/* * Copyright (c) 2022 Huawei Device Co., Ltd. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ops/tile_builder.h" #include #include "nn_tensor.h" #include "ops_test.h" using namespace testing; using namespace testing::ext; using namespace OHOS::NeuralNetworkRuntime::Ops; namespace OHOS { namespace NeuralNetworkRuntime { namespace UnitTest { class TileBuilderTest : public OpsTest { protected: void InitTensor(const std::vector& inputsIndex, const std::vector& outputsIndex) override; void SaveDimsTensor(OH_NN_DataType dataType, const std::vector &dim, const OH_NN_QuantParam* quantParam, OH_NN_TensorType type); protected: TileBuilder m_builder; std::vector inputsIndex = { 0, 1 }; std::vector outputsIndex = { 2 }; std::vector paramsIndex = { 3 }; std::vector paramDim = {}; }; void TileBuilderTest::InitTensor(const std::vector& inputsIndex, const std::vector& outputsIndex) { std::vector inputDim = {2, 2}; std::vector OutputDim = {4, 4}; m_paramsIndex = paramsIndex; SaveInputTensor(inputsIndex, OH_NN_FLOAT32, inputDim, nullptr); SaveOutputTensor(outputsIndex, OH_NN_FLOAT32, OutputDim, nullptr); } void TileBuilderTest::SaveDimsTensor(OH_NN_DataType dataType, const std::vector &dim, const OH_NN_QuantParam* quantParam, OH_NN_TensorType type) { std::shared_ptr dimsTensor = TransToNNTensor(dataType, dim, quantParam, type); int64_t* dimsValue = new (std::nothrow) int64_t[1] {0}; EXPECT_NE(nullptr, dimsValue); dimsTensor->SetBuffer(dimsValue, sizeof(int64_t)); m_allTensors.emplace_back(dimsTensor); } /** * @tc.name: tile_build_001 * @tc.desc: Provide normal input, output to verify the normal behavior of the Build function * @tc.type: FUNC */ HWTEST_F(TileBuilderTest, tile_build_001, TestSize.Level0) { InitTensor(inputsIndex, outputsIndex); SaveDimsTensor(OH_NN_INT64, paramDim, nullptr, OH_NN_TILE_DIMS); OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_SUCCESS, ret); } /** * @tc.name: tile_build_002 * @tc.desc: Call Build func twice to verify the abnormal behavior of the Build function * @tc.type: FUNC */ HWTEST_F(TileBuilderTest, tile_build_002, TestSize.Level0) { InitTensor(inputsIndex, outputsIndex); SaveDimsTensor(OH_NN_INT64, paramDim, nullptr, OH_NN_TILE_DIMS); EXPECT_EQ(OH_NN_SUCCESS, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_OPERATION_FORBIDDEN, ret); } /** * @tc.name: tile_build_003 * @tc.desc: Provide one more than normal input to verify the abnormal behavior of the Build function * @tc.type: FUNC */ HWTEST_F(TileBuilderTest, tile_build_003, TestSize.Level0) { inputsIndex = { 0, 1, 2 }; outputsIndex = { 3 }; paramsIndex = { 4 }; InitTensor(inputsIndex, outputsIndex); SaveDimsTensor(OH_NN_INT64, paramDim, nullptr, OH_NN_TILE_DIMS); OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: tile_build_004 * @tc.desc: Provide one more than normal output to verify the abnormal behavior of the Build function * @tc.type: FUNC */ HWTEST_F(TileBuilderTest, tile_build_004, TestSize.Level0) { outputsIndex = { 2, 3 }; paramsIndex = { 4 }; InitTensor(inputsIndex, outputsIndex); SaveDimsTensor(OH_NN_INT64, paramDim, nullptr, OH_NN_TILE_DIMS); OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: tile_build_005 * @tc.desc: Provide empty input, output, and parameters to verify the abnormal behavior of the Build function * @tc.type: FUNC */ HWTEST_F(TileBuilderTest, tile_build_005, TestSize.Level0) { OH_NN_ReturnCode ret = m_builder.Build(paramsIndex, inputsIndex, outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: tile_build_006 * @tc.desc: Provide empty output to verify the abnormal behavior of the Build function * @tc.type: FUNC */ HWTEST_F(TileBuilderTest, tile_build_006, TestSize.Level0) { std::vector inputDim = {2, 2}; SaveInputTensor(inputsIndex, OH_NN_FLOAT32, inputDim, nullptr); OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: tile_build_007 * @tc.desc: Provide a valid datatype param to verify the abnormal behavior of the Build function * @tc.type: FUNC */ HWTEST_F(TileBuilderTest, tile_build_007, TestSize.Level0) { std::vector inputDim = {2, 2}; std::vector OutputDim = {4, 4}; m_paramsIndex = paramsIndex; SaveInputTensor(inputsIndex, OH_NN_FLOAT32, inputDim, nullptr); SaveOutputTensor(outputsIndex, OH_NN_FLOAT32, OutputDim, nullptr); std::shared_ptr dimsTensor = TransToNNTensor(OH_NN_FLOAT32, paramDim, nullptr, OH_NN_TILE_DIMS); float* dimsValue = new (std::nothrow) float[1] {0.0f}; EXPECT_NE(nullptr, dimsValue); dimsTensor->SetBuffer(dimsValue, sizeof(float)); m_allTensors.emplace_back(dimsTensor); OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: tile_build_008 * @tc.desc: Provide a valid type param to verify the abnormal behavior of the Build function * @tc.type: FUNC */ HWTEST_F(TileBuilderTest, tile_build_008, TestSize.Level0) { std::vector inputDim = {2, 2}; std::vector OutputDim = {4, 4}; m_paramsIndex = paramsIndex; SaveInputTensor(inputsIndex, OH_NN_FLOAT32, inputDim, nullptr); SaveOutputTensor(outputsIndex, OH_NN_FLOAT32, OutputDim, nullptr); SaveDimsTensor(OH_NN_INT64, paramDim, nullptr, OH_NN_MUL_ACTIVATION_TYPE); OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: tile_build_009 * @tc.desc: Provide a param without set buffer to verify the abnormal behavior of the Build function * @tc.type: FUNC */ HWTEST_F(TileBuilderTest, tile_build_009, TestSize.Level0) { std::vector inputDim = {2, 2}; std::vector OutputDim = {4, 4}; m_paramsIndex = paramsIndex; SaveInputTensor(inputsIndex, OH_NN_FLOAT32, inputDim, nullptr); SaveOutputTensor(outputsIndex, OH_NN_FLOAT32, OutputDim, nullptr); std::shared_ptr dimsTensor = TransToNNTensor(OH_NN_INT64, paramDim, nullptr, OH_NN_TILE_DIMS); m_allTensors.emplace_back(dimsTensor); OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: tile_get_primitive_001 * @tc.desc: Verify the GetPrimitive function return nullptr * @tc.type: FUNC */ HWTEST_F(TileBuilderTest, tile_get_primitive_001, TestSize.Level0) { LiteGraphTensorPtr primitive = m_builder.GetPrimitive(); LiteGraphTensorPtr expectPrimitive = { nullptr, DestroyLiteGraphPrimitive }; EXPECT_EQ(primitive, expectPrimitive); } /** * @tc.name: tile_getprimitive_002 * @tc.desc: Verify the normal params return behavior of the getprimitive function * @tc.type: FUNC */ HWTEST_F(TileBuilderTest, tile_getprimitive_002, TestSize.Level0) { InitTensor(inputsIndex, outputsIndex); SaveDimsTensor(OH_NN_INT64, paramDim, nullptr, OH_NN_TILE_DIMS); std::vector expectDimsValue = {0}; EXPECT_EQ(OH_NN_SUCCESS, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); LiteGraphTensorPtr primitive = m_builder.GetPrimitive(); LiteGraphTensorPtr expectPrimitive = { nullptr, DestroyLiteGraphPrimitive }; EXPECT_NE(primitive, expectPrimitive); auto returnDims = mindspore::lite::MindIR_TileFusion_GetDims(primitive.get()); auto returnDimsSize = returnDims.size(); for (size_t i = 0; i < returnDimsSize; ++i) { EXPECT_EQ(returnDims[i], expectDimsValue[i]); } } } // namespace UnitTest } // namespace NeuralNetworkRuntime } // namespace OHOS