Lines Matching refs:inputShape

107             Shape inputShape = context->getInputShape(kInputTensor);  in initialize()  local
109 int32_t input_width = getSizeOfDimension(inputShape, useNchw ? 3 : 2); in initialize()
110 int32_t input_height = getSizeOfDimension(inputShape, useNchw ? 2 : 1); in initialize()
134 uint32_t height = getSizeOfDimension(inputShape, 1); \
135 uint32_t width = getSizeOfDimension(inputShape, 2); \
140 uint32_t inDepth = getSizeOfDimension(inputShape, 3); \
194 bool convNhwc(const float* inputData, const Shape& inputShape, const float* filterData, in convNhwc() argument
215 inputData, convertShapeToDims(inputShape), filterData, convertShapeToDims(filterShape), in convNhwc()
223 bool convNhwc(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData, in convNhwc() argument
233 int32_t inputOffset = -inputShape.offset; in convNhwc()
243 NN_RET_CHECK(GetQuantizedConvolutionMultipler(inputShape, filterShape, biasShape, outputShape, in convNhwc()
264 tflite::optimized_ops::Conv(inputData, convertShapeToDims(inputShape), inputOffset, filterData, in convNhwc()
277 bool convNhwc(const int8_t* inputData, Shape inputShape, const int8_t* filterData, in convNhwc() argument
285 std::vector<uint8_t> unsignedInput(getNumberOfElements(inputShape)); in convNhwc()
287 inputShape.offset += 128; in convNhwc()
296 NN_RET_CHECK(convNhwc(unsignedInput.data(), inputShape, unsignedFilter.data(), filterShape, in convNhwc()
306 bool convNhwc(const _Float16* inputData, const Shape& inputShape, const _Float16* filterData, in convNhwc() argument
314 std::vector<float> inputData_float32(getNumberOfElements(inputShape)); in convNhwc()
323 convNhwc(inputData_float32.data(), inputShape, filterData_float32.data(), filterShape, in convNhwc()
333 bool conv(const T_Input* inputData, const Shape& inputShape, const T_Filter* filterData, in conv() argument
341 NN_RET_CHECK(input.initialize(inputData, inputShape)); in conv()
352 bool convQuant8PerChannelNhwc(const uint8_t* inputData, const Shape& inputShape, in convQuant8PerChannelNhwc() argument
362 uint32_t numBatches = getSizeOfDimension(inputShape, 0); in convQuant8PerChannelNhwc()
363 uint32_t inputHeight = getSizeOfDimension(inputShape, 1); in convQuant8PerChannelNhwc()
364 uint32_t inputWidth = getSizeOfDimension(inputShape, 2); in convQuant8PerChannelNhwc()
365 uint32_t inputDepth = getSizeOfDimension(inputShape, 3); in convQuant8PerChannelNhwc()
373 int32_t inputOffset = -inputShape.offset; in convQuant8PerChannelNhwc()
384 biasChannelShape.scale = filterScales[i] * inputShape.scale; in convQuant8PerChannelNhwc()
386 inputShape, filterChannelShape, biasChannelShape, outputShape, &realMultiplier[i])); in convQuant8PerChannelNhwc()
445 bool convQuant8PerChannelNhwc(const int8_t* inputData, const Shape& inputShape, in convQuant8PerChannelNhwc() argument
455 uint32_t numBatches = getSizeOfDimension(inputShape, 0); in convQuant8PerChannelNhwc()
456 uint32_t inputHeight = getSizeOfDimension(inputShape, 1); in convQuant8PerChannelNhwc()
457 uint32_t inputWidth = getSizeOfDimension(inputShape, 2); in convQuant8PerChannelNhwc()
458 uint32_t inputDepth = getSizeOfDimension(inputShape, 3); in convQuant8PerChannelNhwc()
466 int32_t inputOffset = -inputShape.offset; in convQuant8PerChannelNhwc()
477 biasChannelShape.scale = filterScales[i] * inputShape.scale; in convQuant8PerChannelNhwc()
479 inputShape, filterChannelShape, biasChannelShape, outputShape, &realMultiplier[i])); in convQuant8PerChannelNhwc()
488 convParams.input_offset = -inputShape.offset; in convQuant8PerChannelNhwc()
502 convertShapeToTflshape(inputShape), inputData, convertShapeToTflshape(filterShape), in convQuant8PerChannelNhwc()
509 bool convQuant8PerChannel(const T* inputData, const Shape& inputShape, const int8_t* filterData, in convQuant8PerChannel() argument
518 NN_RET_CHECK(input.initialize(inputData, inputShape)); in convQuant8PerChannel()