/* * Copyright (C) 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include // The following block allows compilation on windows, which does not have getuid(). #ifdef _WIN32 #ifdef ERROR #undef ERROR #endif #define getuid() (getUidWindows_) #endif namespace android { namespace { #ifdef _WIN32 // A temporary to confuse lint into thinking that getuid() on windows might return something other // than zero. int getUidWindows_ = 0; #endif // The number of nanoseconds in a microsecond. static const unsigned int US = 1000; // The number of nanoseconds in a second. static const unsigned int S = 1000 * 1000 * 1000; // Return the difference between two timespec values. The difference is in nanoseconds. If the // return value would exceed 2s (2^31 nanoseconds) then UINT_MAX is returned. unsigned int diffInNs(timespec const &a, timespec const &b) { timespec r = { 0, 0 }; r.tv_nsec = a.tv_nsec - b.tv_nsec; if (r.tv_nsec < 0) { r.tv_sec = -1; r.tv_nsec += S; } r.tv_sec = r.tv_sec + (a.tv_sec - b.tv_sec); if (r.tv_sec > 2) return UINT_MAX; unsigned int result = (r.tv_sec * S) + r.tv_nsec; if (result > 2 * S) return UINT_MAX; return result; } } ResourceTimer::ResourceTimer(Counter api) : active_(enabled_.load()), api_(api) { if (active_) { clock_gettime(CLOCK_MONOTONIC, &start_); } } ResourceTimer::~ResourceTimer() { record(); } void ResourceTimer::enable() { if (!enabled_.load()) counter_ = new GuardedTimer[ResourceTimer::counterSize]; enabled_.store(true); } void ResourceTimer::cancel() { active_ = false; } void ResourceTimer::record() { if (!active_) return; struct timespec end; clock_gettime(CLOCK_MONOTONIC, &end); // Get the difference in microseconds. const unsigned int ticks = diffInNs(end, start_); ScopedTimer t(counter_[toIndex(api_)]); t->record(ticks); active_ = false; } bool ResourceTimer::copy(int counter, Timer &dst, bool reset) { ScopedTimer t(counter_[counter]); if (t->count == 0) { dst.reset(); if (reset) t->reset(); return false; } Timer::copy(dst, *t, reset); return true; } void ResourceTimer::reset() { for (int i = 0; i < counterSize; i++) { ScopedTimer t(counter_[i]); t->reset(); } } ResourceTimer::Timer::Timer() { // Ensure newly-created objects are zeroed. memset(buckets, 0, sizeof(buckets)); reset(); } ResourceTimer::Timer::~Timer() { for (int d = 0; d < MaxDimension; d++) { delete[] buckets[d]; } } void ResourceTimer::Timer::freeBuckets() { for (int d = 0; d < MaxDimension; d++) { delete[] buckets[d]; buckets[d] = 0; } } void ResourceTimer::Timer::reset() { count = total = mintime = maxtime = 0; memset(largest, 0, sizeof(largest)); memset(&pvalues, 0, sizeof(pvalues)); // Zero the histogram, keeping any allocated dimensions. for (int d = 0; d < MaxDimension; d++) { if (buckets[d] != 0) memset(buckets[d], 0, sizeof(int) * MaxBuckets); } } void ResourceTimer::Timer::copy(Timer &dst, Timer &src, bool reset) { dst.freeBuckets(); dst = src; // Clean up the histograms. if (reset) { // Do NOT free the src buckets because they being used by dst. memset(src.buckets, 0, sizeof(src.buckets)); src.reset(); } else { for (int d = 0; d < MaxDimension; d++) { if (src.buckets[d] != nullptr) { dst.buckets[d] = new int[MaxBuckets]; memcpy(dst.buckets[d], src.buckets[d], sizeof(int) * MaxBuckets); } } } } void ResourceTimer::Timer::record(int ticks) { // Record that the event happened. count++; total += ticks; if (mintime == 0 || ticks < mintime) mintime = ticks; if (ticks > maxtime) maxtime = ticks; // Do not add oversized events to the histogram. if (ticks != UINT_MAX) { for (int d = 0; d < MaxDimension; d++) { if (ticks < range[d]) { if (buckets[d] == 0) { buckets[d] = new int[MaxBuckets]; memset(buckets[d], 0, sizeof(int) * MaxBuckets); } if (ticks < width[d]) { // Special case: never write to bucket 0 because it complicates the percentile logic. // However, this is always the smallest possible value to it is very unlikely to ever // affect any of the percentile results. buckets[d][1]++; } else { buckets[d][ticks / width[d]]++; } break; } } } // The list of largest times is sorted with the biggest value at index 0 and the smallest at // index MaxLargest-1. The incoming tick count should be added to the array only if it is // larger than the current value at MaxLargest-1. if (ticks > largest[Timer::MaxLargest-1]) { for (size_t i = 0; i < Timer::MaxLargest; i++) { if (ticks > largest[i]) { if (i < Timer::MaxLargest-1) { for (size_t j = Timer::MaxLargest - 1; j > i; j--) { largest[j] = largest[j-1]; } } largest[i] = ticks; break; } } } } void ResourceTimer::Timer::Percentile::compute( int cumulative, int current, int count, int width, int time) { nominal = time; nominal_actual = (cumulative * 100) / count; floor = nominal - width; floor_actual = ((cumulative - current) * 100) / count; } void ResourceTimer::Timer::compute() { memset(&pvalues, 0, sizeof(pvalues)); float l50 = count / 2.0; float l90 = (count * 9.0) / 10.0; float l95 = (count * 95.0) / 100.0; float l99 = (count * 99.0) / 100.0; int sum = 0; for (int d = 0; d < MaxDimension; d++) { if (buckets[d] == 0) continue; for (int j = 0; j < MaxBuckets && sum < count; j++) { // Empty buckets don't contribute to the answers. Skip them. if (buckets[d][j] == 0) continue; sum += buckets[d][j]; // A word on indexing. j is never zero in the following lines. buckets[0][0] corresponds // to a delay of 0us, which cannot happen. buckets[n][0], for n > 0 overlaps a value in // buckets[n-1], and the code would have stopped there. if (sum >= l50 && pvalues.p50.nominal == 0) { pvalues.p50.compute(sum, buckets[d][j], count, width[d], j * width[d]); } if (sum >= l90 && pvalues.p90.nominal == 0) { pvalues.p90.compute(sum, buckets[d][j], count, width[d], j * width[d]); } if (sum >= l95 && pvalues.p95.nominal == 0) { pvalues.p95.compute(sum, buckets[d][j], count, width[d], j * width[d]); } if (sum >= l99 && pvalues.p99.nominal == 0) { pvalues.p99.compute(sum, buckets[d][j], count, width[d], j * width[d]); } } } } char const *ResourceTimer::toString(ResourceTimer::Counter counter) { switch (counter) { case Counter::GetResourceValue: return "GetResourceValue"; case Counter::RetrieveAttributes: return "RetrieveAttributes"; }; return "Unknown"; } std::atomic ResourceTimer::enabled_(false); std::atomic ResourceTimer::counter_(nullptr); const int ResourceTimer::Timer::range[] = { 100 * US, 1000 * US, 10*1000 * US, 100*1000 * US }; const int ResourceTimer::Timer::width[] = { 1 * US, 10 * US, 100 * US, 1000 * US }; } // namespace android