/* * Copyright (c) 2022 Huawei Device Co., Ltd. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ops/mul_builder.h" #include "ops_test.h" using namespace testing; using namespace testing::ext; using namespace OHOS::NeuralNetworkRuntime::Ops; namespace OHOS { namespace NeuralNetworkRuntime { namespace UnitTest { class MulBuilderTest : public OpsTest { public: void SetUp() override; void TearDown() override; protected: void SaveParamsTensor(OH_NN_DataType dataType, const std::vector &dim, const OH_NN_QuantParam* quantParam, OH_NN_TensorType type); protected: MulBuilder m_mul; std::vector m_inputs {0, 1}; std::vector m_outputs {2}; std::vector m_params {3}; std::vector m_inputDim {1, 2, 2, 1}; std::vector m_outputDim {1, 2, 2, 1}; std::vector m_paramDim {}; }; void MulBuilderTest::SetUp() {} void MulBuilderTest::TearDown() {} void MulBuilderTest::SaveParamsTensor(OH_NN_DataType dataType, const std::vector &dim, const OH_NN_QuantParam* quantParam, OH_NN_TensorType type) { std::shared_ptr activationTensor = TransToNNTensor(dataType, dim, quantParam, type); int8_t* activationValue = new (std::nothrow) int8_t(0); EXPECT_NE(nullptr, activationValue); activationTensor->SetBuffer(activationValue, sizeof(int8_t)); m_allTensors.emplace_back(activationTensor); } /** * @tc.name: mul_build_001 * @tc.desc: Verify that the build function returns a successful message. * @tc.type: FUNC */ HWTEST_F(MulBuilderTest, mul_build_001, TestSize.Level0) { SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); SaveParamsTensor(OH_NN_INT8, m_paramDim, nullptr, OH_NN_MUL_ACTIVATION_TYPE); OH_NN_ReturnCode ret = m_mul.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_SUCCESS, ret); } /** * @tc.name: mul_build_002 * @tc.desc: Verify that the build function returns a failed message with true m_isBuild. * @tc.type: FUNC */ HWTEST_F(MulBuilderTest, mul_build_002, TestSize.Level0) { SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); SaveParamsTensor(OH_NN_INT8, m_paramDim, nullptr, OH_NN_MUL_ACTIVATION_TYPE); EXPECT_EQ(OH_NN_SUCCESS, m_mul.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors)); OH_NN_ReturnCode ret = m_mul.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_OPERATION_FORBIDDEN, ret); } /** * @tc.name: mul_build_003 * @tc.desc: Verify that the build function returns a failed message with invalided input. * @tc.type: FUNC */ HWTEST_F(MulBuilderTest, mul_build_003, TestSize.Level0) { m_inputs = {0, 1, 2}; m_outputs = {3}; m_params = {4}; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); SaveParamsTensor(OH_NN_INT8, m_paramDim, nullptr, OH_NN_MUL_ACTIVATION_TYPE); OH_NN_ReturnCode ret = m_mul.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: mul_build_004 * @tc.desc: Verify that the build function returns a failed message with invalided output. * @tc.type: FUNC */ HWTEST_F(MulBuilderTest, mul_build_004, TestSize.Level0) { m_outputs = {2, 3}; m_params = {4}; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); SaveParamsTensor(OH_NN_INT8, m_paramDim, nullptr, OH_NN_MUL_ACTIVATION_TYPE); OH_NN_ReturnCode ret = m_mul.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: mul_build_005 * @tc.desc: Verify that the build function returns a failed message with empty allTensor. * @tc.type: FUNC */ HWTEST_F(MulBuilderTest, mul_build_005, TestSize.Level0) { OH_NN_ReturnCode ret = m_mul.Build(m_params, m_inputs, m_outputs, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: mul_build_006 * @tc.desc: Verify that the build function returns a failed message without output tensor. * @tc.type: FUNC */ HWTEST_F(MulBuilderTest, mul_build_006, TestSize.Level0) { SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); OH_NN_ReturnCode ret = m_mul.Build(m_params, m_inputsIndex, m_outputs, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: mul_build_007 * @tc.desc: Verify that the build function returns a failed message with invalid activation's dataType. * @tc.type: FUNC */ HWTEST_F(MulBuilderTest, mul_build_007, TestSize.Level0) { m_params = {3}; std::vector m_paramDim = {}; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); std::shared_ptr activationTensor = TransToNNTensor(OH_NN_FLOAT32, m_paramDim, nullptr, OH_NN_MUL_ACTIVATION_TYPE); float activationValue = 1e-7; activationTensor->SetBuffer(&activationValue, sizeof(activationValue)); m_allTensors.emplace_back(activationTensor); OH_NN_ReturnCode ret = m_mul.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); activationTensor->SetBuffer(nullptr, 0); } /** * @tc.name: mul_build_008 * @tc.desc: Verify that the build function returns a failed message with invalid activation's dimension. * @tc.type: FUNC */ HWTEST_F(MulBuilderTest, mul_build_008, TestSize.Level0) { m_paramDim = {2}; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); std::shared_ptr activationTensor = TransToNNTensor(OH_NN_INT8, m_paramDim, nullptr, OH_NN_MUL_ACTIVATION_TYPE); int8_t activationValue[2] = {0, 1}; activationTensor->SetBuffer(activationValue, 2 * sizeof(int8_t)); m_allTensors.emplace_back(activationTensor); OH_NN_ReturnCode ret = m_mul.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); activationTensor->SetBuffer(nullptr, 0); } /** * @tc.name: mul_build_009 * @tc.desc: Verify that the build function returns a failed message with invalid activation's data. * @tc.type: FUNC */ HWTEST_F(MulBuilderTest, mul_build_009, TestSize.Level0) { SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); std::shared_ptr activationTensor = TransToNNTensor(OH_NN_INT8, m_paramDim, nullptr, OH_NN_MUL_ACTIVATION_TYPE); int8_t activationValue = -1; activationTensor->SetBuffer(&activationValue, sizeof(activationValue)); m_allTensors.emplace_back(activationTensor); OH_NN_ReturnCode ret = m_mul.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); activationTensor->SetBuffer(nullptr, 0); } /** * @tc.name: mul_build_010 * @tc.desc: Verify that the build function returns a failed message with passing invalid param. * @tc.type: FUNC */ HWTEST_F(MulBuilderTest, mul_build_010, TestSize.Level0) { SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); SaveParamsTensor(OH_NN_INT8, m_paramDim, nullptr, OH_NN_MATMUL_ACTIVATION_TYPE); OH_NN_ReturnCode ret = m_mul.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: mul_build_011 * @tc.desc: Verify that the build function returns a failed message without set buffer for activation. * @tc.type: FUNC */ HWTEST_F(MulBuilderTest, mul_build_011, TestSize.Level0) { SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); std::shared_ptr activationTensor = TransToNNTensor(OH_NN_INT8, m_paramDim, nullptr, OH_NN_MUL_ACTIVATION_TYPE); m_allTensors.emplace_back(activationTensor); OH_NN_ReturnCode ret = m_mul.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: mul_getprimitive_001 * @tc.desc: Verify that the getPrimitive function returns a successful message * @tc.type: FUNC */ HWTEST_F(MulBuilderTest, mul_getprimitive_001, TestSize.Level0) { SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); SaveParamsTensor(OH_NN_INT8, m_paramDim, nullptr, OH_NN_MUL_ACTIVATION_TYPE); int8_t activationValue = 0; EXPECT_EQ(OH_NN_SUCCESS, m_mul.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors)); LiteGraphPrimitvePtr primitive = m_mul.GetPrimitive(); LiteGraphPrimitvePtr expectPrimitive(nullptr, DestroyLiteGraphPrimitive); EXPECT_NE(expectPrimitive, primitive); auto returnValue = mindspore::lite::MindIR_MulFusion_GetActivationType(primitive.get()); EXPECT_EQ(returnValue, activationValue); } /** * @tc.name: mul_getprimitive_002 * @tc.desc: Verify that the getPrimitive function returns a failed message without build. * @tc.type: FUNC */ HWTEST_F(MulBuilderTest, mul_getprimitive_002, TestSize.Level0) { MulBuilder mul; LiteGraphPrimitvePtr primitive = m_mul.GetPrimitive(); LiteGraphPrimitvePtr expectPrimitive(nullptr, DestroyLiteGraphPrimitive); EXPECT_EQ(expectPrimitive, primitive); } } } }