// Copyright (C) 2018 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "snapuserd_core.h" DEFINE_string(force_config, "", "Force testing mode with iouring disabled"); namespace android { namespace snapshot { using namespace android::storage_literals; using android::base::unique_fd; using LoopDevice = android::dm::LoopDevice; using namespace std::chrono_literals; using namespace android::dm; using namespace std; static constexpr char kSnapuserdSocketTest[] = "snapuserdTest"; class Tempdevice { public: Tempdevice(const std::string& name, const DmTable& table) : dm_(DeviceMapper::Instance()), name_(name), valid_(false) { valid_ = dm_.CreateDevice(name, table, &path_, std::chrono::seconds(5)); } Tempdevice(Tempdevice&& other) noexcept : dm_(other.dm_), name_(other.name_), path_(other.path_), valid_(other.valid_) { other.valid_ = false; } ~Tempdevice() { if (valid_) { dm_.DeleteDevice(name_); } } bool Destroy() { if (!valid_) { return false; } valid_ = false; return dm_.DeleteDevice(name_); } const std::string& path() const { return path_; } const std::string& name() const { return name_; } bool valid() const { return valid_; } Tempdevice(const Tempdevice&) = delete; Tempdevice& operator=(const Tempdevice&) = delete; Tempdevice& operator=(Tempdevice&& other) noexcept { name_ = other.name_; valid_ = other.valid_; other.valid_ = false; return *this; } private: DeviceMapper& dm_; std::string name_; std::string path_; bool valid_; }; class SnapuserdTest : public ::testing::Test { public: bool SetupDefault(); bool SetupOrderedOps(); bool SetupOrderedOpsInverted(); bool SetupCopyOverlap_1(); bool SetupCopyOverlap_2(); bool Merge(); void ValidateMerge(); void ReadSnapshotDeviceAndValidate(); void Shutdown(); void MergeInterrupt(); void MergeInterruptFixed(int duration); void MergeInterruptRandomly(int max_duration); void StartMerge(); void CheckMergeCompletion(); static const uint64_t kSectorSize = 512; protected: void SetUp() override {} void TearDown() override { Shutdown(); } private: void SetupImpl(); void SimulateDaemonRestart(); void CreateCowDevice(); void CreateCowDeviceOrderedOps(); void CreateCowDeviceOrderedOpsInverted(); void CreateCowDeviceWithCopyOverlap_1(); void CreateCowDeviceWithCopyOverlap_2(); bool SetupDaemon(); void CreateBaseDevice(); void InitCowDevice(); void SetDeviceControlName(); void InitDaemon(); void CreateDmUserDevice(); void StartSnapuserdDaemon(); unique_ptr base_loop_; unique_ptr dmuser_dev_; std::string system_device_ctrl_name_; std::string system_device_name_; unique_fd base_fd_; std::unique_ptr cow_system_; std::unique_ptr client_; std::unique_ptr orig_buffer_; std::unique_ptr merged_buffer_; bool setup_ok_ = false; bool merge_ok_ = false; size_t size_ = 100_MiB; int cow_num_sectors_; int total_base_size_; }; static unique_fd CreateTempFile(const std::string& name, size_t size) { unique_fd fd(syscall(__NR_memfd_create, name.c_str(), MFD_ALLOW_SEALING)); if (fd < 0) { return {}; } if (size) { if (ftruncate(fd, size) < 0) { perror("ftruncate"); return {}; } if (fcntl(fd, F_ADD_SEALS, F_SEAL_GROW | F_SEAL_SHRINK) < 0) { perror("fcntl"); return {}; } } return fd; } void SnapuserdTest::Shutdown() { ASSERT_TRUE(dmuser_dev_->Destroy()); auto misc_device = "/dev/dm-user/" + system_device_ctrl_name_; ASSERT_TRUE(client_->WaitForDeviceDelete(system_device_ctrl_name_)); ASSERT_TRUE(android::fs_mgr::WaitForFileDeleted(misc_device, 10s)); ASSERT_TRUE(client_->DetachSnapuserd()); } bool SnapuserdTest::SetupDefault() { SetupImpl(); return setup_ok_; } bool SnapuserdTest::SetupOrderedOps() { CreateBaseDevice(); CreateCowDeviceOrderedOps(); return SetupDaemon(); } bool SnapuserdTest::SetupOrderedOpsInverted() { CreateBaseDevice(); CreateCowDeviceOrderedOpsInverted(); return SetupDaemon(); } bool SnapuserdTest::SetupCopyOverlap_1() { CreateBaseDevice(); CreateCowDeviceWithCopyOverlap_1(); return SetupDaemon(); } bool SnapuserdTest::SetupCopyOverlap_2() { CreateBaseDevice(); CreateCowDeviceWithCopyOverlap_2(); return SetupDaemon(); } bool SnapuserdTest::SetupDaemon() { SetDeviceControlName(); StartSnapuserdDaemon(); CreateDmUserDevice(); InitCowDevice(); InitDaemon(); setup_ok_ = true; return setup_ok_; } void SnapuserdTest::StartSnapuserdDaemon() { pid_t pid = fork(); ASSERT_GE(pid, 0); if (pid == 0) { std::string arg0 = "/system/bin/snapuserd"; std::string arg1 = "-socket="s + kSnapuserdSocketTest; char* const argv[] = {arg0.data(), arg1.data(), nullptr}; ASSERT_GE(execv(arg0.c_str(), argv), 0); } else { client_ = SnapuserdClient::Connect(kSnapuserdSocketTest, 10s); ASSERT_NE(client_, nullptr); } } void SnapuserdTest::CreateBaseDevice() { unique_fd rnd_fd; total_base_size_ = (size_ * 5); base_fd_ = CreateTempFile("base_device", total_base_size_); ASSERT_GE(base_fd_, 0); rnd_fd.reset(open("/dev/random", O_RDONLY)); ASSERT_TRUE(rnd_fd > 0); std::unique_ptr random_buffer = std::make_unique(1_MiB); for (size_t j = 0; j < ((total_base_size_) / 1_MiB); j++) { ASSERT_EQ(ReadFullyAtOffset(rnd_fd, (char*)random_buffer.get(), 1_MiB, 0), true); ASSERT_EQ(android::base::WriteFully(base_fd_, random_buffer.get(), 1_MiB), true); } ASSERT_EQ(lseek(base_fd_, 0, SEEK_SET), 0); base_loop_ = std::make_unique(base_fd_, 10s); ASSERT_TRUE(base_loop_->valid()); } void SnapuserdTest::ReadSnapshotDeviceAndValidate() { unique_fd fd(open(dmuser_dev_->path().c_str(), O_RDONLY)); ASSERT_GE(fd, 0); std::unique_ptr snapuserd_buffer = std::make_unique(size_); // COPY loff_t offset = 0; ASSERT_EQ(ReadFullyAtOffset(fd, snapuserd_buffer.get(), size_, offset), true); ASSERT_EQ(memcmp(snapuserd_buffer.get(), orig_buffer_.get(), size_), 0); // REPLACE offset += size_; ASSERT_EQ(ReadFullyAtOffset(fd, snapuserd_buffer.get(), size_, offset), true); ASSERT_EQ(memcmp(snapuserd_buffer.get(), (char*)orig_buffer_.get() + size_, size_), 0); // ZERO offset += size_; ASSERT_EQ(ReadFullyAtOffset(fd, snapuserd_buffer.get(), size_, offset), true); ASSERT_EQ(memcmp(snapuserd_buffer.get(), (char*)orig_buffer_.get() + (size_ * 2), size_), 0); // REPLACE offset += size_; ASSERT_EQ(ReadFullyAtOffset(fd, snapuserd_buffer.get(), size_, offset), true); ASSERT_EQ(memcmp(snapuserd_buffer.get(), (char*)orig_buffer_.get() + (size_ * 3), size_), 0); // XOR offset += size_; ASSERT_EQ(ReadFullyAtOffset(fd, snapuserd_buffer.get(), size_, offset), true); ASSERT_EQ(memcmp(snapuserd_buffer.get(), (char*)orig_buffer_.get() + (size_ * 4), size_), 0); } void SnapuserdTest::CreateCowDeviceWithCopyOverlap_2() { std::string path = android::base::GetExecutableDirectory(); cow_system_ = std::make_unique(path); CowOptions options; options.compression = "gz"; CowWriter writer(options); ASSERT_TRUE(writer.Initialize(cow_system_->fd)); size_t num_blocks = size_ / options.block_size; size_t x = num_blocks; size_t blk_src_copy = 0; // Create overlapping copy operations while (1) { ASSERT_TRUE(writer.AddCopy(blk_src_copy, blk_src_copy + 1)); x -= 1; if (x == 1) { break; } blk_src_copy += 1; } // Flush operations ASSERT_TRUE(writer.Finalize()); // Construct the buffer required for validation orig_buffer_ = std::make_unique(total_base_size_); // Read the entire base device ASSERT_EQ(android::base::ReadFullyAtOffset(base_fd_, orig_buffer_.get(), total_base_size_, 0), true); // Merged operations required for validation int block_size = 4096; x = num_blocks; loff_t src_offset = block_size; loff_t dest_offset = 0; while (1) { memmove((char*)orig_buffer_.get() + dest_offset, (char*)orig_buffer_.get() + src_offset, block_size); x -= 1; if (x == 1) { break; } src_offset += block_size; dest_offset += block_size; } } void SnapuserdTest::CreateCowDeviceWithCopyOverlap_1() { std::string path = android::base::GetExecutableDirectory(); cow_system_ = std::make_unique(path); CowOptions options; options.compression = "gz"; CowWriter writer(options); ASSERT_TRUE(writer.Initialize(cow_system_->fd)); size_t num_blocks = size_ / options.block_size; size_t x = num_blocks; size_t blk_src_copy = num_blocks - 1; // Create overlapping copy operations while (1) { ASSERT_TRUE(writer.AddCopy(blk_src_copy + 1, blk_src_copy)); x -= 1; if (x == 0) { ASSERT_EQ(blk_src_copy, 0); break; } blk_src_copy -= 1; } // Flush operations ASSERT_TRUE(writer.Finalize()); // Construct the buffer required for validation orig_buffer_ = std::make_unique(total_base_size_); // Read the entire base device ASSERT_EQ(android::base::ReadFullyAtOffset(base_fd_, orig_buffer_.get(), total_base_size_, 0), true); // Merged operations ASSERT_EQ(android::base::ReadFullyAtOffset(base_fd_, orig_buffer_.get(), options.block_size, 0), true); ASSERT_EQ(android::base::ReadFullyAtOffset( base_fd_, (char*)orig_buffer_.get() + options.block_size, size_, 0), true); } void SnapuserdTest::CreateCowDeviceOrderedOpsInverted() { unique_fd rnd_fd; loff_t offset = 0; std::string path = android::base::GetExecutableDirectory(); cow_system_ = std::make_unique(path); rnd_fd.reset(open("/dev/random", O_RDONLY)); ASSERT_TRUE(rnd_fd > 0); std::unique_ptr random_buffer_1_ = std::make_unique(size_); // Fill random data for (size_t j = 0; j < (size_ / 1_MiB); j++) { ASSERT_EQ(ReadFullyAtOffset(rnd_fd, (char*)random_buffer_1_.get() + offset, 1_MiB, 0), true); offset += 1_MiB; } CowOptions options; options.compression = "gz"; CowWriter writer(options); ASSERT_TRUE(writer.Initialize(cow_system_->fd)); size_t num_blocks = size_ / options.block_size; size_t blk_end_copy = num_blocks * 3; size_t source_blk = num_blocks - 1; size_t blk_src_copy = blk_end_copy - 1; uint16_t xor_offset = 5; size_t x = num_blocks; while (1) { ASSERT_TRUE(writer.AddCopy(source_blk, blk_src_copy)); x -= 1; if (x == 0) { break; } source_blk -= 1; blk_src_copy -= 1; } for (size_t i = num_blocks; i > 0; i--) { ASSERT_TRUE(writer.AddXorBlocks(num_blocks + i - 1, &random_buffer_1_.get()[options.block_size * (i - 1)], options.block_size, 2 * num_blocks + i - 1, xor_offset)); } // Flush operations ASSERT_TRUE(writer.Finalize()); // Construct the buffer required for validation orig_buffer_ = std::make_unique(total_base_size_); // Read the entire base device ASSERT_EQ(android::base::ReadFullyAtOffset(base_fd_, orig_buffer_.get(), total_base_size_, 0), true); // Merged Buffer memmove(orig_buffer_.get(), (char*)orig_buffer_.get() + 2 * size_, size_); memmove(orig_buffer_.get() + size_, (char*)orig_buffer_.get() + 2 * size_ + xor_offset, size_); for (int i = 0; i < size_; i++) { orig_buffer_.get()[size_ + i] ^= random_buffer_1_.get()[i]; } } void SnapuserdTest::CreateCowDeviceOrderedOps() { unique_fd rnd_fd; loff_t offset = 0; std::string path = android::base::GetExecutableDirectory(); cow_system_ = std::make_unique(path); rnd_fd.reset(open("/dev/random", O_RDONLY)); ASSERT_TRUE(rnd_fd > 0); std::unique_ptr random_buffer_1_ = std::make_unique(size_); // Fill random data for (size_t j = 0; j < (size_ / 1_MiB); j++) { ASSERT_EQ(ReadFullyAtOffset(rnd_fd, (char*)random_buffer_1_.get() + offset, 1_MiB, 0), true); offset += 1_MiB; } memset(random_buffer_1_.get(), 0, size_); CowOptions options; options.compression = "gz"; CowWriter writer(options); ASSERT_TRUE(writer.Initialize(cow_system_->fd)); size_t num_blocks = size_ / options.block_size; size_t x = num_blocks; size_t source_blk = 0; size_t blk_src_copy = 2 * num_blocks; uint16_t xor_offset = 5; while (1) { ASSERT_TRUE(writer.AddCopy(source_blk, blk_src_copy)); x -= 1; if (x == 0) { break; } source_blk += 1; blk_src_copy += 1; } ASSERT_TRUE(writer.AddXorBlocks(num_blocks, random_buffer_1_.get(), size_, 2 * num_blocks, xor_offset)); // Flush operations ASSERT_TRUE(writer.Finalize()); // Construct the buffer required for validation orig_buffer_ = std::make_unique(total_base_size_); // Read the entire base device ASSERT_EQ(android::base::ReadFullyAtOffset(base_fd_, orig_buffer_.get(), total_base_size_, 0), true); // Merged Buffer memmove(orig_buffer_.get(), (char*)orig_buffer_.get() + 2 * size_, size_); memmove(orig_buffer_.get() + size_, (char*)orig_buffer_.get() + 2 * size_ + xor_offset, size_); for (int i = 0; i < size_; i++) { orig_buffer_.get()[size_ + i] ^= random_buffer_1_.get()[i]; } } void SnapuserdTest::CreateCowDevice() { unique_fd rnd_fd; loff_t offset = 0; std::string path = android::base::GetExecutableDirectory(); cow_system_ = std::make_unique(path); rnd_fd.reset(open("/dev/random", O_RDONLY)); ASSERT_TRUE(rnd_fd > 0); std::unique_ptr random_buffer_1_ = std::make_unique(size_); // Fill random data for (size_t j = 0; j < (size_ / 1_MiB); j++) { ASSERT_EQ(ReadFullyAtOffset(rnd_fd, (char*)random_buffer_1_.get() + offset, 1_MiB, 0), true); offset += 1_MiB; } CowOptions options; options.compression = "gz"; CowWriter writer(options); ASSERT_TRUE(writer.Initialize(cow_system_->fd)); size_t num_blocks = size_ / options.block_size; size_t blk_end_copy = num_blocks * 2; size_t source_blk = num_blocks - 1; size_t blk_src_copy = blk_end_copy - 1; uint32_t sequence[num_blocks * 2]; // Sequence for Copy ops for (int i = 0; i < num_blocks; i++) { sequence[i] = num_blocks - 1 - i; } // Sequence for Xor ops for (int i = 0; i < num_blocks; i++) { sequence[num_blocks + i] = 5 * num_blocks - 1 - i; } ASSERT_TRUE(writer.AddSequenceData(2 * num_blocks, sequence)); size_t x = num_blocks; while (1) { ASSERT_TRUE(writer.AddCopy(source_blk, blk_src_copy)); x -= 1; if (x == 0) { break; } source_blk -= 1; blk_src_copy -= 1; } source_blk = num_blocks; blk_src_copy = blk_end_copy; ASSERT_TRUE(writer.AddRawBlocks(source_blk, random_buffer_1_.get(), size_)); size_t blk_zero_copy_start = source_blk + num_blocks; size_t blk_zero_copy_end = blk_zero_copy_start + num_blocks; ASSERT_TRUE(writer.AddZeroBlocks(blk_zero_copy_start, num_blocks)); size_t blk_random2_replace_start = blk_zero_copy_end; ASSERT_TRUE(writer.AddRawBlocks(blk_random2_replace_start, random_buffer_1_.get(), size_)); size_t blk_xor_start = blk_random2_replace_start + num_blocks; size_t xor_offset = BLOCK_SZ / 2; ASSERT_TRUE(writer.AddXorBlocks(blk_xor_start, random_buffer_1_.get(), size_, num_blocks, xor_offset)); // Flush operations ASSERT_TRUE(writer.Finalize()); // Construct the buffer required for validation orig_buffer_ = std::make_unique(total_base_size_); std::string zero_buffer(size_, 0); ASSERT_EQ(android::base::ReadFullyAtOffset(base_fd_, orig_buffer_.get(), size_, size_), true); memcpy((char*)orig_buffer_.get() + size_, random_buffer_1_.get(), size_); memcpy((char*)orig_buffer_.get() + (size_ * 2), (void*)zero_buffer.c_str(), size_); memcpy((char*)orig_buffer_.get() + (size_ * 3), random_buffer_1_.get(), size_); ASSERT_EQ(android::base::ReadFullyAtOffset(base_fd_, &orig_buffer_.get()[size_ * 4], size_, size_ + xor_offset), true); for (int i = 0; i < size_; i++) { orig_buffer_.get()[(size_ * 4) + i] = (uint8_t)(orig_buffer_.get()[(size_ * 4) + i] ^ random_buffer_1_.get()[i]); } } void SnapuserdTest::InitCowDevice() { uint64_t num_sectors = client_->InitDmUserCow(system_device_ctrl_name_, cow_system_->path, base_loop_->device(), base_loop_->device()); ASSERT_NE(num_sectors, 0); } void SnapuserdTest::SetDeviceControlName() { system_device_name_.clear(); system_device_ctrl_name_.clear(); std::string str(cow_system_->path); std::size_t found = str.find_last_of("/\\"); ASSERT_NE(found, std::string::npos); system_device_name_ = str.substr(found + 1); system_device_ctrl_name_ = system_device_name_ + "-ctrl"; } void SnapuserdTest::CreateDmUserDevice() { unique_fd fd(TEMP_FAILURE_RETRY(open(base_loop_->device().c_str(), O_RDONLY | O_CLOEXEC))); ASSERT_TRUE(fd > 0); uint64_t dev_sz = get_block_device_size(fd.get()); ASSERT_TRUE(dev_sz > 0); cow_num_sectors_ = dev_sz >> 9; DmTable dmuser_table; ASSERT_TRUE(dmuser_table.AddTarget( std::make_unique(0, cow_num_sectors_, system_device_ctrl_name_))); ASSERT_TRUE(dmuser_table.valid()); dmuser_dev_ = std::make_unique(system_device_name_, dmuser_table); ASSERT_TRUE(dmuser_dev_->valid()); ASSERT_FALSE(dmuser_dev_->path().empty()); auto misc_device = "/dev/dm-user/" + system_device_ctrl_name_; ASSERT_TRUE(android::fs_mgr::WaitForFile(misc_device, 10s)); } void SnapuserdTest::InitDaemon() { bool ok = client_->AttachDmUser(system_device_ctrl_name_); ASSERT_TRUE(ok); } void SnapuserdTest::CheckMergeCompletion() { while (true) { double percentage = client_->GetMergePercent(); if ((int)percentage == 100) { break; } std::this_thread::sleep_for(1s); } } void SnapuserdTest::SetupImpl() { CreateBaseDevice(); CreateCowDevice(); SetDeviceControlName(); StartSnapuserdDaemon(); CreateDmUserDevice(); InitCowDevice(); InitDaemon(); setup_ok_ = true; } bool SnapuserdTest::Merge() { StartMerge(); CheckMergeCompletion(); merge_ok_ = true; return merge_ok_; } void SnapuserdTest::StartMerge() { bool ok = client_->InitiateMerge(system_device_ctrl_name_); ASSERT_TRUE(ok); } void SnapuserdTest::ValidateMerge() { merged_buffer_ = std::make_unique(total_base_size_); ASSERT_EQ(android::base::ReadFullyAtOffset(base_fd_, merged_buffer_.get(), total_base_size_, 0), true); ASSERT_EQ(memcmp(merged_buffer_.get(), orig_buffer_.get(), total_base_size_), 0); } void SnapuserdTest::SimulateDaemonRestart() { Shutdown(); std::this_thread::sleep_for(500ms); SetDeviceControlName(); StartSnapuserdDaemon(); CreateDmUserDevice(); InitCowDevice(); InitDaemon(); } void SnapuserdTest::MergeInterruptRandomly(int max_duration) { std::srand(std::time(nullptr)); StartMerge(); for (int i = 0; i < 20; i++) { int duration = std::rand() % max_duration; std::this_thread::sleep_for(std::chrono::milliseconds(duration)); SimulateDaemonRestart(); StartMerge(); } SimulateDaemonRestart(); ASSERT_TRUE(Merge()); } void SnapuserdTest::MergeInterruptFixed(int duration) { StartMerge(); for (int i = 0; i < 25; i++) { std::this_thread::sleep_for(std::chrono::milliseconds(duration)); SimulateDaemonRestart(); StartMerge(); } SimulateDaemonRestart(); ASSERT_TRUE(Merge()); } void SnapuserdTest::MergeInterrupt() { // Interrupt merge at various intervals StartMerge(); std::this_thread::sleep_for(250ms); SimulateDaemonRestart(); StartMerge(); std::this_thread::sleep_for(250ms); SimulateDaemonRestart(); StartMerge(); std::this_thread::sleep_for(150ms); SimulateDaemonRestart(); StartMerge(); std::this_thread::sleep_for(100ms); SimulateDaemonRestart(); StartMerge(); std::this_thread::sleep_for(800ms); SimulateDaemonRestart(); StartMerge(); std::this_thread::sleep_for(600ms); SimulateDaemonRestart(); ASSERT_TRUE(Merge()); } TEST_F(SnapuserdTest, Snapshot_IO_TEST) { ASSERT_TRUE(SetupDefault()); // I/O before merge ReadSnapshotDeviceAndValidate(); ASSERT_TRUE(Merge()); ValidateMerge(); // I/O after merge - daemon should read directly // from base device ReadSnapshotDeviceAndValidate(); Shutdown(); } TEST_F(SnapuserdTest, Snapshot_MERGE_IO_TEST) { ASSERT_TRUE(SetupDefault()); // Issue I/O before merge begins std::async(std::launch::async, &SnapuserdTest::ReadSnapshotDeviceAndValidate, this); // Start the merge ASSERT_TRUE(Merge()); ValidateMerge(); Shutdown(); } TEST_F(SnapuserdTest, Snapshot_MERGE_IO_TEST_1) { ASSERT_TRUE(SetupDefault()); // Start the merge StartMerge(); // Issue I/O in parallel when merge is in-progress std::async(std::launch::async, &SnapuserdTest::ReadSnapshotDeviceAndValidate, this); CheckMergeCompletion(); ValidateMerge(); Shutdown(); } TEST_F(SnapuserdTest, Snapshot_Merge_Resume) { ASSERT_TRUE(SetupDefault()); MergeInterrupt(); ValidateMerge(); Shutdown(); } TEST_F(SnapuserdTest, Snapshot_COPY_Overlap_TEST_1) { ASSERT_TRUE(SetupCopyOverlap_1()); ASSERT_TRUE(Merge()); ValidateMerge(); Shutdown(); } TEST_F(SnapuserdTest, Snapshot_COPY_Overlap_TEST_2) { ASSERT_TRUE(SetupCopyOverlap_2()); ASSERT_TRUE(Merge()); ValidateMerge(); Shutdown(); } TEST_F(SnapuserdTest, Snapshot_COPY_Overlap_Merge_Resume_TEST) { ASSERT_TRUE(SetupCopyOverlap_1()); MergeInterrupt(); ValidateMerge(); Shutdown(); } TEST_F(SnapuserdTest, Snapshot_Merge_Crash_Fixed_Ordered) { ASSERT_TRUE(SetupOrderedOps()); MergeInterruptFixed(300); ValidateMerge(); Shutdown(); } TEST_F(SnapuserdTest, Snapshot_Merge_Crash_Random_Ordered) { ASSERT_TRUE(SetupOrderedOps()); MergeInterruptRandomly(500); ValidateMerge(); Shutdown(); } TEST_F(SnapuserdTest, Snapshot_Merge_Crash_Fixed_Inverted) { ASSERT_TRUE(SetupOrderedOpsInverted()); MergeInterruptFixed(50); ValidateMerge(); Shutdown(); } TEST_F(SnapuserdTest, Snapshot_Merge_Crash_Random_Inverted) { ASSERT_TRUE(SetupOrderedOpsInverted()); MergeInterruptRandomly(50); ValidateMerge(); Shutdown(); } } // namespace snapshot } // namespace android int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); gflags::ParseCommandLineFlags(&argc, &argv, false); android::base::SetProperty("ctl.stop", "snapuserd"); if (FLAGS_force_config == "iouring_disabled") { if (!android::base::SetProperty("snapuserd.test.io_uring.force_disable", "1")) { return testing::AssertionFailure() << "Failed to disable property: snapuserd.test.io_uring.disabled"; } } int ret = RUN_ALL_TESTS(); if (FLAGS_force_config == "iouring_disabled") { android::base::SetProperty("snapuserd.test.io_uring.force_disable", "0"); } return ret; }