret) { ALOGE("Fail to get blob id for lp mode"); return HWC2_ERROR_UNSUPPORTED; } drmModePropertyBlobPtr blob = drmModeGetPropertyBlob(mDrmDevice->fd(), blobId); if (!blob) { ALOGE("Fail to get blob for lp mode(%" PRId64 ")", blobId); return HWC2_ERROR_UNSUPPORTED; } drmModeModeInfo dozeModeInfo = *static_cast(blob->data); mDozeDrmMode = DrmMode(&dozeModeInfo); drmModeFreePropertyBlob(blob); return NO_ERROR; } int32_t ExynosDisplayDrmInterface::setLowPowerMode() { if (!isDozeModeAvailable()) { return HWC2_ERROR_UNSUPPORTED; } uint32_t mm_width = mDrmConnector->mm_width(); uint32_t mm_height = mDrmConnector->mm_height(); mExynosDisplay->mXres = mDozeDrmMode.h_display(); mExynosDisplay->mYres = mDozeDrmMode.v_display(); // in nanoseconds mExynosDisplay->mVsyncPeriod = nsecsPerSec / mDozeDrmMode.v_refresh(); // Dots per 1000 inches mExynosDisplay->mXdpi = mm_width ? (mDozeDrmMode.h_display() * kUmPerInch) / mm_width : -1; // Dots per 1000 inches mExynosDisplay->mYdpi = mm_height ? (mDozeDrmMode.v_display() * kUmPerInch) / mm_height : -1; return setActiveDrmMode(mDozeDrmMode); } int32_t ExynosDisplayDrmInterface::setPowerMode(int32_t mode) { int ret = 0; uint64_t dpms_value = 0; if (mode == HWC_POWER_MODE_OFF) { dpms_value = DRM_MODE_DPMS_OFF; } else { dpms_value = DRM_MODE_DPMS_ON; } const DrmProperty &prop = mDrmConnector->dpms_property(); if ((ret = drmModeConnectorSetProperty(mDrmDevice->fd(), mDrmConnector->id(), prop.id(), dpms_value)) != NO_ERROR) { HWC_LOGE(mExynosDisplay, "setPower mode ret (%d)", ret); } if (mode == HWC_POWER_MODE_OFF) { mBrightnessState.reset(); mBrightnessCtrl.reset(); mBrightnessLevel.store(0); mBrightnessLevel.clear_dirty(); mExynosDisplay->requestEnhancedHbm(false); mExynosDisplay->requestLhbm(false); mExynosDisplay->notifyLhbmState(mBrightnessCtrl.LhbmOn.get()); } return ret; } int32_t ExynosDisplayDrmInterface::setVsyncEnabled(uint32_t enabled) { if (enabled == HWC2_VSYNC_ENABLE) { mDrmVSyncWorker.VSyncControl(true); } else { if (mVsyncCallback.getDesiredVsyncPeriod() == 0) mDrmVSyncWorker.VSyncControl(false); } mVsyncCallback.enableVSync(HWC2_VSYNC_ENABLE == enabled); ExynosDevice *exynosDevice = mExynosDisplay->mDevice; auto vsync_2_4CallbackInfo = exynosDevice->mCallbackInfos[HWC2_CALLBACK_VSYNC_2_4]; if (vsync_2_4CallbackInfo.funcPointer && vsync_2_4CallbackInfo.callbackData) { ATRACE_INT(vsyncPeriodTag, 0); } return NO_ERROR; } int32_t ExynosDisplayDrmInterface::chosePreferredConfig() { uint32_t num_configs = 0; int32_t err = getDisplayConfigs(&num_configs, NULL); if (err != HWC2_ERROR_NONE || !num_configs) return err; hwc2_config_t config = mDrmConnector->get_preferred_mode_id(); ALOGI("Preferred mode id: %d, state: %d", config, mDrmConnector->state()); if ((err = setActiveConfig(config)) < 0) { ALOGE("failed to set default config, err %d", err); return err; } mExynosDisplay->updateInternalDisplayConfigVariables(config); return err; } int32_t ExynosDisplayDrmInterface::getDisplayConfigs( uint32_t* outNumConfigs, hwc2_config_t* outConfigs) { if (!outConfigs) { int ret = mDrmConnector->UpdateModes(); if (ret) { ALOGE("Failed to update display modes %d", ret); return HWC2_ERROR_BAD_DISPLAY; } if (mDrmConnector->state() == DRM_MODE_CONNECTED) mExynosDisplay->mPlugState = true; else mExynosDisplay->mPlugState = false; dumpDisplayConfigs(); mExynosDisplay->mDisplayConfigs.clear(); uint32_t mm_width = mDrmConnector->mm_width(); uint32_t mm_height = mDrmConnector->mm_height(); /* key: (width<<32 | height) */ std::map groupIds; uint32_t groupId = 0; for (const DrmMode &mode : mDrmConnector->modes()) { displayConfigs_t configs; configs.vsyncPeriod = nsecsPerSec/ mode.v_refresh(); configs.width = mode.h_display(); configs.height = mode.v_display(); uint64_t key = ((uint64_t)configs.width<<32) | configs.height; auto it = groupIds.find(key); if (it != groupIds.end()) { configs.groupId = it->second; } else { groupIds.insert(std::make_pair(key, groupId)); groupId++; } // Dots per 1000 inches configs.Xdpi = mm_width ? (mode.h_display() * kUmPerInch) / mm_width : -1; // Dots per 1000 inches configs.Ydpi = mm_height ? (mode.v_display() * kUmPerInch) / mm_height : -1; mExynosDisplay->mDisplayConfigs.insert(std::make_pair(mode.id(), configs)); ALOGD("config group(%d), w(%d), h(%d), vsync(%d), xdpi(%d), ydpi(%d)", configs.groupId, configs.width, configs.height, configs.vsyncPeriod, configs.Xdpi, configs.Ydpi); } } uint32_t num_modes = static_cast(mDrmConnector->modes().size()); if (!outConfigs) { *outNumConfigs = num_modes; return HWC2_ERROR_NONE; } uint32_t idx = 0; for (const DrmMode &mode : mDrmConnector->modes()) { if (idx >= *outNumConfigs) break; outConfigs[idx++] = mode.id(); } *outNumConfigs = idx; return 0; } void ExynosDisplayDrmInterface::dumpDisplayConfigs() { uint32_t num_modes = static_cast(mDrmConnector->modes().size()); for (uint32_t i = 0; i < num_modes; i++) { auto mode = mDrmConnector->modes().at(i); ALOGD("%s display config[%d] %s:: id(%d), clock(%d), flags(%d), type(%d)", mExynosDisplay->mDisplayName.string(), i, mode.name().c_str(), mode.id(), mode.clock(), mode.flags(), mode.type()); ALOGD("\th_display(%d), h_sync_start(%d), h_sync_end(%d), h_total(%d), h_skew(%d)", mode.h_display(), mode.h_sync_start(), mode.h_sync_end(), mode.h_total(), mode.h_skew()); ALOGD("\tv_display(%d), v_sync_start(%d), v_sync_end(%d), v_total(%d), v_scan(%d), v_refresh(%f)", mode.v_display(), mode.v_sync_start(), mode.v_sync_end(), mode.v_total(), mode.v_scan(), mode.v_refresh()); } } int32_t ExynosDisplayDrmInterface::getDisplayVsyncPeriod(hwc2_vsync_period_t* outVsyncPeriod) { return HWC2_ERROR_UNSUPPORTED; } int32_t ExynosDisplayDrmInterface::getConfigChangeDuration() { /* TODO: Get from driver */ return 2; }; int32_t ExynosDisplayDrmInterface::getVsyncAppliedTime( hwc2_config_t config, int64_t* actualChangeTime) { if (mDrmCrtc->adjusted_vblank_property().id() == 0) { uint64_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC); *actualChangeTime = currentTime + (mExynosDisplay->mVsyncPeriod) * getConfigChangeDuration(); return HWC2_ERROR_NONE; } int ret = 0; if ((ret = mDrmDevice->UpdateCrtcProperty(*mDrmCrtc, &mDrmCrtc->adjusted_vblank_property())) != 0) { HWC_LOGE(mExynosDisplay, "Failed to update vblank property"); return ret; } uint64_t timestamp; std::tie(ret, timestamp) = mDrmCrtc->adjusted_vblank_property().value(); if (ret < 0) { HWC_LOGE(mExynosDisplay, "Failed to get vblank property"); return ret; } *actualChangeTime = static_cast(timestamp); return HWC2_ERROR_NONE; } bool ExynosDisplayDrmInterface::supportDataspace(int32_t dataspace) { bool supportStandard = false; bool supportTransfer = false; bool supportRange = false; /* Check supported standard */ for (auto &e : mStandardEnums) { if (e.first & dataspace) supportStandard = true; } /* Check supported transfer */ for (auto &e : mTransferEnums) { if (e.first & dataspace) supportTransfer = true; } /* Check supported range */ for (auto &e : mRangeEnums) { if (e.first & dataspace) supportRange = true; } return supportStandard && supportTransfer && supportRange; } int32_t ExynosDisplayDrmInterface::getColorModes(uint32_t *outNumModes, int32_t *outModes) { if (mDrmCrtc->color_mode_property().id() == 0) { *outNumModes = 1; if (outModes != NULL) { outModes[0] = HAL_COLOR_MODE_NATIVE; } return HWC2_ERROR_NONE; } uint32_t colorNum = 0; for (auto &e : mColorModeEnums) { if (outModes != NULL) { outModes[colorNum] = e.first; } colorNum++; ALOGD("Colormode [hal: %d, drm: %" PRId64 "]", e.first, e.second); } *outNumModes = colorNum; return HWC2_ERROR_NONE; } int32_t ExynosDisplayDrmInterface::setColorMode(int32_t mode) { int ret = 0; if (mDrmCrtc->color_mode_property().id() == 0) { return HWC2_ERROR_NONE; } DrmModeAtomicReq drmReq(this); if ((ret = drmReq.atomicAddProperty(mDrmCrtc->id(), mDrmCrtc->color_mode_property(), mode)) < 0) return ret; if ((ret = drmReq.commit(0, true)) < 0) return ret; return HWC2_ERROR_NONE; } int32_t ExynosDisplayDrmInterface::setActiveConfigWithConstraints( hwc2_config_t config, bool test) { ALOGD("%s:: %s config(%d) test(%d)", __func__, mExynosDisplay->mDisplayName.string(), config, test); auto mode = std::find_if(mDrmConnector->modes().begin(), mDrmConnector->modes().end(), [config](DrmMode const &m) { return m.id() == config;}); if (mode == mDrmConnector->modes().end()) { HWC_LOGE(mExynosDisplay, "Could not find active mode for %d", config); return HWC2_ERROR_BAD_CONFIG; } if ((mActiveModeState.blob_id != 0) && (mActiveModeState.mode.id() == config)) { ALOGD("%s:: same mode %d", __func__, config); return HWC2_ERROR_NONE; } if (mDesiredModeState.needs_modeset) { ALOGD("Previous mode change request is not applied"); } int32_t ret = HWC2_ERROR_NONE; DrmModeAtomicReq drmReq(this); uint32_t modeBlob = 0; if (mDesiredModeState.mode.id() != config) { if ((ret = createModeBlob(*mode, modeBlob)) != NO_ERROR) { HWC_LOGE(mExynosDisplay, "%s: Fail to set mode state", __func__); return HWC2_ERROR_BAD_CONFIG; } } if (test) { if ((ret = setDisplayMode(drmReq, modeBlob? modeBlob : mDesiredModeState.blob_id)) < 0) { HWC_LOGE(mExynosDisplay, "%s: Fail to apply display mode", __func__); return ret; } ret = drmReq.commit(DRM_MODE_ATOMIC_TEST_ONLY, true); if (ret) { drmReq.addOldBlob(modeBlob); HWC_LOGE(mExynosDisplay, "%s:: Failed to commit pset ret=%d in applyDisplayMode()\n", __func__, ret); return ret; } } else { mDesiredModeState.needs_modeset = true; } if (modeBlob != 0) { mDesiredModeState.setMode(*mode, modeBlob, drmReq); } return HWC2_ERROR_NONE; } int32_t ExynosDisplayDrmInterface::setActiveDrmMode(DrmMode const &mode) { /* Don't skip when power was off */ if (!(mExynosDisplay->mSkipFrame) && (mActiveModeState.blob_id != 0) && (mActiveModeState.mode.id() == mode.id()) && (mActiveModeState.needs_modeset == false)) { ALOGD("%s:: same mode %d", __func__, mode.id()); return HWC2_ERROR_NONE; } int32_t ret = HWC2_ERROR_NONE; uint32_t modeBlob; if ((ret = createModeBlob(mode, modeBlob)) != NO_ERROR) { HWC_LOGE(mExynosDisplay, "%s: Fail to set mode state", __func__); return HWC2_ERROR_BAD_CONFIG; } DrmModeAtomicReq drmReq(this); if ((ret = setDisplayMode(drmReq, modeBlob)) != NO_ERROR) { drmReq.addOldBlob(modeBlob); HWC_LOGE(mExynosDisplay, "%s: Fail to apply display mode", __func__); return ret; } if ((ret = drmReq.commit(DRM_MODE_ATOMIC_ALLOW_MODESET, true))) { drmReq.addOldBlob(modeBlob); HWC_LOGE(mExynosDisplay, "%s:: Failed to commit pset ret=%d in applyDisplayMode()\n", __func__, ret); return ret; } mDrmConnector->set_active_mode(mode); mActiveModeState.setMode(mode, modeBlob, drmReq); mActiveModeState.needs_modeset = false; return HWC2_ERROR_NONE; } int32_t ExynosDisplayDrmInterface::setActiveConfig(hwc2_config_t config) { auto mode = std::find_if(mDrmConnector->modes().begin(), mDrmConnector->modes().end(), [config](DrmMode const &m) { return m.id() == config; }); if (mode == mDrmConnector->modes().end()) { HWC_LOGE(mExynosDisplay, "Could not find active mode for %d", config); return HWC2_ERROR_BAD_CONFIG; } mExynosDisplay->updateAppliedActiveConfig(config, systemTime(SYSTEM_TIME_MONOTONIC)); if (!setActiveDrmMode(*mode)) { ALOGI("%s:: %s config(%d)", __func__, mExynosDisplay->mDisplayName.string(), config); } else { ALOGE("%s:: %s config(%d) failed", __func__, mExynosDisplay->mDisplayName.string(), config); } return 0; } int32_t ExynosDisplayDrmInterface::createModeBlob(const DrmMode &mode, uint32_t &modeBlob) { struct drm_mode_modeinfo drm_mode; memset(&drm_mode, 0, sizeof(drm_mode)); mode.ToDrmModeModeInfo(&drm_mode); modeBlob = 0; int ret = mDrmDevice->CreatePropertyBlob(&drm_mode, sizeof(drm_mode), &modeBlob); if (ret) { HWC_LOGE(mExynosDisplay, "Failed to create mode property blob %d", ret); return ret; } return NO_ERROR; } int32_t ExynosDisplayDrmInterface::setDisplayMode( DrmModeAtomicReq &drmReq, const uint32_t modeBlob) { int ret = NO_ERROR; if ((ret = drmReq.atomicAddProperty(mDrmCrtc->id(), mDrmCrtc->active_property(), 1)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(mDrmCrtc->id(), mDrmCrtc->mode_property(), modeBlob)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(mDrmConnector->id(), mDrmConnector->crtc_id_property(), mDrmCrtc->id())) < 0) return ret; return NO_ERROR; } int32_t ExynosDisplayDrmInterface::setCursorPositionAsync(uint32_t x_pos, uint32_t y_pos) { return 0; } int32_t ExynosDisplayDrmInterface::updateHdrCapabilities() { /* Init member variables */ mExynosDisplay->mHdrTypes.clear(); mExynosDisplay->mMaxLuminance = 0; mExynosDisplay->mMaxAverageLuminance = 0; mExynosDisplay->mMinLuminance = 0; const DrmProperty &prop_max_luminance = mDrmConnector->max_luminance(); const DrmProperty &prop_max_avg_luminance = mDrmConnector->max_avg_luminance(); const DrmProperty &prop_min_luminance = mDrmConnector->min_luminance(); const DrmProperty &prop_hdr_formats = mDrmConnector->hdr_formats(); int ret = 0; uint64_t max_luminance = 0; uint64_t max_avg_luminance = 0; uint64_t min_luminance = 0; uint64_t hdr_formats = 0; if ((prop_max_luminance.id() == 0) || (prop_max_avg_luminance.id() == 0) || (prop_min_luminance.id() == 0) || (prop_hdr_formats.id() == 0)) { ALOGE("%s:: there is no property for hdrCapabilities (max_luminance: %d, max_avg_luminance: %d, min_luminance: %d, hdr_formats: %d", __func__, prop_max_luminance.id(), prop_max_avg_luminance.id(), prop_min_luminance.id(), prop_hdr_formats.id()); return -1; } std::tie(ret, max_luminance) = prop_max_luminance.value(); if (ret < 0) { HWC_LOGE(mExynosDisplay, "%s:: there is no max_luminance (ret = %d)", __func__, ret); return -1; } mExynosDisplay->mMaxLuminance = (float)max_luminance / DISPLAY_LUMINANCE_UNIT; std::tie(ret, max_avg_luminance) = prop_max_avg_luminance.value(); if (ret < 0) { HWC_LOGE(mExynosDisplay, "%s:: there is no max_avg_luminance (ret = %d)", __func__, ret); return -1; } mExynosDisplay->mMaxAverageLuminance = (float)max_avg_luminance / DISPLAY_LUMINANCE_UNIT; std::tie(ret, min_luminance) = prop_min_luminance.value(); if (ret < 0) { HWC_LOGE(mExynosDisplay, "%s:: there is no min_luminance (ret = %d)", __func__, ret); return -1; } mExynosDisplay->mMinLuminance = (float)min_luminance / DISPLAY_LUMINANCE_UNIT; std::tie(ret, hdr_formats) = prop_hdr_formats.value(); if (ret < 0) { HWC_LOGE(mExynosDisplay, "%s:: there is no hdr_formats (ret = %d)", __func__, ret); return -1; } uint32_t typeBit; std::tie(typeBit, ret) = prop_hdr_formats.GetEnumValueWithName("Dolby Vision"); if ((ret == 0) && (hdr_formats & (1 << typeBit))) { mExynosDisplay->mHdrTypes.push_back(HAL_HDR_DOLBY_VISION); HDEBUGLOGD(eDebugHWC, "%s: supported hdr types : %d", mExynosDisplay->mDisplayName.string(), HAL_HDR_DOLBY_VISION); } std::tie(typeBit, ret) = prop_hdr_formats.GetEnumValueWithName("HDR10"); if ((ret == 0) && (hdr_formats & (1 << typeBit))) { mExynosDisplay->mHdrTypes.push_back(HAL_HDR_HDR10); if (mExynosDisplay->mDevice->mResourceManager->hasHDR10PlusMPP()) { mExynosDisplay->mHdrTypes.push_back(HAL_HDR_HDR10_PLUS); } HDEBUGLOGD(eDebugHWC, "%s: supported hdr types : %d", mExynosDisplay->mDisplayName.string(), HAL_HDR_HDR10); } std::tie(typeBit, ret) = prop_hdr_formats.GetEnumValueWithName("HLG"); if ((ret == 0) && (hdr_formats & (1 << typeBit))) { mExynosDisplay->mHdrTypes.push_back(HAL_HDR_HLG); HDEBUGLOGD(eDebugHWC, "%s: supported hdr types : %d", mExynosDisplay->mDisplayName.string(), HAL_HDR_HLG); } ALOGI("%s: get hdrCapabilities info max_luminance(%" PRId64 "), " "max_avg_luminance(%" PRId64 "), min_luminance(%" PRId64 "), " "hdr_formats(0x%" PRIx64 ")", mExynosDisplay->mDisplayName.string(), max_luminance, max_avg_luminance, min_luminance, hdr_formats); ALOGI("%s: mHdrTypes size(%zu), maxLuminance(%f), maxAverageLuminance(%f), minLuminance(%f)", mExynosDisplay->mDisplayName.string(), mExynosDisplay->mHdrTypes.size(), mExynosDisplay->mMaxLuminance, mExynosDisplay->mMaxAverageLuminance, mExynosDisplay->mMinLuminance); return 0; } int ExynosDisplayDrmInterface::getDeconChannel(ExynosMPP *otfMPP) { int32_t channelNum = sizeof(IDMA_CHANNEL_MAP)/sizeof(dpp_channel_map_t); for (int i = 0; i < channelNum; i++) { if((IDMA_CHANNEL_MAP[i].type == otfMPP->mPhysicalType) && (IDMA_CHANNEL_MAP[i].index == otfMPP->mPhysicalIndex)) return IDMA_CHANNEL_MAP[i].channel; } return -EINVAL; } int32_t ExynosDisplayDrmInterface::setupCommitFromDisplayConfig( ExynosDisplayDrmInterface::DrmModeAtomicReq &drmReq, const exynos_win_config_data &config, const uint32_t configIndex, const std::unique_ptr &plane, uint32_t &fbId) { int ret = NO_ERROR; if (fbId == 0) { if ((ret = mFBManager.getBuffer(config, fbId)) < 0) { HWC_LOGE(mExynosDisplay, "%s:: Failed to get FB, fbId(%d), ret(%d)", __func__, fbId, ret); return ret; } } if ((ret = drmReq.atomicAddProperty(plane->id(), plane->crtc_property(), mDrmCrtc->id())) < 0) return ret; if ((ret = drmReq.atomicAddProperty(plane->id(), plane->fb_property(), fbId)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(plane->id(), plane->crtc_x_property(), config.dst.x)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(plane->id(), plane->crtc_y_property(), config.dst.y)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(plane->id(), plane->crtc_w_property(), config.dst.w)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(plane->id(), plane->crtc_h_property(), config.dst.h)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(plane->id(), plane->src_x_property(), (int)(config.src.x) << 16)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(plane->id(), plane->src_y_property(), (int)(config.src.y) << 16)) < 0) HWC_LOGE(mExynosDisplay, "%s:: Failed to add src_y property to plane", __func__); if ((ret = drmReq.atomicAddProperty(plane->id(), plane->src_w_property(), (int)(config.src.w) << 16)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(plane->id(), plane->src_h_property(), (int)(config.src.h) << 16)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(plane->id(), plane->rotation_property(), halTransformToDrmRot(config.transform), true)) < 0) return ret; uint64_t drmEnum = 0; std::tie(drmEnum, ret) = halToDrmEnum(config.blending, mBlendEnums); if (ret < 0) { HWC_LOGE(mExynosDisplay, "Fail to convert blend(%d)", config.blending); return ret; } if ((ret = drmReq.atomicAddProperty(plane->id(), plane->blend_property(), drmEnum, true)) < 0) return ret; if (plane->zpos_property().id() && !plane->zpos_property().is_immutable()) { uint64_t min_zpos = 0; // Ignore ret and use min_zpos as 0 by default std::tie(std::ignore, min_zpos) = plane->zpos_property().range_min(); if ((ret = drmReq.atomicAddProperty(plane->id(), plane->zpos_property(), configIndex + min_zpos)) < 0) return ret; } if (plane->alpha_property().id()) { uint64_t min_alpha = 0; uint64_t max_alpha = 0; std::tie(std::ignore, min_alpha) = plane->alpha_property().range_min(); std::tie(std::ignore, max_alpha) = plane->alpha_property().range_max(); if ((ret = drmReq.atomicAddProperty(plane->id(), plane->alpha_property(), (uint64_t)(((max_alpha - min_alpha) * config.plane_alpha) + 0.5) + min_alpha, true)) < 0) return ret; } if (config.acq_fence >= 0) { if ((ret = drmReq.atomicAddProperty(plane->id(), plane->in_fence_fd_property(), config.acq_fence)) < 0) return ret; } if (config.state == config.WIN_STATE_COLOR) { if (plane->colormap_property().id()) { if ((ret = drmReq.atomicAddProperty(plane->id(), plane->colormap_property(), config.color)) < 0) return ret; } else { HWC_LOGE(mExynosDisplay, "colormap property is not supported"); } } std::tie(drmEnum, ret) = halToDrmEnum(config.dataspace & HAL_DATASPACE_STANDARD_MASK, mStandardEnums); if (ret < 0) { HWC_LOGE(mExynosDisplay, "Fail to convert standard(%d)", config.dataspace & HAL_DATASPACE_STANDARD_MASK); return ret; } if ((ret = drmReq.atomicAddProperty(plane->id(), plane->standard_property(), drmEnum, true)) < 0) return ret; std::tie(drmEnum, ret) = halToDrmEnum(config.dataspace & HAL_DATASPACE_TRANSFER_MASK, mTransferEnums); if (ret < 0) { HWC_LOGE(mExynosDisplay, "Fail to convert transfer(%d)", config.dataspace & HAL_DATASPACE_TRANSFER_MASK); return ret; } if ((ret = drmReq.atomicAddProperty(plane->id(), plane->transfer_property(), drmEnum, true)) < 0) return ret; std::tie(drmEnum, ret) = halToDrmEnum(config.dataspace & HAL_DATASPACE_RANGE_MASK, mRangeEnums); if (ret < 0) { HWC_LOGE(mExynosDisplay, "Fail to convert range(%d)", config.dataspace & HAL_DATASPACE_RANGE_MASK); return ret; } if ((ret = drmReq.atomicAddProperty(plane->id(), plane->range_property(), drmEnum, true)) < 0) return ret; if (hasHdrInfo(config.dataspace)) { if ((ret = drmReq.atomicAddProperty(plane->id(), plane->min_luminance_property(), config.min_luminance)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(plane->id(), plane->max_luminance_property(), config.max_luminance)) < 0) return ret; } return NO_ERROR; } int32_t ExynosDisplayDrmInterface::setupPartialRegion(DrmModeAtomicReq &drmReq) { if (!mDrmCrtc->partial_region_property().id()) return NO_ERROR; int ret = NO_ERROR; struct decon_frame &update_region = mExynosDisplay->mDpuData.win_update_region; struct drm_clip_rect partial_rect = { static_cast(update_region.x), static_cast(update_region.y), static_cast(update_region.x + update_region.w), static_cast(update_region.y + update_region.h), }; if ((mPartialRegionState.blob_id == 0) || mPartialRegionState.isUpdated(partial_rect)) { uint32_t blob_id = 0; ret = mDrmDevice->CreatePropertyBlob(&partial_rect, sizeof(partial_rect),&blob_id); if (ret || (blob_id == 0)) { HWC_LOGE(mExynosDisplay, "Failed to create partial region " "blob id=%d, ret=%d", blob_id, ret); return ret; } HDEBUGLOGD(eDebugWindowUpdate, "%s: partial region updated [%d, %d, %d, %d] -> [%d, %d, %d, %d] blob(%d)", mExynosDisplay->mDisplayName.string(), mPartialRegionState.partial_rect.x1, mPartialRegionState.partial_rect.y1, mPartialRegionState.partial_rect.x2, mPartialRegionState.partial_rect.y2, partial_rect.x1, partial_rect.y1, partial_rect.x2, partial_rect.y2, blob_id); mPartialRegionState.partial_rect = partial_rect; if (mPartialRegionState.blob_id) drmReq.addOldBlob(mPartialRegionState.blob_id); mPartialRegionState.blob_id = blob_id; } if ((ret = drmReq.atomicAddProperty(mDrmCrtc->id(), mDrmCrtc->partial_region_property(), mPartialRegionState.blob_id)) < 0) { HWC_LOGE(mExynosDisplay, "Failed to set partial region property %d", ret); return ret; } return ret; } int32_t ExynosDisplayDrmInterface::waitVBlank() { drmVBlank vblank; uint32_t high_crtc = (mDrmCrtc->pipe() << DRM_VBLANK_HIGH_CRTC_SHIFT); memset(&vblank, 0, sizeof(vblank)); vblank.request.type = (drmVBlankSeqType)( DRM_VBLANK_RELATIVE | (high_crtc & DRM_VBLANK_HIGH_CRTC_MASK)); vblank.request.sequence = 1; int ret = drmWaitVBlank(mDrmDevice->fd(), &vblank); return ret; } int32_t ExynosDisplayDrmInterface::updateColorSettings(DrmModeAtomicReq &drmReq, uint64_t dqeEnabled) { int ret = NO_ERROR; if (dqeEnabled) { if ((ret = setDisplayColorSetting(drmReq)) != 0) { HWC_LOGE(mExynosDisplay, "Failed to set display color setting"); return ret; } } for (size_t i = 0; i < mExynosDisplay->mDpuData.configs.size(); i++) { exynos_win_config_data& config = mExynosDisplay->mDpuData.configs[i]; if ((config.state == config.WIN_STATE_BUFFER) || (config.state == config.WIN_STATE_COLOR)) { int channelId = 0; if ((channelId = getDeconChannel(config.assignedMPP)) < 0) { HWC_LOGE(mExynosDisplay, "%s:: Failed to get channel id (%d)", __func__, channelId); ret = -EINVAL; return ret; } auto &plane = mDrmDevice->planes().at(channelId); if ((ret = setPlaneColorSetting(drmReq, plane, config)) != 0) { HWC_LOGE(mExynosDisplay, "Failed to set plane color setting, config[%zu]", i); return ret; } } } return ret; } int32_t ExynosDisplayDrmInterface::deliverWinConfigData() { int ret = NO_ERROR; DrmModeAtomicReq drmReq(this); std::unordered_map planeEnableInfo; android::String8 result; bool hasSecureFrameBuffer = false; funcReturnCallback retCallback([&]() { if ((ret == NO_ERROR) && !drmReq.getError()) { mFBManager.flip(hasSecureFrameBuffer); } else if (ret == -ENOMEM) { mFBManager.releaseAll(); } }); mFBManager.checkShrink(); bool needModesetForReadback = false; if (mExynosDisplay->mDpuData.enable_readback) { if ((ret = setupWritebackCommit(drmReq)) < 0) { HWC_LOGE(mExynosDisplay, "%s:: Failed to setup writeback commit ret(%d)", __func__, ret); return ret; } needModesetForReadback = true; } else { if (mReadbackInfo.mNeedClearReadbackCommit) { if ((ret = clearWritebackCommit(drmReq)) < 0) { HWC_LOGE(mExynosDisplay, "%s: Failed to clear writeback commit ret(%d)", __func__, ret); return ret; } needModesetForReadback = true; } } if (mDesiredModeState.needs_modeset) { bool mipi_sync = mExynosDisplay->checkRrCompensationEnabled(); if ((ret = drmReq.atomicAddProperty(mDrmConnector->id(), mDrmConnector->sync_rr_switch(), mipi_sync)) < 0) { HWC_LOGE(mExynosDisplay, "%s: Fail to set sync_rr_switch property", __func__); } if ((ret = setDisplayMode(drmReq, mDesiredModeState.blob_id)) < 0) { HWC_LOGE(mExynosDisplay, "%s: Fail to apply display mode", __func__); return ret; } } if ((ret = setupPartialRegion(drmReq)) != NO_ERROR) return ret; uint64_t out_fences[mDrmDevice->crtcs().size()]; if ((ret = drmReq.atomicAddProperty(mDrmCrtc->id(), mDrmCrtc->out_fence_ptr_property(), (uint64_t)&out_fences[mDrmCrtc->pipe()], true)) < 0) { return ret; } for (auto &plane : mDrmDevice->planes()) { planeEnableInfo[plane->id()] = 0; } uint64_t dqeEnable = 1; if (mExynosDisplay->mDpuData.enable_readback && !mExynosDisplay->mDpuData.readback_info.requested_from_service) { dqeEnable = 0; } if ((ret = drmReq.atomicAddProperty(mDrmCrtc->id(), mDrmCrtc->dqe_enabled_property(), dqeEnable)) < 0) { HWC_LOGE(mExynosDisplay, "%s: Fail to dqe_enable setting", __func__); return ret; } for (size_t i = 0; i < mExynosDisplay->mDpuData.configs.size(); i++) { exynos_win_config_data& config = mExynosDisplay->mDpuData.configs[i]; if ((config.state == config.WIN_STATE_BUFFER) || (config.state == config.WIN_STATE_COLOR)) { int channelId = 0; if ((channelId = getDeconChannel(config.assignedMPP)) < 0) { HWC_LOGE(mExynosDisplay, "%s:: Failed to get channel id (%d)", __func__, channelId); ret = -EINVAL; return ret; } /* src size should be set even in dim layer */ if (config.state == config.WIN_STATE_COLOR) { config.src.w = config.dst.w; config.src.h = config.dst.h; } auto &plane = mDrmDevice->planes().at(channelId); uint32_t fbId = 0; if ((ret = setupCommitFromDisplayConfig(drmReq, config, i, plane, fbId)) < 0) { HWC_LOGE(mExynosDisplay, "setupCommitFromDisplayConfig failed, config[%zu]", i); return ret; } hasSecureFrameBuffer |= (isFramebuffer(config.layer) && config.protection); /* Set this plane is enabled */ planeEnableInfo[plane->id()] = 1; } } /* Disable unused plane */ for (auto &plane : mDrmDevice->planes()) { if (planeEnableInfo[plane->id()] == 0) { /* Don't disable planes that are reserved to other display */ ExynosMPP* exynosMPP = mExynosMPPsForPlane[plane->id()]; if ((exynosMPP != NULL) && (mExynosDisplay != NULL) && (exynosMPP->mAssignedState & MPP_ASSIGN_STATE_RESERVED) && (exynosMPP->mReservedDisplay != (int32_t)mExynosDisplay->mDisplayId)) continue; if ((ret = drmReq.atomicAddProperty(plane->id(), plane->crtc_property(), 0)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(plane->id(), plane->fb_property(), 0)) < 0) return ret; } } if (ATRACE_ENABLED()) { mExynosDisplay->traceLayerTypes(); } if (mBrightnessCtrl.DimmingOn.is_dirty()) { if ((ret = drmReq.atomicAddProperty(mDrmConnector->id(), mDrmConnector->dimming_on(), mBrightnessCtrl.DimmingOn.get())) < 0) { HWC_LOGE(mExynosDisplay, "%s: Fail to set dimming_on property", __func__); } mBrightnessCtrl.DimmingOn.clear_dirty(); } bool mipi_sync = false; // support one sync type a time for now int wait_vsync = 0; auto mipi_sync_action = brightnessState_t::MIPI_SYNC_NONE; if (mBrightnessCtrl.LhbmOn.is_dirty()) { if ((ret = drmReq.atomicAddProperty(mDrmConnector->id(), mDrmConnector->lhbm_on(), mBrightnessCtrl.LhbmOn.get())) < 0) { HWC_LOGE(mExynosDisplay, "%s: Fail to set lhbm_on property", __func__); } // sync mipi command and frame when lhbm on/off mipi_sync = true; mipi_sync_action = mBrightnessCtrl.LhbmOn.get() ? brightnessState_t::MIPI_SYNC_LHBM_ON : brightnessState_t::MIPI_SYNC_LHBM_OFF; } if (mBrightnessCtrl.LhbmOn.is_dirty()) { auto dbv = mBrightnessLevel.get(); auto old_dbv = dbv; if (mBrightnessCtrl.LhbmOn.get()) { uint32_t dbv_adj = 0; if (mExynosDisplay->getColorAdjustedDbv(dbv_adj)) { ALOGW("failed to get adjusted dbv"); } else if (dbv_adj != dbv && dbv_adj != 0) { if (dbv_adj > mBrightnessTable[BrightnessRange::NORMAL].mBklEnd) dbv_adj = mBrightnessTable[BrightnessRange::NORMAL].mBklEnd; else if (dbv_adj < mBrightnessTable[BrightnessRange::NORMAL].mBklStart) dbv_adj = mBrightnessTable[BrightnessRange::NORMAL].mBklStart; ALOGI("lhbm: adjust dbv from %d to %d", dbv, dbv_adj); dbv = dbv_adj; } } if ((dbv != old_dbv) && (ret = drmReq.atomicAddProperty(mDrmConnector->id(), mDrmConnector->brightness_level(), dbv)) < 0) { HWC_LOGE(mExynosDisplay, "%s: Fail to set brightness_level property", __func__); } mBrightnessCtrl.LhbmOn.clear_dirty(); } /** * TODO(b/200332096): * * Need to consider hbm sync between sysfs and drm commit later. * */ if (mBrightnessCtrl.HbmMode.is_dirty() && mBrightnessState.dimSdrTransition() && mBrightnessState.instant_hbm) { uint64_t hbmEnum = 0; std::tie(hbmEnum, ret) = halToDrmEnum(mBrightnessCtrl.HbmMode.get(), mHbmModeEnums); if (ret < 0) { HWC_LOGE(mExynosDisplay, "Fail to convert hbm mode(%d)", mBrightnessCtrl.HbmMode.get()); return ret; } if ((ret = drmReq.atomicAddProperty(mDrmConnector->id(), mDrmConnector->hbm_mode(), hbmEnum)) < 0) { HWC_LOGE(mExynosDisplay, "%s: Fail to set hbm_mode property", __func__); } mBrightnessCtrl.HbmMode.clear_dirty(); if (mBrightnessLevel.is_dirty()) { if ((ret = drmReq.atomicAddProperty(mDrmConnector->id(), mDrmConnector->brightness_level(), mBrightnessLevel.get())) < 0) { HWC_LOGE(mExynosDisplay, "%s: Fail to set brightness_level property", __func__); } mBrightnessLevel.clear_dirty(); } // sync mipi command and frame when sdr dimming on/off if (!mipi_sync) { mipi_sync = true; wait_vsync = 1; // GHBM mipi command has 1 frame delay mipi_sync_action = isHbmOn() ? brightnessState_t::MIPI_SYNC_GHBM_ON : brightnessState_t::MIPI_SYNC_GHBM_OFF; } } uint32_t flags = mipi_sync ? 0 : DRM_MODE_ATOMIC_NONBLOCK; if (needModesetForReadback) flags |= DRM_MODE_ATOMIC_ALLOW_MODESET; if (mipi_sync) drmReq.savePset(); if ((ret = updateColorSettings(drmReq, dqeEnable)) != 0) { HWC_LOGE(mExynosDisplay, "failed to update color settings, ret=%d", ret); return ret; } if ((ret = drmReq.commit(flags, true)) < 0) { HWC_LOGE(mExynosDisplay, "%s:: Failed to commit pset ret=%d in deliverWinConfigData()\n", __func__, ret); return ret; } if (mipi_sync) { // At this time, the previous commit (block call) starts transferring // the frame, triggered by TE0 rising edge, and all mipi commands are // supposed to be sent out after TE0 falling edge and before TE1 rising // edge. GHBM (un)compensated frame should be transferred at TE2 rising edge. // LHBM (un)compensated frame should be transferred at TE1 rising edge. ATRACE_NAME("MIPI_SYNC"); while (wait_vsync-- > 0) { if ((ret = waitVBlank()) != NO_ERROR) { HWC_LOGE(mExynosDisplay, "%s:: failed to wait vblank, ret %d", __func__, ret); return ret; } } // frame compensation set/restore mExynosDisplay->updateForMipiSync(mipi_sync_action); if ((ret = mExynosDisplay->updateColorConversionInfo()) != NO_ERROR) { HWC_LOGE(mExynosDisplay, "%s:: updateColorConversionInfo() fail, ret(%d)", __func__, ret); return ret; } drmReq.restorePset(); if (out_fences[mDrmCrtc->pipe()] >= 0) { fence_close((int)out_fences[mDrmCrtc->pipe()], mExynosDisplay, FENCE_TYPE_RETIRE, FENCE_IP_DPP); } if ((ret = updateColorSettings(drmReq, dqeEnable)) != 0) { HWC_LOGE(mExynosDisplay, "failed to update color settings, ret=%d", ret); return ret; } flags |= DRM_MODE_ATOMIC_NONBLOCK; if ((ret = drmReq.commit(flags, true)) < 0) { HWC_LOGE(mExynosDisplay, "%s:: Failed to commit gbhm pset ret=%d" " in deliverWinConfigData()\n", __func__, ret); return ret; } if (mipi_sync_action == brightnessState_t::MIPI_SYNC_LHBM_ON || mipi_sync_action == brightnessState_t::MIPI_SYNC_LHBM_OFF) { mExynosDisplay->notifyLhbmState(mBrightnessCtrl.LhbmOn.get()); } } mExynosDisplay->mDpuData.retire_fence = (int)out_fences[mDrmCrtc->pipe()]; /* * [HACK] dup retire_fence for each layer's release fence * Do not use hwc_dup because hwc_dup increase usage count of fence treacer * Usage count of this fence is incresed by ExynosDisplay::deliverWinConfigData() */ for (auto &display_config : mExynosDisplay->mDpuData.configs) { if ((display_config.state == display_config.WIN_STATE_BUFFER) || (display_config.state == display_config.WIN_STATE_CURSOR)) { display_config.rel_fence = dup((int)out_fences[mDrmCrtc->pipe()]); } } if (mDesiredModeState.needs_modeset) { mDesiredModeState.apply(mActiveModeState, drmReq); mVsyncCallback.setDesiredVsyncPeriod( nsecsPerSec/mActiveModeState.mode.v_refresh()); /* Enable vsync to check vsync period */ mDrmVSyncWorker.VSyncControl(true); } return NO_ERROR; } int32_t ExynosDisplayDrmInterface::clearDisplayMode(DrmModeAtomicReq &drmReq) { int ret = NO_ERROR; if ((ret = drmReq.atomicAddProperty(mDrmConnector->id(), mDrmConnector->crtc_id_property(), 0)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(mDrmCrtc->id(), mDrmCrtc->mode_property(), 0)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(mDrmCrtc->id(), mDrmCrtc->active_property(), 0)) < 0) return ret; return NO_ERROR; } int32_t ExynosDisplayDrmInterface::clearDisplay(bool needModeClear) { int ret = NO_ERROR; DrmModeAtomicReq drmReq(this); /* Disable all planes */ for (auto &plane : mDrmDevice->planes()) { /* Do not disable planes that are reserved to other dispaly */ ExynosMPP* exynosMPP = mExynosMPPsForPlane[plane->id()]; if ((exynosMPP != NULL) && (mExynosDisplay != NULL) && (exynosMPP->mAssignedState & MPP_ASSIGN_STATE_RESERVED) && (exynosMPP->mReservedDisplay != (int32_t)mExynosDisplay->mDisplayId)) continue; if ((ret = drmReq.atomicAddProperty(plane->id(), plane->crtc_property(), 0)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(plane->id(), plane->fb_property(), 0)) < 0) return ret; } /* Disable readback connector if required */ if (mReadbackInfo.mNeedClearReadbackCommit && !mExynosDisplay->mDpuData.enable_readback) { if ((ret = clearWritebackCommit(drmReq)) < 0) { HWC_LOGE(mExynosDisplay, "%s: Failed to apply writeback", __func__); return ret; } } /* Disable ModeSet */ if (needModeClear) { if ((ret = clearDisplayMode(drmReq)) < 0) { HWC_LOGE(mExynosDisplay, "%s: Failed to apply display mode", __func__); return ret; } } ret = drmReq.commit(DRM_MODE_ATOMIC_ALLOW_MODESET, true); if (ret) { HWC_LOGE(mExynosDisplay, "%s:: Failed to commit pset ret=%d in clearDisplay()\n", __func__, ret); return ret; } if (needModeClear) mActiveModeState.needs_modeset = true; return NO_ERROR; } int32_t ExynosDisplayDrmInterface::disableSelfRefresh(uint32_t disable) { return 0; } int32_t ExynosDisplayDrmInterface::setForcePanic() { if (exynosHWCControl.forcePanic == 0) return NO_ERROR; usleep(20000000); FILE *forcePanicFd = fopen(HWC_FORCE_PANIC_PATH, "w"); if (forcePanicFd == NULL) { ALOGW("%s:: Failed to open fd", __func__); return -1; } int val = 1; fwrite(&val, sizeof(int), 1, forcePanicFd); fclose(forcePanicFd); return 0; } uint32_t ExynosDisplayDrmInterface::getMaxWindowNum() { return mDrmDevice->planes().size(); } ExynosDisplayDrmInterface::DrmModeAtomicReq::DrmModeAtomicReq(ExynosDisplayDrmInterface *displayInterface) : mDrmDisplayInterface(displayInterface) { mPset = drmModeAtomicAlloc(); mSavedPset = NULL; } ExynosDisplayDrmInterface::DrmModeAtomicReq::~DrmModeAtomicReq() { if (mError != 0) { android::String8 result; result.appendFormat("atomic commit error\n"); if (hwcCheckDebugMessages(eDebugDisplayInterfaceConfig) == false) dumpAtomicCommitInfo(result); HWC_LOGE(mDrmDisplayInterface->mExynosDisplay, "%s", result.string()); } if(mPset) drmModeAtomicFree(mPset); if (destroyOldBlobs() != NO_ERROR) HWC_LOGE(mDrmDisplayInterface->mExynosDisplay, "destroy blob error"); } int32_t ExynosDisplayDrmInterface::DrmModeAtomicReq::atomicAddProperty( const uint32_t id, const DrmProperty &property, uint64_t value, bool optional) { if (!optional && !property.id()) { HWC_LOGE(mDrmDisplayInterface->mExynosDisplay, "%s:: %s property id(%d) for id(%d) is not available", __func__, property.name().c_str(), property.id(), id); return -EINVAL; } if (property.id()) { int ret = drmModeAtomicAddProperty(mPset, id, property.id(), value); if (ret < 0) { HWC_LOGE(mDrmDisplayInterface->mExynosDisplay, "%s:: Failed to add property %d(%s) for id(%d), ret(%d)", __func__, property.id(), property.name().c_str(), id, ret); return ret; } } return NO_ERROR; } String8& ExynosDisplayDrmInterface::DrmModeAtomicReq::dumpAtomicCommitInfo( String8 &result, bool debugPrint) { /* print log only if eDebugDisplayInterfaceConfig flag is set when debugPrint is true */ if (debugPrint && (hwcCheckDebugMessages(eDebugDisplayInterfaceConfig) == false)) return result; if (debugPrint) ALOGD("%s atomic config ++++++++++++", mDrmDisplayInterface->mExynosDisplay->mDisplayName.string()); for (int i = 0; i < drmModeAtomicGetCursor(mPset); i++) { const DrmProperty *property = NULL; String8 objectName; /* Check crtc properties */ if (mPset->items[i].object_id == mDrmDisplayInterface->mDrmCrtc->id()) { for (auto property_ptr : mDrmDisplayInterface->mDrmCrtc->properties()) { if (mPset->items[i].property_id == property_ptr->id()){ property = property_ptr; objectName.appendFormat("Crtc"); break; } } if (property == NULL) { HWC_LOGE(mDrmDisplayInterface->mExynosDisplay, "%s:: object id is crtc but there is no matched property", __func__); } } else if (mPset->items[i].object_id == mDrmDisplayInterface->mDrmConnector->id()) { for (auto property_ptr : mDrmDisplayInterface->mDrmConnector->properties()) { if (mPset->items[i].property_id == property_ptr->id()){ property = property_ptr; objectName.appendFormat("Connector"); break; } } if (property == NULL) { HWC_LOGE(mDrmDisplayInterface->mExynosDisplay, "%s:: object id is connector but there is no matched property", __func__); } } else { uint32_t channelId = 0; for (auto &plane : mDrmDisplayInterface->mDrmDevice->planes()) { if (mPset->items[i].object_id == plane->id()) { for (auto property_ptr : plane->properties()) { if (mPset->items[i].property_id == property_ptr->id()){ property = property_ptr; objectName.appendFormat("Plane[%d]", channelId); break; } } if (property == NULL) { HWC_LOGE(mDrmDisplayInterface->mExynosDisplay, "%s:: object id is plane but there is no matched property", __func__); } } channelId++; } } if (property == NULL) { HWC_LOGE(mDrmDisplayInterface->mExynosDisplay, "%s:: Fail to get property[%d] (object_id: %d, property_id: %d, value: %" PRId64 ")", __func__, i, mPset->items[i].object_id, mPset->items[i].property_id, mPset->items[i].value); continue; } if (debugPrint) ALOGD("property[%d] %s object_id: %d, property_id: %d, name: %s, value: %" PRId64 ")\n", i, objectName.string(), mPset->items[i].object_id, mPset->items[i].property_id, property->name().c_str(), mPset->items[i].value); else result.appendFormat("property[%d] %s object_id: %d, property_id: %d, name: %s, value: %" PRId64 ")\n", i, objectName.string(), mPset->items[i].object_id, mPset->items[i].property_id, property->name().c_str(), mPset->items[i].value); } return result; } int ExynosDisplayDrmInterface::DrmModeAtomicReq::commit(uint32_t flags, bool loggingForDebug) { ATRACE_NAME("drmModeAtomicCommit"); android::String8 result; /* * During kernel is in TUI, all atomic commits should be returned with error EPERM(-1). * To avoid handling atomic commit as fail, it needs to check TUI status. */ int ret = drmModeAtomicCommit(mDrmDisplayInterface->mDrmDevice->fd(), mPset, flags, mDrmDisplayInterface->mDrmDevice); if (loggingForDebug) dumpAtomicCommitInfo(result, true); if ((ret == -EPERM) && mDrmDisplayInterface->mDrmDevice->event_listener()->IsDrmInTUI()) { ALOGV("skip atomic commit error handling as kernel is in TUI"); ret = NO_ERROR; } else if (ret < 0) { HWC_LOGE(mDrmDisplayInterface->mExynosDisplay, "commit error: %d", ret); setError(ret); } return ret; } std::tuple ExynosDisplayDrmInterface::halToDrmEnum( const int32_t halData, const DrmPropertyMap &drmEnums) { auto it = drmEnums.find(halData); if (it != drmEnums.end()) { return std::make_tuple(it->second, 0); } else { HWC_LOGE(NULL, "%s::Failed to find standard enum(%d)", __func__, halData); return std::make_tuple(0, -EINVAL); } } int32_t ExynosDisplayDrmInterface::getReadbackBufferAttributes( int32_t* /*android_pixel_format_t*/ outFormat, int32_t* /*android_dataspace_t*/ outDataspace) { DrmConnector *writeback_conn = mReadbackInfo.getWritebackConnector(); if (writeback_conn == NULL) { ALOGE("%s: There is no writeback connection", __func__); return -EINVAL; } mReadbackInfo.pickFormatDataspace(); if (mReadbackInfo.mReadbackFormat == HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) { ALOGE("readback format(%d) is not valid", mReadbackInfo.mReadbackFormat); return -EINVAL; } *outFormat = mReadbackInfo.mReadbackFormat; *outDataspace = HAL_DATASPACE_UNKNOWN; return NO_ERROR; } int32_t ExynosDisplayDrmInterface::setupWritebackCommit(DrmModeAtomicReq &drmReq) { int ret = NO_ERROR; DrmConnector *writeback_conn = mReadbackInfo.getWritebackConnector(); if (writeback_conn == NULL) { ALOGE("%s: There is no writeback connection", __func__); return -EINVAL; } if (writeback_conn->writeback_fb_id().id() == 0 || writeback_conn->writeback_out_fence().id() == 0) { ALOGE("%s: Writeback properties don't exit", __func__); return -EINVAL; } uint32_t writeback_fb_id = 0; exynos_win_config_data writeback_config; VendorGraphicBufferMeta gmeta(mExynosDisplay->mDpuData.readback_info.handle); writeback_config.state = exynos_win_config_data::WIN_STATE_BUFFER; writeback_config.format = mReadbackInfo.mReadbackFormat; writeback_config.src = {0, 0, mExynosDisplay->mXres, mExynosDisplay->mYres, gmeta.stride, gmeta.vstride}; writeback_config.dst = {0, 0, mExynosDisplay->mXres, mExynosDisplay->mYres, gmeta.stride, gmeta.vstride}; writeback_config.fd_idma[0] = gmeta.fd; writeback_config.fd_idma[1] = gmeta.fd1; writeback_config.fd_idma[2] = gmeta.fd2; if ((ret = mFBManager.getBuffer(writeback_config, writeback_fb_id)) < 0) { ALOGE("%s: getBuffer() fail ret(%d)", __func__, ret); return ret; } if ((ret = drmReq.atomicAddProperty(writeback_conn->id(), writeback_conn->writeback_fb_id(), writeback_fb_id)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(writeback_conn->id(), writeback_conn->writeback_out_fence(), (uint64_t)& mExynosDisplay->mDpuData.readback_info.acq_fence)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(writeback_conn->id(), writeback_conn->crtc_id_property(), mDrmCrtc->id())) < 0) return ret; mReadbackInfo.setFbId(writeback_fb_id); mReadbackInfo.mNeedClearReadbackCommit = true; return NO_ERROR; } int32_t ExynosDisplayDrmInterface::clearWritebackCommit(DrmModeAtomicReq &drmReq) { int ret; DrmConnector *writeback_conn = mReadbackInfo.getWritebackConnector(); if (writeback_conn == NULL) { ALOGE("%s: There is no writeback connection", __func__); return -EINVAL; } if ((ret = drmReq.atomicAddProperty(writeback_conn->id(), writeback_conn->writeback_fb_id(), 0)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(writeback_conn->id(), writeback_conn->writeback_out_fence(), 0)) < 0) return ret; if ((ret = drmReq.atomicAddProperty(writeback_conn->id(), writeback_conn->crtc_id_property(), 0)) < 0) return ret; mReadbackInfo.mNeedClearReadbackCommit = false; return NO_ERROR; } void ExynosDisplayDrmInterface::DrmReadbackInfo::init(DrmDevice *drmDevice, uint32_t displayId) { mDrmDevice = drmDevice; mWritebackConnector = mDrmDevice->AvailableWritebackConnector(displayId); if (mWritebackConnector == NULL) { ALOGI("writeback is not supported"); return; } if (mWritebackConnector->writeback_fb_id().id() == 0 || mWritebackConnector->writeback_out_fence().id() == 0) { ALOGE("%s: Writeback properties don't exit", __func__); mWritebackConnector = NULL; return; } if (mWritebackConnector->writeback_pixel_formats().id()) { int32_t ret = NO_ERROR; uint64_t blobId; std::tie(ret, blobId) = mWritebackConnector->writeback_pixel_formats().value(); if (ret) { ALOGE("Fail to get blob id for writeback_pixel_formats"); return; } drmModePropertyBlobPtr blob = drmModeGetPropertyBlob(mDrmDevice->fd(), blobId); if (!blob) { ALOGE("Fail to get blob for writeback_pixel_formats(%" PRId64 ")", blobId); return; } uint32_t formatNum = (blob->length)/sizeof(uint32_t); uint32_t *formats = (uint32_t *)blob->data; for (uint32_t i = 0; i < formatNum; i++) { int halFormat = drmFormatToHalFormat(formats[i]); ALOGD("supported writeback format[%d] %4.4s, %d", i, (char *)&formats[i], halFormat); if (halFormat != HAL_PIXEL_FORMAT_EXYNOS_UNDEFINED) mSupportedFormats.push_back(halFormat); } drmModeFreePropertyBlob(blob); } } void ExynosDisplayDrmInterface::DrmReadbackInfo::pickFormatDataspace() { if (!mSupportedFormats.empty()) mReadbackFormat = mSupportedFormats[0]; auto it = std::find(mSupportedFormats.begin(), mSupportedFormats.end(), PREFERRED_READBACK_FORMAT); if (it != mSupportedFormats.end()) mReadbackFormat = *it; } int32_t ExynosDisplayDrmInterface::getDisplayFakeEdid(uint8_t &outPort, uint32_t &outDataSize, uint8_t *outData) { int width = mExynosDisplay->mXres; int height = mExynosDisplay->mYres; int clock = (width) * (height) * 60 / 10000; std::array edid_buf{ 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, /* header */ 0x1C, 0xEC, /* manufacturer GGL */ 0x00, 0x00, /* product */ 0x00, 0x00, 0x00, 0x00, /* serial number */ 0x01, /* week of manufacture */ 0x00, /* year of manufacture */ 0x01, 0x03, /* EDID version */ 0x80, /* capabilities - digital */ 0x00, /* horizontal in cm */ 0x00, /* vertical in cm */ 0x78, /* gamma 2.2 */ 0xEE, 0xEE, 0x91, 0xA3, 0x54, 0x4C, 0x99, 0x26, 0x0F, 0x50, 0x54, /* chromaticity */ 0x00, 0x00, 0x00, /* no default timings */ /* no standard timings */ 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, /* descriptor block 1 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* descriptor block 2 */ 0x00, 0x00, 0x00, 0xFD, 0x00, 0x00, 0xC8, 0x00, 0xC8, 0x64, 0x00, 0x0A, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, /* descriptor block 3 */ 0x00, 0x00, 0x00, 0xFC, 0x00, 'C', 'o', 'm', 'm', 'o', 'n', ' ', 'P', 'a', 'n', 'e', 'l', '\n', /* descriptor block 4 */ 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* number of extensions */ 0x00 /* checksum */ }; edid_buf[55] = clock >> 8; edid_buf[56] = width & 0xff; edid_buf[58] = (width >> 4) & 0xf0; edid_buf[59] = height & 0xff; edid_buf[61] = (height >> 4) & 0xf0; unsigned int sum = std::accumulate(edid_buf.begin(), edid_buf.end() - 1, 0); edid_buf[127] = (0x100 - (sum & 0xFF)) & 0xFF; if (outData) { outDataSize = std::min(outDataSize, edid_buf.size()); memcpy(outData, edid_buf.data(), outDataSize); } else { outDataSize = static_cast(edid_buf.size()); } outPort = mExynosDisplay->mDisplayId; ALOGD("using Display Fake Edid"); return HWC2_ERROR_NONE; } int32_t ExynosDisplayDrmInterface::getDisplayIdentificationData( uint8_t* outPort, uint32_t* outDataSize, uint8_t* outData) { if ((mDrmDevice == nullptr) || (mDrmConnector == nullptr)) { ALOGE("%s: display(%s) mDrmDevice(%p), mDrmConnector(%p)", __func__, mExynosDisplay->mDisplayName.string(), mDrmDevice, mDrmConnector); return HWC2_ERROR_UNSUPPORTED; } if (mDrmConnector->edid_property().id() == 0) { ALOGD("%s: edid_property is not supported", mExynosDisplay->mDisplayName.string()); return HWC2_ERROR_UNSUPPORTED; } if (outPort == nullptr || outDataSize == nullptr) return HWC2_ERROR_BAD_PARAMETER; drmModePropertyBlobPtr blob; int ret; uint64_t blobId; std::tie(ret, blobId) = mDrmConnector->edid_property().value(); if (ret) { ALOGE("Failed to get edid property value."); return HWC2_ERROR_UNSUPPORTED; } if (blobId == 0) { ALOGD("%s: edid_property is supported but blob is not valid", mExynosDisplay->mDisplayName.string()); return getDisplayFakeEdid(*outPort, *outDataSize, outData); } blob = drmModeGetPropertyBlob(mDrmDevice->fd(), blobId); if (blob == nullptr) { ALOGD("%s: Failed to get blob", mExynosDisplay->mDisplayName.string()); return HWC2_ERROR_UNSUPPORTED; } if (outData) { *outDataSize = std::min(*outDataSize, blob->length); memcpy(outData, blob->data, *outDataSize); } else { *outDataSize = blob->length; } drmModeFreePropertyBlob(blob); *outPort = mDrmConnector->id(); return HWC2_ERROR_NONE; } void ExynosDisplayDrmInterface::checkHbmSvDimming() { status_t ret = 0; uint32_t wait = 0; while (mHbmSvDimmingThreadRunning) { if (wait == 0) { Mutex::Autolock lock(mHbmSvDimmingMutex); ret = mHbmSvDimmingCond.wait(mHbmSvDimmingMutex); } else { Mutex::Autolock lock(mHbmSvDimmingMutex); ret = mHbmSvDimmingCond.waitRelative(mHbmSvDimmingMutex, us2ns(wait)); } // When the time out, it turns dimming off(hbm sv dimming done). // Then, it waits the next hbm sv dimming event. if (ret == TIMED_OUT) { ret = 0; wait = 0; ALOGI("checking the dimming status"); endHbmSvDimming(); } else { wait = mHbmDimmingTimeUs; } } } void ExynosDisplayDrmInterface::endHbmSvDimming() { Mutex::Autolock lock(mBrightnessUpdateMutex); if (!mHbmSvDimming) return; mHbmSvDimming = false; mBrightnessCtrl.DimmingOn.store(false); if (mDimmingOnFd && mBrightnessCtrl.DimmingOn.is_dirty()) { writeFileNode(mDimmingOnFd, mBrightnessCtrl.DimmingOn.get()); mBrightnessCtrl.DimmingOn.clear_dirty(); } } void ExynosDisplayDrmInterface::getBrightnessInterfaceSupport() { if (mDrmConnector->brightness_cap().id() == 0) { ALOGD("the brightness_cap is not supported"); return; } const auto [ret, blobId] = mDrmConnector->brightness_cap().value(); if (ret) { ALOGE("Fail to get brightness_cap (ret = %d)", ret); return; } if (blobId == 0) { ALOGE("the brightness_cap is supported but blob is not valid"); return; } drmModePropertyBlobPtr blob = drmModeGetPropertyBlob(mDrmDevice->fd(), blobId); if (blob == nullptr) { ALOGE("Fail to get brightness_cap blob"); return; } const struct brightness_capability *cap = reinterpret_cast(blob->data); if (cap->hbm.level.min == cap->hbm.level.max) mPanelHbmType = PanelHbmType::ONE_STEP; else mPanelHbmType = PanelHbmType::CONTINUOUS; ALOGI("mPanelHbmType = %d", mPanelHbmType); mBrightnessHbmMax = static_cast(cap->hbm.percentage.max) / 100.0f; ALOGI("mBrightnessHbmMax = %f", mBrightnessHbmMax); mBrightnessTable[BrightnessRange::NORMAL] = BrightnessTable(cap->normal); mBrightnessTable[BrightnessRange::HBM] = BrightnessTable(cap->hbm); drmModeFreePropertyBlob(blob); parseHbmModeEnums(mDrmConnector->hbm_mode()); mBrightntessIntfSupported = true; mBrightnessState.reset(); mBrightnessCtrl.reset(); String8 node_name; node_name.appendFormat(kHbmModeFileNode, mExynosDisplay->mIndex); mHbmModeFd = fopen(node_name.string(), "w+"); if (mHbmModeFd == NULL) ALOGE("%s open failed! %s", node_name.string(), strerror(errno)); node_name.clear(); node_name.appendFormat(kDimmingOnFileNode, mExynosDisplay->mIndex); mDimmingOnFd = fopen(node_name.string(), "w+"); if (mDimmingOnFd == NULL) ALOGE("%s open failed! %s", node_name.string(), strerror(errno)); if (mDimmingOnFd) { mBrightnessDimmingUsage = static_cast( property_get_int32("vendor.display.brightness.dimming.usage", 0)); mHbmDimmingTimeUs = property_get_int32("vendor.display.brightness.dimming.hbm_time", kHbmDimmingTimeUs); if (mBrightnessDimmingUsage == BrightnessDimmingUsage::HBM) { mHbmSvDimmingThreadRunning = true; mDimmingThread = std::thread(&ExynosDisplayDrmInterface::checkHbmSvDimming, this); } } return; } float ExynosDisplayDrmInterface::getSdrDimRatio() { float sdr_nits = 0; auto sz = BrightnessRange::MAX; if (sz == 0) { ALOGW("%s: no brightness table", __func__); return 1.0; } auto brightness = mExynosDisplay->getBrightnessValue(); if (mBrightnessTable[sz - 1].mBriEnd < brightness) { ALOGE("%s: invalid brightness table, max brightness(float) %f", __func__, mBrightnessTable[sz - 1].mBriEnd); return 1.0; } for (int i = 0; i < sz; i++) { if (brightness <= mBrightnessTable[i].mBriEnd) { sdr_nits = (brightness - mBrightnessTable[i].mBriStart) / (mBrightnessTable[i].mBriEnd - mBrightnessTable[i].mBriStart) * (mBrightnessTable[i].mNitsEnd - mBrightnessTable[i].mNitsStart) + mBrightnessTable[i].mNitsStart; break; } } float peak = mBrightnessTable[sz - 1].mNitsEnd; return sdr_nits/peak; } int32_t ExynosDisplayDrmInterface::updateBrightness(bool syncFrame) { if (!mBrightntessIntfSupported) return HWC2_ERROR_UNSUPPORTED; setupBrightnessConfig(); // this change will be part of next atomic call for frame update if (syncFrame) return NO_ERROR; if (mDimmingOnFd && mBrightnessCtrl.DimmingOn.is_dirty()) { writeFileNode(mDimmingOnFd, mBrightnessCtrl.DimmingOn.get()); mBrightnessCtrl.DimmingOn.clear_dirty(); } if (mBrightnessCtrl.HbmMode.is_dirty() && !mBrightnessState.dimSdrTransition()) { if (mHbmModeFd) { writeFileNode(mHbmModeFd, mBrightnessCtrl.HbmMode.get()); mBrightnessCtrl.HbmMode.clear_dirty(); } else { ALOGW("Fail to set hbm_mode by sysfs"); } } if (mExynosDisplay->mBrightnessFd && mBrightnessLevel.is_dirty()) { writeFileNode(mExynosDisplay->mBrightnessFd, mBrightnessLevel.get()); mBrightnessLevel.clear_dirty(); } return HWC2_ERROR_NONE; } void ExynosDisplayDrmInterface::setupBrightnessConfig() { if (!mBrightntessIntfSupported) return; Mutex::Autolock lock(mBrightnessUpdateMutex); brightnessState_t brightness_state = mExynosDisplay->getBrightnessState(); if (brightness_state == mBrightnessState) return; bool dimming_on = (!mBrightnessState.instant_hbm && !brightness_state.instant_hbm); float brightness = mExynosDisplay->getBrightnessValue(); if (brightness_state.peak_hbm) { mScaledBrightness = mBrightnessHbmMax; } else { mScaledBrightness = brightness; } mBrightnessCtrl.LhbmOn.store(brightness_state.local_hbm); uint32_t range; for (range = 0; range < BrightnessRange::MAX; range++) { if (mScaledBrightness <= mBrightnessTable[range].mBriEnd) { auto bl = static_cast( (mScaledBrightness - mBrightnessTable[range].mBriStart) / (mBrightnessTable[range].mBriEnd - mBrightnessTable[range].mBriStart) * (mBrightnessTable[range].mBklEnd - mBrightnessTable[range].mBklStart) + mBrightnessTable[range].mBklStart); mBrightnessLevel.store(bl); break; } } HbmMode hbm_mode = HbmMode::OFF; if ((mPanelHbmType == PanelHbmType::ONE_STEP && mScaledBrightness == mBrightnessHbmMax) || (mPanelHbmType == PanelHbmType::CONTINUOUS && range == BrightnessRange::HBM)) { hbm_mode = HbmMode::ON_IRC_ON; } if (hbm_mode == HbmMode::ON_IRC_ON && brightness_state.enhanced_hbm) { hbm_mode = HbmMode::ON_IRC_OFF; } switch (mBrightnessDimmingUsage) { case BrightnessDimmingUsage::HBM: if ((static_cast(hbm_mode) > static_cast(HbmMode::OFF)) != mBrightnessCtrl.HbmMode.get() > static_cast(HbmMode::OFF)) { if (brightness_state.hdr_full_screen != mBrightnessState.hdr_full_screen) { mBrightnessState.hdr_full_screen = brightness_state.hdr_full_screen; } else { mHbmSvDimming = true; mHbmSvDimmingCond.signal(); } } if (mBrightnessLevel.get() == 0) mHbmSvDimming = false; dimming_on = dimming_on && (mHbmSvDimming); break; case BrightnessDimmingUsage::NONE: dimming_on = false; break; default: break; } mBrightnessCtrl.HbmMode.store(static_cast(hbm_mode)); mBrightnessCtrl.DimmingOn.store(dimming_on); ALOGI("level=%d, DimmingOn=%d, HbmMode=%d, LhbmOn=%d", mBrightnessLevel.get(), mBrightnessCtrl.DimmingOn.get(), mBrightnessCtrl.HbmMode.get(), mBrightnessCtrl.LhbmOn.get()); mBrightnessState = brightness_state; return; }